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ABSTRACT
We present a methodology for analyzing chemical bonds embedded in the electronic wave function of molecules, especially in terms of
spin correlations or so-called “local spin.” In this paper, based on biorthogonal second quantization, the spin correlation functions of
molecules are naturally introduced, which enables us to extract local singlet and local triplet elements from the wave function. We also
clarify the relationship between these spin correlations and traditional chemical concepts, i.e., resonance structures. Several chemical reac-
tions, including the intramolecular radical cyclization and the formation of preoxetane, are demonstrated to verify the analysis method
numerically.
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I. INTRODUCTION
In the field of chemistry, the correlations of localized

spins have special significance in connection with the valence
bond concept.1 Chemical bonding and chemical reactions are
understood as coupling electron spins and their recombination.
However, such information on the local electronic structure is
embedded in the complicated wave function obtained by quan-
tum chemical calculations, making it challenging to utilize the
information for our chemical understanding. This paper aims
to present a general framework and a new practical method
for analyzing local electronic states, especially the correlation
of spins.

Historically, a bond order based on the coupling of spins
proposed by Penney,2 so-called Penney–Dirac bond order, is con-
ceptually vital for our understanding of chemical bonding. The
Penney–Dirac bond order was used to formulate nuclear spin–spin
coupling in the theory of nuclear magnetic resonance.3,4 Okada
and Fueno5,6 introduced atomic and diatomic components of the
“spin coupling matrix,” the integration value of the second-order
density matrix multiplied by the spin operator. As a generalization

of the Penney–Dirac bond order, their analysis was applied to
molecular wave functions analogously to the Mulliken population
analysis.7

In today’s computational quantum chemistry, the analysis of
the correlation of localized spins in molecular systems is known as
“local spin” analysis.8 The local spin analysis can be considered as a
decomposition of the expectation value of the total S2 operator into
atomic components. With the notation of Mayer,9

⟨S2
⟩ =∑

A
⟨S2
⟩A +∑

A,B
A≠B

⟨S2
⟩AB, (1)

where ⟨S2
⟩A and ⟨S2

⟩AB are one- and two-center components,
respectively. These components are often called “local spin” them-
selves. Intuitive understanding or conceptualization of electronic
structures of molecules obtained with complicated quantum chem-
ical calculations is not always an easy task, so the local spin analysis
attracts attention, especially for the application to organic polyrad-
ical molecules10,11 and transition metal complexes,12,13 which can
be considered as molecular magnets, including a noncollinear spin
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case.14 Clark and Davidson have presented a framework for the
decomposition of ⟨S2

⟩ into one- and two-center components using
projection operators in a series of papers.8,15–17 They estimated the
components for correlated wave functions and discussed the elec-
tronic structures of benzyne molecules.16 Various definitions of
local spin were then examined18 because there are infinite ways
to decompose ⟨S2

⟩ similarly to population analyses. For exam-
ple, Mayer proposed introducing the constraint conditions for the
decomposition to satisfy the condition that one-center component
becomes zero for the restricted Hartree–Fock case.19 After that,
it became a significant issue to improve the way of decomposi-
tion based on the constraint conditions, including correlated wave
function cases.9,20–25 Discussions on this line seem to be settled by
the work of Ramos-Cordoba et al.25 Pendás and Francisco recently
presented a framework to interpret local spins, by decomposing
them into contributions from different numbers of electrons in
fragments.26

In our view, despite the accumulated contributions on the
local spin analysis, it is still unclear from formal aspects what
we can say about the molecule’s electronic structure through the
quantities in Eq. (1). In particular, we would like to point out
that the relationship between the local spin correlations and the
resonance structures embedded in the wave functions obtained
from standard quantum chemical calculations is not fully under-
stood. Although they have often been discussed together, very few
works have been devoted to their direct relationship to the best
of our knowledge. We intend to clarify the local spin correlation’s
background and provide the logically clear link between the
local spin and the chemical bonding or molecule’s electronic
structure.

The present study employs the second quantization formalism
for a nonorthogonal basis,27,28 while many previous works derive
the local spin based on reduced density matrices and projection
operators. Notably, the present representation is closely related to
the standard “Mulliken-type” partitioning,8 utilized for the Mul-
liken population,29 Mayer bond order,28,30 and the recently reported
quantity referred to as the “weight of resonance structure.”31 All of
them can be formulated in the same second quantized formalism,
and the correspondence between these quantities can be discussed
on equal footing.

The paper is organized as follows. We present a method based
on second quantized operators related to specific local electronic
states, including the coupling of electron spins in Sec. II. The con-
nection with the spin correlation and resonance theory, which allows
an intuitive understanding of the electronic structure of molecules,
is addressed after a natural derivation of the spin correlation oper-
ator in Sec. III. While the connection32,33 was partially discussed
so far, the complete formalism is given in this paper. To quan-
tify the local electronic character, the expectation values for the
introduced second quantized operators are evaluated for molecular
orbital-based wave functions in Sec. IV. The numerical results are
demonstrated in Sec. V, where at first the spin correlation functions
obtained from quantum chemical calculations and the Heisenberg
spin Hamiltonian model are compared. The numerical behavior of
spin correlation functions and coupling of localized spins along the
chemical reactions are shown with insights into molecular electronic
structures.

