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SUMMARY 

For a building with a passive control system, an inverse problem is formulated based on the pole allocation 

method in control theory. The structural system is simplified as a three-degree-of-freedom lumped-mass 

damped shear model. Through the selection of appropriate model parameters, the simplified model can 

represent an earthquake-resistant structure, a base-isolated structure, an inter-storey-isolated structure, or a 

controlled structure with a tuned mass damper or viscous dampers. The natural frequencies and 

corresponding damping ratios in the three vibration modes are set as the initial control targets for the 

performance-based design. The newly introduced closed-form expression explains how the model 

parameters are related to the control target and generally proves the trade-off relationship in the passive 

control effect. Numerical examples demonstrate that pole allocation is arbitrary in selecting a solution. 

Nevertheless, only a limited solution can be applied to an actual building. 
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1. INTRODUCTION 

 

A fundamental equation governing the passive vibration control of buildings is introduced through the 

application of pole allocation to a three-degree-of-freedom (3-DOF) lumped-mass damped shear model. A 

similar mathematical formulation was first introduced for a 3-DOF building model with inter-storey 

seismic isolation to elucidate its moderately complex dynamic behaviour 1. A similar formulation was then 

extended to a 3-DOF model with base seismic isolation or tuned mass damper (TMD) 2,3. In these studies, 

the base or inter-storey seismic isolation utilised analytical models that had a dashpot only in an isolation 

storey, whereas the TMD utilised a model that had both a spring and a dashpot linked with an auxiliary 

mass. Research studies have applied pole allocation to individually different models that express base 



isolation, inter-storey isolation, or TMD. Each model had only one dashpot, which strongly influenced the 

dynamic nature of the corresponding structural system. Pole allocation was also applied to a 2-DOF 

simplified model with base isolation or TMD to easily reveal the control effect. As a result, the research 

series determined that there is a single governing equation independent of the analytical models for seismic 

isolation and TMD. The governing equation shows that the model parameters are automatically constrained 

by the assignment of three target modal properties. For the inter-storey isolation, the constraint indicates a 

trade-off relationship in the control effect between the upper and the lower sub-structures. 

This advanced study applies pole allocation to a 3-DOF model with one dashpot in each storey to 

increase the modelling generality in the mathematical formulation. The newly introduced formulation 

proves that there is a general and significant governing equation for earthquake-resistant buildings and 

passively controlled buildings, which can also account for seismic isolation. The numerical examples in 

this study focus on a structural system with inter-storey dampers, because the formulation makes it possible 

to consider a design with passive-control dampers installed in all storeys. The results indicate that pole 

allocation is arbitrary in selecting a solution, and that only a limited solution can be applied to actual 

buildings. 

Performance-based structural designs for buildings involve not only elastic response control for 

small/medium earthquakes but also elastic-plastic response control for large earthquakes. For example, 

FEMA 356, which is a first-generation performance-based design published in 2000, classifies the standard 

structural performance into four levels: Operational Performance Level, Immediate Occupancy 

Performance Level, Life Safety Performance Level, and Collapse Prevention Performance Level 4. The 

guideline relates these levels to the peak inter-storey deformation angles, which are highly correlated with 

structural damage. To decrease the repair effort after a large earthquake, structural control technologies 

have been expected to be able to control, as much as possible, the seismic responses during an earthquake 

within the elastic ranges of structural members 5, 6. Even if the performance-based design is advanced 

further in the future, structural control within the elastic range will continue to be studied at the initial 

design stage. 

Equivalently linearised modelling is useful for understanding the nonlinear vibration of 

earthquake-resistant structures 7, 8. The equivalent natural periods and damping ratios, depending on the 

seismic response amplitudes, are often incorporated in the present structural design. Equivalent 

linearisation is also used to evaluate the basic dynamic properties of seismic isolators and dampers. In 

structural design using seismic isolation, it is important to evaluate the equivalent natural period and 

damping ratio of an isolator responding to its shear strain 9. Even in designs using displacement-dependent 

nonlinear hysteresis dampers, their energy dissipation effect is often evaluated as the equivalent damping 

ratio 10. In system identification based on earthquake response records, the time-variant modal properties 

are examined to determine the dynamic performance of earthquake-resistant structures, seismically isolated 

structures and actively/passively controlled structures 11-14. Pole allocation is consistent with 

performance-based design and structural control under linear or equivalently linear assumptions, because 

the modal properties, such as natural periods and their corresponding damping ratios, are set to be the target 

for controlling the structural response. 



Pole allocation first places the closed-loop poles associated with the modes to be controlled on the left 

half of the complex plane to ensure the asymptotic stability of the system and then computes the linear 

feedback gains required to produce these poles 15, 16. This approach is classified as a modern control theory 

that clearly sets the control criteria. Most past research on pole allocation has attracted interest in 

calculating feedback gains, which supposes its applications to active/semi-active control. At the dawn of 

the active control of civil engineering structures, it was introduced as a methodology for obtaining a 

feedback control algorithm 17. 