II. LOCAL ELECTRONIC STATES
This section aims to formulate local electronic states and intro-

duce the operators corresponding to the states in a given wave func-
tion. We start from the fact that any wave function Ψ in the linear
combination of atomic orbitals (LCAOs) approximation can be rep-
resented as a linear combination of atomic spin orbital (ASO)-based
determinants {ΦASO

i } as

Ψ =∑
i

KiΦASO
i , (2)

where K i is the expansion coefficient of the ith ASO-based deter-
minant ΦASO

i . Each ASO-based determinant, representing the
local electronic structure, is related to the concept of “resonance
structure” in chemistry.34–36 Focusing on the occupancy of the
two atomic orbitals χμ and χν (μ ≠ ν), we can group the ASO-
based determinants in Ψ. All the possible occupation patterns are
schematically shown in Fig. 1. Expressions of some of these config-
urations with ASO-determinants are shown later. We first construct
the operators corresponding to each configuration schematically
shown in the figure. In the mixed second quantized formalism27,28

for nonorthogonal ASO {χσ
μ} and its biorthogonal spin orbital

{φσ
μ} (labels of spin and spatial functions are given by σ and μ,

respectively), the number operator for χσ
μ is given as

N̂σ
μ = χσ+

μ φσ−
μ . (3)

By using the identity

1 = N̂σ
μ + (1 − N̂σ

μ), (4)

we obtain the following resolution of the identity about the
occupancies of the atomic spin orbitals χα

μ , χβ
μ , χα

ν and χβ
ν :

FIG. 1. Schematic representations for the patterns of the occupancies of the
atomic orbitals χμ and χν constructing the wave function and numbering of the
configurations.
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where the number (label) of the corresponding configuration repre-
sented in Fig. 1 is shown under each term in Eq. (6). This identity
shows that the total wave function Ψ is represented as the super-
position of the configurations labeled 1–16. It should be mentioned
that the works by Karafiloglou and his co-workers contribute to a
systematic construction of projection operators for local electronic
states.37,38 For the spin correlation, we consider the situation in
which two electrons, respectively, occupy each orbital. The operators
corresponding to the configurations 1–4 are written as

Θ̂αβ
μν = N̂α

μ(1 − N̂β
μ)(1 − N̂α

ν)N̂
β
ν , (7)

Θ̂βα
μν = (1 − N̂α

μ)N̂
β
μN̂α

ν(1 − N̂β
ν), (8)

Θ̂αα
μν = N̂α

μ(1 − N̂β
μ)N̂

α
ν(1 − N̂β

ν), (9)

Θ̂ββ
μν = (1 − N̂α

μ)N̂
β
μ(1 − N̂α

ν)N̂
β
ν. (10)

The actions of these operators are

Θ̂αβ
μν Ψ = Ψαβ

μν , Θ̂βα
μν Ψ = Ψβα

μν , Θ̂αα
μν Ψ = Ψαα

μν , Θ̂ββ
μν Ψ = Ψββ

μν , (11)

where Ψαβ
μν , Ψβα

μν , Ψαα
μν , Ψββ

μν are represented using ASO-based determi-
nants as

Ψαβ
μν =∑

i
Kαβ

i Φαβ
i (χ

α
μ , χβ

ν ∈ Φαβ
i , χβ

μ , χα
ν ∉ Φαβ

i ), (12)

Ψβα
μν =∑

i
Kβα

i Φβα
i (χ

β
μ , χα

ν ∈ Φβα
i , χα

μ , χβ
ν ∉ Φβα

i ), (13)

Ψαα
μν =∑

i
Kαα

i Φαα
i (χ

α
μ , χα

ν ∈ Φαα
i , χβ

μ , χβ
ν ∉ Φαα

i ), (14)

Ψββ
μν =∑

i
Kββ

i Φββ
i (χ

β
μ , χβ

ν ∈ Φββ
i , χα

μ , χα
ν ∉ Φββ

i ). (15)

In Eqs. (12)–(15), Kαβ
i , Kβα

i , Kαα
i and Kββ

i are the expansion coef-
ficients appearing in Eq. (2). For ease of notations, labels of
atomic orbitals, μ and ν, are omitted in Kαβ

i , Kβα
i , Kαα

i , Kββ
i and in

Φαβ
i , Φβα

i , Φαα
i , Φββ

i .

The components of Ψ, Ψαα
μν and Ψββ

μν , are called local triplet states
(⟨Sz⟩ = ±1 types, respectively), obviously related to the antibonding
character for the pair of χμ and χν. For the bonding character, we
found that the expression cannot be written only with the num-
ber operators appearing in Eq. (6). First, note that ASO-based
determinants Φαβ

i and Φβα
i are associated so as to satisfy

∣Φαβ
i ⟩ = χα+

μ φβ−
μ χβ+

ν φα−
ν ∣Φ

βα
i ⟩, (16)

where the right-hand side of the equation is the determinant in
which χβ

μ and χα
ν in Φβα

i are replaced with χα
μ and χβ

ν , respectively,
(χβ

μ → χα
μ , χα

ν → χβ
ν). We, then, introduce the determinantal expres-

sion of the local electronic states to be called the local singlet state,
ΨS

μν, and the local triplet (⟨Sz⟩ = 0 type) state, ΨT0
μν , at χμ and χν as

follows:

ΨS
μν =∑

i

Kαβ
i − Kβα

i
2

ΦS
i , (17)

ΨT0
μν =∑

i

Kαβ
i + Kβα

i
2

ΦT0
i , (18)

where

ΦS
i ≡ Φαβ

i −Φβα
i = ∣(χ

α
μ χβ

ν − χβ
μχα

ν ) ⋅ ⋅ ⋅∣, (19)

ΦT0
i ≡ Φαβ

i + Φβα
i = ∣(χ

α
μ χβ

ν + χβ
μχα

ν ) ⋅ ⋅ ⋅∣. (20)

In Eqs. (17) and (18), the expansion coefficients are determined so
as to satisfy

Ψαβ
μν +Ψβα

μν = ΨS
μν +ΨT0

μν. (21)

The operator Θ̂S
μν, which satisfies Θ̂S

μνΨ = ΨS
μν, is
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Θ̂S
μν =

1
2
(Θ̂αβ

μν + Θ̂βα
μν − χβ+

μ χα+
ν φβ−

ν φα−
μ − χα+

μ χβ+
ν φα−

ν φβ−
μ ). (22)

Similarly, the operator Θ̂T0
μν , which satisfies Θ̂T0

μν Ψ = ΨT0
μν , is

Θ̂T0
μν =

1
2
(Θ̂αβ

μν + Θ̂βα
μν + χβ+

μ χα+
ν φβ−

ν φα−
μ + χα+

μ χβ+
ν φα−

ν φβ−
μ ). (23)

Now, we know all the operators related to the states about
the occupancy of the two atomic orbitals χμ and χν, shown in
Fig. 1.

III. SPIN CORRELATION
Here, we first present a second quantized formalism of spin

correlation on a nonorthogonal atomic orbital basis. Then, the
formal connection between the spin correlation sμ ⋅ sν and local
electronic states is provided in terms of second quantized operators.
Spin operators can be represented in the mixed second quantized
formalism as

Sx =∑
μ

1
2
(χβ+

μ φα−
μ + χα+

μ φβ−
μ ), (24)

Sy =∑
μ

i
2
(χβ+

μ φα−
μ − χα+

μ φβ−
μ ), (25)

Sz =∑
μ

1
2
(N̂α

μ − N̂β
μ). (26)

Utilizing the anticommutation relations

[χσ1+
μ , φσ2−

ν ]
+
= δσ1σ2 δμν, (27)

the total S2 spin operator in the mixed second quantized formalism20

can be written as

S2
= S2

x + S2
y + S2

z

=
3
4∑μ
(N̂α

μ + N̂β
μ) +

1
2∑μ,ν
(χβ+

μ χα+
ν φβ−

ν φα−
μ + χβ+

ν χα+
μ φβ−

μ φα−
ν )

+
1
4∑μ,ν
(χα+

μ χα+
ν φα−

ν φα−
μ − χα+

μ χβ+
ν φβ−

ν φα−
μ

− χβ+
μ χα+

ν φα−
ν φβ−

μ + χβ+
μ χβ+

ν φβ−
ν φβ−

μ ). (28)

Here, we introduce the following local spin operators:

sx
μ ≡

1
2
(χβ+

μ φα−
μ + χα+

μ φβ−
μ ), (29)

sy
μ ≡

i
2
(χβ+

μ φα−
μ − χα+

μ φβ−
μ ), (30)

sz
μ ≡

1
2
(N̂α

μ − N̂β
μ), (31)

sμ ≡ (sx
μ, sy

μ, sz
μ). (32)

Based on these definitions, we rewrite the two-electron part of
si ⋅ sj as

sμ ⋅ sν =
1
2
(χβ+

ν χα+
μ φβ−

μ φα−
ν + χβ+

μ χα+
ν φβ−

ν φα−
μ )

+
1
4
(χα+

μ χα+
ν φα−

ν φα−
μ − χα+

μ χβ+
ν φβ−

ν φα−
μ

− χβ+
μ χα+

ν φα−
ν φβ−

μ + χβ+
μ χβ+

ν φβ−
ν φβ−

μ ). (33)

Then, Eq. (28) can simply be represented as follows:

S2
=

3
4∑μ
(N̂α

μ + N̂β
μ) +∑

μ,ν
sμ ⋅ sν. (34)

The present formulation of the spin correlation is equivalent to
that by Clark and Davidson.8 As we will see later, the formula-
tion gives the same result for the two-center component ⟨S2

⟩AB in
Eq. (1) as the one by the “Mulliken-type” partitioning of them. [In
their scheme, the contribution from the first term on the right-hand
side of Eq. (34) is distributed into the one-center component ⟨S2

⟩A.
For consistency of notation, this part is represented differently in
this paper.] Nevertheless, it is notable that the physical background
becomes clear due to the introduction through the second quantized
operator. For example, Eq. (33), in the case of μ ≠ ν, can be rewritten
with the operators introduced in Sec. II as

sμ ⋅ sν = −
3
4

Θ̂S
μν +

1
4

Θ̂T0
μν +

1
4

Θ̂αα
μν +

1
4

Θ̂ββ
μν. (35)

This representation clearly shows that the spin correlation between
two orbitals is a sum of contributions from the local singlet state
weighted with −3/4 and local triplet states weighted with 1/4.
Especially in the case of μ = ν,

sμ ⋅ sμ = −
3
2

N̂α
μN̂β

μ. (36)

The operator N̂α
μN̂β

μ projects out the local state in which χμ is
occupied by α- and β-electrons.

It is worth mentioning the relationship to Penney’s picture of
bonding.2 The Penney–Dirac bond order between orbitals labeled i
and j is defined as

pij = −
4
3

si ⋅ sj, (37)

where si ⋅ sj denotes the expectation value of si ⋅ sj. This bond order
takes following values for the limiting cases of two electrons:

pij =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 (singlet),

−
1
3

(triplet),

0 (random),

(38)

where “random” means the state in which singlet and triplet (⟨Sz⟩

= ±1, 0) are equally mixed. The Penney–Dirac bond order is consid-
ered as the inter-/extrapolation for these two limited values of the
singlet and random states. On looking at Eq. (35), the local singlet
and local triplet terms are found to cancel out each other when there
is no spin correlation, i.e., random coupling,

−
4
3

sμ ⋅ sν = Θ̂S
μν −

1
3
{Θ̂T0

μν + Θ̂αα
μν + Θ̂ββ

μν}.
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For the simplest H2 of the minimal basis set, a purely covalent
bond is represented by the normalized Heitler–London-type wave
function,

ΨHL
= ∣χα

1 χβ
2 ∣ − ∣χ

β
1 χα

2 ∣, (39)

−
4
3
⟨ΨHL

∣s1 ⋅ s2∣ΨHL
⟩ = 1. (40)

Similarly, the quantity for the triplet state is minus one-third. A
bond is generally characterized by a mixing of covalent and ionic
characters; hence, the quantity of singlet-coupling, in reality, should
be smaller than one. For the Hartree–Fock wave function, ΨHF, the
quantity in the left-hand side of Eq. (40) takes the value of 1/2,
and the expectation value of the operator ⟨ΨHF

∣s1 ⋅ s2∣ΨHF
⟩ becomes

−3/8.
We note that the operator for spin correlation sμ ⋅ sν rep-

resented in Eq. (33) is a proper extension of the spin operator
appearing in the Heisenberg spin Hamiltonian,

H = J∑
μ∼ν

sμ ⋅ sν, (41)

where J is the exchange coupling constant, μ and ν indicate atomic
sites, and μ ∼ ν means the sum is taken over the labels of adja-
cent atomic sites. Equation (33) reduces to sμ ⋅ sν in Eq. (41) when
the atomic orbital basis is orthogonal, as assumed in the standard
Heisenberg model.

IV. WEIGHTS OF LOCAL ELECTRONIC STATES
The weight wi for the ASO-based determinant ΦASO

i in
Eq. (2) can be evaluated based on the definition of Chirgwin and
Coulson39 as

wi = Ki⟨Ψ∣ΦASO
i ⟩. (42)

These weights sum up to unity for the normalized wave function.
Since the ASOs are distributed on atomic sites, the weight of an ASO
determinant is identified as the weight of corresponding resonance
structure. This weight can be formulated using the number oper-
ator represented in Eq. (3).31 The expectation values of the mixed
second quantized operators introduced in the previous sections,
which are closely related to the Chirgwin–Coulson weight or the
Mulliken-type partitioning, are provided in this section to quantify
each contribution of the local electronic states. We assume single-
determinant cases (Hartree–Fock wave function or Kohn–Sham
determinant) for the present purpose. For a single-determinant wave
function, ΨHF, we show that the expectation values of the oper-
ators Θ̂αβ

μν , Θ̂βα
μν , Θ̂αα

μν , Θ̂ββ
μν and sμ ⋅ sν can be represented using only

the overlap matrix S and density matrices Pσ (σ = α, β), with its
element

Pσ
μν =

occ.

∑
i

cσ
iμcσ∗

iν , (43)

where cσ
iμ is the coefficient of χσ

μ in the ith molecular spin orbital ϕσ
i .

The general representation of the expectation value for the
string of number operators was reported in Ref. 31. The expectation
value of the operator appearing in Eqs. (22) and (23) and the first
parenthesis in Eq. (33) is calculated as28,31

⟨ΨHF
∣χα+

μ φβ−
μ χβ+

ν φα−
ν ∣Ψ

HF
⟩

=∑
i,j

cα
iνcβ

jμ⟨Ψ
HF
∣ΨHF

(ϕα
i → χβ

ν , ϕβ
j → χα

μ)⟩ (44)

=∑
i,j

cα
iνcβ

jμ

RRRRRRRRRRRRR

⟨ϕα
i ∣ χ

β
ν ⟩ ⟨ϕ

α
i ∣ χ

α
μ⟩

⟨ϕβ
j ∣ χ

β
ν ⟩ ⟨ϕ

β
j ∣ χ

α
μ⟩

RRRRRRRRRRRRR

(45)

=

RRRRRRRRRRRRR

0 (PαS)νμ

(PβS)μν 0

RRRRRRRRRRRRR

= −(PαS)νμ(PβS)μν, (46)

where ΨHF
(ϕα

i → χβ
ν , ϕβ

j → χα
μ) in Eq. (44) is the determinant in

which molecular orbitals ϕα
i and ϕβ

j in ΨHF are replaced by χβ
ν and

χα
μ , respectively. Similarly,

⟨ΨHF
∣χβ+

μ φα−
μ χα+

ν φβ−
ν ∣Ψ

HF
⟩ = −(PβS)νμ(PαS)μν. (47)

These representations are combined and we obtain the follow-
ing representation for the weights of local singlet and local triplet
(⟨Sz⟩ = 0,±1 types) states. Additionally, we obtain the following
representation for the spin correlation function:

⟨ΨHF
∣sμ ⋅ sν∣ΨHF

⟩ = −
1
2
(PαS)μν(PβS)νμ −

1
2
(PβS)μν(PαS)νμ

+
1
4
(PαS)μμ(PαS)νν −

1
4
(PαS)μν(PαS)νμ

+
1
4
(PβS)μμ(PβS)νν −

1
4
(PβS)μν(PβS)νμ

−
1
4
(PαS)μμ(PβS)νν −

1
4
(PβS)μμ(PαS)νν (48)

= −
3
8

DμνDνμ +
1
8

PS
μνPS

νμ +
1
4

PS
μμPS

νν, (49)

wS
μν = ⟨Ψ

HF
∣Θ̂S

μν∣Ψ
HF
⟩

=
1
2
[{(PαS)μμ − (PαS)μμ(PαS)νν + (PαS)μν(PαS)νμ}

× {(PβS)νν − (PβS)μμ(PβS)νν + (PβS)μν(PβS)νμ}

+ {(PβS)μμ − (PβS)μμ(PβS)νν + (PβS)μν(PβS)νμ}

× {(PαS)νν − (PαS)μμ(PαS)νν + (PαS)μν(PαS)νμ}

+ {(PαS)μν(PβS)νμ + (PβS)μν(PαS)νμ}], (50)

wT0
μν = ⟨Ψ

HF
∣Θ̂T0

μν ∣Ψ
HF
⟩

=
1
2
[{(PαS)μμ − (PαS)μμ(PαS)νν + (PαS)μν(PαS)νμ}

× {(PβS)νν − (PβS)μμ(PβS)νν + (PβS)μν(PβS)νμ}

+ {(PβS)μμ − (PβS)μμ(PβS)νν + (PβS)μν(PβS)νμ}

× {(PαS)νν − (PαS)μμ(PαS)νν + (PαS)μν(PαS)νμ}

− {(PαS)μν(PβS)νμ + (PβS)μν(PαS)νμ}], (51)
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wαα
μν = ⟨Ψ

HF
∣Θ̂αα

μν ∣Ψ
HF
⟩

= {(PαS)μμ(PαS)νν − (PαS)μν(PαS)νμ}

× {1 − (PβS)μμ − (PβS)νν + (PβS)μμ(PβS)νν

− (PβS)μν(PβS)νμ}, (52)

w ββ
μν = ⟨Ψ

HF
∣Θ̂ ββ

μν ∣Ψ
HF
⟩

= {1 − (PαS)μμ−(PαS)νν+ (PαS)μμ(PαS)νν − (PαS)μν(PαS)νμ}

× {(PβS)μμ(PβS)νν − (PβS)μν(PβS)νμ}. (53)

As already mentioned, the treatment is considered to be equivalent
to the one by Clark and Davidson. In the bottom line of Eq. (49), the
expression is rewritten with D = Pα

+ Pβ (spinless density matrix)
and PS

= Pα
− Pβ (spin density matrix), which might be helpful. To

the best of our knowledge, Okada and Fueno reported6 essentially
the same representation as Eq. (48) (different in the factor of −4/3),
inspired by the Penney–Dirac expression. The present expres-
sion resembles the corresponding matrix formulation appearing in
Ref. 18. Note that it is straightforward to obtain the Löwdin-
type expression by changing the nonorthogonal operator.40

Equation (48) holds in the case of μ = ν,

⟨ΨHF
∣sμ ⋅ sμ∣ΨHF

⟩ = −
3
2
(PαS)μμ(PβS)μμ. (54)

Since the formulation is based on second quantization, the for-
mal extension for multi-configurational wave functions is straight-
forward. However, the numerical calculation of the weights in
Eqs. (50)-(53) requires density matrices of up to the fourth order.
In practical analyses of ab initio wave functions, the spin correlation
operator is redefined as the sum over the basis functions for the pair
of atomic centers labeled with A and B. And its expectation value is
evaluated as

⟨SA ⋅ SB⟩ = ∑
μ∈A,ν∈B

⟨sμ ⋅ sν⟩. (55)

This quantity corresponds to the two-center component ⟨S2
⟩AB in

Eq. (1). Because each component of the right-hand side can take
values between −3/4 and 1/4, the numerical range of ⟨SA ⋅ SB⟩ is rel-
atively narrow even after summing up over the basis functions. The
numerical results obtained from the equation were confirmed to be
consistent with previous works.

By introducing the following quantities,

wS
AB = ∑

μ∈A,ν∈B
wS

μν, wT0
AB = ∑

μ∈A,ν∈B
wT0

μν ,

wαα
AB = ∑

μ∈A,ν∈B
wαα

μν , w ββ
AB = ∑

μ∈A,ν∈B
w ββ

μν , (56)

we can write

⟨SA ⋅ SB⟩ = −
3
4

wS
AB +

1
4

wT0
AB +

1
4

wαα
AB +

1
4

w ββ
AB. (57)

The quantities in the left-hand side of Eq. (56), wX
AB, represent the

magnitude of the contribution from the local singlet and local triplet
states in the atomic site A and B pairs. Unlike the Chirgwin–Coulson
weights, wX

AB are not normalized and can take various values. As it is
an accumulated quantity in each spin state, the contribution tends
to increase as the size of the basis set becomes larger. Therefore,
relative comparisons and changes along a reaction coordinate are
more meaningful than absolute values. Note that ⟨SA ⋅ SB⟩ tends to
be independent of the basis-set size, as can be seen in Eq. (57).

In Sec. V, we numerically verify these quantities together with
the verification of the spin correlation function.

V. NUMERICAL DEMONSTRATIONS
In this section, we present the results of quantum chemical cal-

culations based on the discussion in the previous sections. First, spin
correlation functions obtained from the density functional theory
(DFT) and the Heisenberg model are compared. Second, numerical
behaviors of spin correlation functions in chemical reaction pro-
cesses are interpreted from the viewpoint of local coupling of spins
or resonance theory. The self-consistent field calculations and geo-
metry optimizations were performed with the Gaussian 16 pro-
gram.41 The spin correlation function and contributions of local
singlet and local triplet states were subsequently evaluated with the
overlap matrix and molecular orbital coefficients based on Eqs. (48),
(50)–(53), (55), and (56).

A. Comparison with Heisenberg spin Hamiltonian
We analyzed the bonding in ortho (o)-, para (p)-, and meta

(m)-quinodimethanes (QDMs), shown in Fig. 2. The singlet ground
states of o- and p-QDMs and the triplet ground state of m-QDM
were calculated by B3LYP42–44 with the 6-31G(d,p) basis set, treating
the triplet state with the unrestricted method (UB3LYP). Molecular
structures of o-, p-, and m-QDMs were optimized at the same com-
putational levels, imposing C2v, D2h, and C2v symmetries, respec-
tively. To evaluate the numerical effects from electrons in the space
other than the valence space, spin correlation functions were calcu-
lated in the whole of the orbital space (which is common in the local
spin analysis) and only in the π-type canonical orbital space, con-
cerning construction of the density matrices, Pσ

(σ = α, β). Ground
state wave functions of QDMs for the Heisenberg spin Hamilto-
nian in Eq. (41) were considered in the subspace of ⟨Sz⟩ = 0. The
only input for the Heisenberg model is the adjacency matrix cor-
responding to the carbon skeleton shown in Fig. 2. Assuming the
positive value of the exchange coupling constant J > 0, i.e., anti-
ferromagnetism, the wave function was obtained by diagonalizing
the Hamiltonian matrix. Then, the spin correlation functions were
calculated based on Eq. (33).

FIG. 2. Carbon skeletons for o-, p-, and m-QDMs and labels of bonds.

J. Chem. Phys. 157, 014112 (2022); doi: 10.1063/5.0092834 157, 014112-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 3. Correlation of spin correlation functions for o-, p-, and m-QDMs obtained
from the DFT [B3LYP/6-31G(d,p)] and Heisenberg spin Hamiltonian model. Spin
correlation functions from the DFT were evaluated in the occupied π-valence
orbital space (“π-Valence space”) and in the whole of the occupied orbital
space (“Whole space”). Corresponding labels of bonds shown in Fig. 2 are
included.

Computational results obtained from the DFT are plotted about
the values from the Heisenberg model (horizontal axis) in Fig. 3. In
the limit of fully singlet-coupled (purely covalent) bonds, the spin
correlation function takes the value of −3/4 = −0.75. Conversely,
in the limit of fully triplet-coupled bonds, it takes the value of
1/4 = 0.25. The spin correlation functions shown are negative, indi-
cating that bonds are surely formed. In addition, the results of the
three models correlate very well with each other, suggesting that the
bond characteristics of the molecules are very similar in all the mod-
els. The absolute values on the π-valence space are about half of the
values in the Heisenberg model, which is attributed to the fact that
a chemical bond described with a single Slater determinant typically
contains ionic bond characters as discussed in Sec. III. By adding the
σ-bond contribution, the DFT results for the whole orbital space are
shifted by about −3/8. The resulting values are closer to those of the
Heisenberg model.

The electronic structures of QDMs and π-conjugated systems
incorporating a QDM moiety are usually understood as resonance
hybrids of quinoidal Kekulé and diradical structures.45,46 The abso-
lute values of computed spin correlation functions are larger for
the bonds b, e in o-QDM and for f , h in p-QDM, correspond-
ing to a double bond in this position. Thus, the contribution
from the quinoidal Kekulé structure is significant. On the other
hand, for the triplet m-QDM, the moderate values in the corre-
lation functions show that the occurrence of bond alternation is
unlikely.

B. Spin correlations in chemical reaction processes
1. Hydrogen exchange reaction in H3

As a simple model, hydrogen exchange reaction is considered.

H +H2 → H2 +H.

For the electronic structure calculations, we used the minimal
STO-3G basis set for simplicity. Geometry optimization was per-
formed using unrestricted Hartree–Fock (UHF) to compute the
intrinsic reaction coordinate (IRC). Then, the spin correlation func-
tions were calculated with UHF and with restricted open-shell
Hartree-Fock (ROHF) along the IRC. At the same time, weights of
resonance structures were calculated with ROHF to eliminate the
effects of spin-contamination. All the patterns of occupancies of
atomic orbitals that can be identified as resonance structures for this
system are shown in Fig. 4. We note that the direct contributions of
ionic-type structures (iv–ix) to spin correlation functions are zero.

The results are shown in Fig. 5. The UHF and ROHF results
resemble each other, as illustrated in Fig. 5(a), indicating that the
spin-contamination does not affect the qualitative discussion here.
When the distance between H atoms labeled as 1 and 3 becomes
large, ⟨S1 ⋅ S3⟩ approaches zero. This result can be explained by
the fact that weights of the structures (i) and (ii) are both 25%
at the dissociated limit as shown in Fig. 5(b). In other words,
the contributions from these two resonance structures cancel each
other, and the corresponding spin correlation functions become
zero for the non-bonding pair at the dissociation limit. The behav-
ior is consistent with our intuition. On the other hand, ⟨S1 ⋅ S2⟩

asymptotically approaches −3/8, the typical value of a single
bond.

We found a maximum of ⟨S2 ⋅ S3⟩ at the transition state (TS;
IRC = 0). We can see from Fig. 5(b) that the sum of the weights
of ionic type structures (vi) and (ix) takes the maximum value at the
TS. On the contrary, the sum of the weights of structures (ii) and (iii)
significantly reduces at the TS. The configurations corresponding to
these two structures contribute negatively, and a reduction in their
contribution causes an increase in ⟨S2 ⋅ S3⟩. Note that the weight of
the resonance structure (i) is constant at ∼25%. To summarize, the
maximum of ⟨S2 ⋅ S3⟩ at the TS is not due to an increase in contri-
bution from structure (i), but it is due to a decrease in contribution
those from structures (ii) and (iii).

FIG. 4. All the patterns of the occupancies of the atomic orbitals constructing the
wave function in the H3 system.
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FIG. 5. (a) Changes in spin correlation functions calculated by ROHF (solid
lines) and by UHF (dashed lines) with STO-3G. (b) Changes in weights of
resonance structures represented in Fig. 4 calculated with ROHF/STO-3G.
(c) Changes in contributions from local singlet and local triplet (⟨Sz⟩ = 0,±1
types) states at atomic sites 1 and 2 [see (a) for the numbering] calculated
with ROHF/STO-3G, along the IRC of hydrogen exchange reaction in the H3
system.

We show the changes in contributions from the local singlet
and local triplet states in Fig. 5(c). Note that, unlike the resonance
structure weights shown in Fig. 5(b), their sum is not normalized.
Alternatively, the result obtained by summing over them multiplied
with the proper constants is ⟨S1 ⋅ S2⟩, as shown in Eq. (57). We find
wS

12, whose relative magnitude can be considered as an index of the
bonding character, it increases along with the bond formation. On
the other hand, wT0

12 and wαα
12 , which are related to the antibonding

character, decrease. The interpretation of these behaviors is consis-
tent with and complementary to the above discussion. The weight
wββ

12 is constantly zero because there is only a single β-electron in the
system.

2. Intramolecular radical cyclization
of 5-hexenyl radical

As another example, we consider the behavior of spin correla-
tion functions in the process of intramolecular radical cyclization
of 5-hexenyl radical47 shown in Fig. 6. The chemical process
of this reaction is similar to the hydrogen exchange reac-
tion. We used UB3LYP/6-31G(d,p) for the electronic structure
calculations.

In addition to using the extended basis set, the behavior of
spin correlation will be affected by electrons in the space other than
the valence orbitals. However, numerical results suggested that the
main features discussed in Subsection V B 1 remain almost the same
for this case, as shown in Fig. 7(a). The spin correlation function
⟨S1 ⋅ S3⟩ takes a value almost equal to 0 for the two dissociated atomic
sites and approaches around −3/8 along with the bond formation.
At the same time, ⟨S1 ⋅ S2⟩ behaves in the opposite manner. A dou-
ble bond is formed between atomic sites 1 and 2 at the reactant state.
The spin coupling is essentially proportional to the bond order and
contributes additively. Hence, it takes a value close to −3/4, which is
twice the typical value for the single-bond case. We find the maxi-
mum of ⟨S2 ⋅ S3⟩ around the TS such as in the case of the hydrogen
exchange reaction.

As shown in Fig. 7(b), essentially the same discussion can be
applied to the behaviors of wS

13, wT0
13 , and wαα

13 as the case of the hydro-
gen exchange reaction though the absolute values are larger. The rise
of wββ

13 is due to the formation of the σ-bonds adjacent to the bonds
between atomic sites 1 and 3. The larger absolute values in the con-
tributions are because the carbon atoms are focused on, which have
more atomic orbitals, described with the extended basis functions.
Again, the sum over all of them multiplied with the proper constants
is ⟨S1 ⋅ S3⟩. As mentioned earlier, the relative changes as the reaction
proceeds are more critical.

FIG. 6. Intramolecular radical cyclization of 5-hexenyl radical and numbering of the
atomic sites.
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FIG. 7. (a) Changes in spin correlation functions (b) Changes in contributions from
local singlet and local triplet (⟨Sz⟩ = 0,±1 types) states at atomic sites 1 and 3
(see Fig. 6 for the numbering). Calculated with UB3LYP/6-31G(d,p) along the IRC
of the intramolecular radical cyclization of 5-hexenyl radical.

3. Formation of preoxetane from dimethyl ketone
in the triplet state and tetramethylethylene

The process of formation of preoxetane from triplet dimethyl
ketone and tetramethylethylene (Fig. 8) is discussed. This pho-
tochemical reaction is known as the initial process of the
Peternò–Büch reaction.48,49

Spin correlation functions calculated with UB3LYP/6-31G(d,p)
for this system are shown in Fig. 9(a). The observed behaviors

FIG. 8. The process of formation of preoxetane from triplet dimethyl ketone
and tetramethylethylene (the initial process of the Peternò–Büch reaction) and
numbering of the atomic sites.

FIG. 9. (a) Changes in spin correlation functions. (b) Changes in contributions from
local singlet and local triplet (⟨Sz⟩ = 0,±1 types) states between atomic sites O1
and C2 and between C1 and C3 (see Fig. 8 for the numbering). Calculated with
UB3LYP/6-31G(d,p) along the IRC of the formation reaction of preoxetane from
dimethyl ketone in the triplet state and tetramethylethylene.

of some spin correlations were also similar to the cases of the
hydrogen exchange reaction in the H3 system and intramolecular
radical cyclization of 5-hexenyl radical; we can see the maximum
of ⟨SO1 ⋅ SC3⟩ around the TS, ⟨SO1 ⋅ SC2⟩ decreases and ⟨SC2 ⋅ SC3⟩

increases along with the O1–C2 bond formation and the dissoci-
ation of the C2–C3 π-bond. As can be expected, the changes of
⟨SC1 ⋅ SC2⟩ and ⟨SO1 ⋅ SC1⟩ were relatively small. In contrast to three-
center cases discussed so far, we found the rise of ⟨SC1 ⋅ SC3⟩ along
with the reaction between the atomic sites C1 and C3 separated
by two atoms. The rise of ⟨SC1 ⋅ SC3⟩ is attributed to the increasing
contribution of the local triplet (⟨Sz⟩ = 1 type) coupling on C1 and
C3 based on the information from Fig. 9(b). This behavior is also
confirmed from the spin-density distribution, where the unpaired
electrons are primarily distributed around C1 and C3 positions. The
behaviors of wS

O1C2, wT0
O1C2, wαα

O1C2, and wββ
O1C2 were very similar to

those of the corresponding weights in the case of the intramolecular
radical cyclization.
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Finally, we analyzed the open-shell singlet state of the preox-
etane product. We used the broken-symmetry (UB3LYP) method
at the geometry optimized in the triplet state. The result was
wS

C1C3 = 2.172, wT0
C1C3 = 2.171, wαα

C1C3 = 1.721, and wββ
C1C3 = 1.812.

Interestingly, this diradical was characterized by equally contribut-
ing wS

C1C3 and wT0
C1C3. To understand the situation, it is worth

recalling the behavior of H2. For the equilibrium geometry, the cova-
lent bond is characterized only by the contribution from the local
singlet state, (wS

12, wT0
12 , wαα

12 , wββ
12) = (0.5, 0, 0, 0). For the dissociated

H2, the electronic structure is characterized by the equally mixed
singlet- and triplet (⟨Sz⟩ = 0 type)-couplings, namely, (0.5, 0.5, 0, 0).
The same applies to the preoxetane product, that is, the diradical is
characterized by equal mixing.

VI. CONCLUDING REMARKS
This paper introduced the operators for the correlation of local-

ized spins that enable us to extract the local character of electronic
structures such as singlet- and triplet-couplings. Using the second
quantized formalism for nonorthogonal orbitals, we can clarify the
formal relationship between the correlation of localized spins and
the weights of resonance structures. A detailed analysis of several
reactions confirms that the spin correlations and the weights of the
resonance structures change appropriately as the reaction proceeds,
in perfect agreement with our intuition.

SUPPLEMENTARY MATERIAL

See the supplementary material for the Cartesian coordinates of
selected species.
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