Pole allocation has been applied in a variety of forms in the field of civil engineering. An application to 

active control in the lateral and torsional directions via only one control force indicates that the response 

reduction effect depends on the location of the controller, even if the same poles are assigned 18. With pole 

allocation, it is always possible to assign the closed-loop poles of a linear time-invariant system. However, 

another application to an active mass damper leads to variable feedback gains, to account for stroke 

limitation 19. Active control using non-resonance theory selects suitable closed-loop poles based on an 

analysis of the coming earthquake to avoid resonance and obtain a sufficient damping effect 20. A similar 

application is determined from numerical simulations of semi-active dampers with a small amount of 

required control forces 21. Multi-modal structural control combines a pole-placement controller with an 

integral resonant controller 22. The pole-placement controller achieves a target equivalent modal viscous 

damping in the system and helps in the suppression of higher modes. The integral resonant controller 

reduces low-frequency vibrations caused by broad-band turbulent wind excitations. 

Pole allocation seems to be applicable not only to active/semi-active control but also to passive control, 

because it assigns the natural frequencies and damping ratios of a controlled system. A viscous fluid 

passive energy dissipation system places the structural poles based on a modification of structural stiffness 

and the addition of a passive control system 23, 24. The system was proposed for designing optimum passive 

energy dissipation systems using active control algorithms. The passive control system is designed to result 

in structural properties that are close to those extracted from the actively controlled system. At present, 

there have been few studies in which pole allocation was applied to the passive control of buildings. 

The controllability of an open-loop system is equivalent to the possibility of assigning an arbitrary set of 

poles to the transfer matrix of the closed-loop system formed via suitable linear feedback of the state 15, 25. 

When pole allocation is applied to a linear controllable time-invariant system with multi-control-inputs, the 

feedback gain matrix for realising the desired pole placement will contain a redundant nature in which the 

gain matrix cannot be uniquely determined 15, 25, 26. As a result, an additional constraint is required to select 

an applicable solution from the candidate solutions. An example is the procedure used to search for a low 

feedback gain matrix 26. When pole allocation is applied to a passively controlled structure, this 

arbitrariness problem occurs as a phenomenon in which the model parameters cannot be uniquely 

determined. 

Until now, in the field of control theory, pole allocation has pursued generality and universality in 

obtaining a linear feedback control for a multi-input-multi-output system. Because of the matrix-vector 

expression in theory, solving a pole allocation problem inevitably depends on numerical processes. 

Consequently, it is difficult to know the basic properties inherent to a control objective, which, in this study, 



a controlled building. This study restricts the objective model within a 3-DOF lumped-mass damped shear 

model with a dashpot in parallel to the stiffness in each storey. Nevertheless, the newly introduced 

closed-form expression proves that there is a general and significant governing equation for 

earthquake-resistant buildings and passively controlled buildings. 

Chapter 2 presents the fundamental equation governing the passive control of buildings using a 3-DOF 

model with high generality. Chapter 3 solves the pole-allocation problem based on an assumption of 

lumped-mass weights. When the problem is first treated as an undamped eigenvalue problem, the pole 

allocation process is divided into two sequential processes: The first process is to calculate the stiffness in 

each storey, and the second is to calculate damping coefficients representing dampers. This treatment is 

advantageous for solving this pole-allocation problem from the viewpoint of engineering applications. 

Chapter 4 focuses on passively controlled buildings with dampers installed in all storeys and elucidates the 

fundamental characteristics. Even if lumped-mass weights are assumed, the pole allocation mathematically 

provides multiple sets of solutions under the same modal target. This chapter recognizes that only a limited 

solution can be applied to an actual building and considers both the smoothing stiffness variance and 

positive damping coefficients. The phenomenon responds to the strong constraint of the model parameters 

and is related to the trade-off relationship between the parameters and control effect. Finally, Chapter 5 

presents the summary and conclusions. 

 

2．POLE ALLOCATION APPLIED TO 3DOF MODEL 

 

The formulation considers a 3-DOF lumped-mass damped shear model, as shown in Figure 1. Each storey 

has a dashpot that is in parallel to the stiffness. In the figure, Um , Im , and Lm  denote the upper lumped 

mass, the inter-storey lumped mass, and the lower lumped mass, respectively; Uk , Ik , and Lk  denote 

the shear stiffness values of the upper storey, the inter storey, and the lower storey, respectively; and Uc , 

Ic , and Lc  denote the damping coefficients corresponding to the storey stiffnesses. 

Through the selection of appropriate model parameters, the simplified model can be used to represent an 

earthquake resistant building or a passively controlled building under a linear assumption. When the 

stiffness in the lower storey is extremely small, compared to the others, and the corresponding damping 

coefficient is larger than the others, the model expresses base seismic isolation. When a similar parameter 

operation is applied to in the inter storey, the model expresses inter-storey seismic isolation. If the upper 

lumped mass, stiffness, and dashpot are assumed to be an auxiliary mass, a spring, and a damper, 

respectively, the model represents a building equipped with a TMD. Previous research has assumed 

0 DU cc  for inter-storey isolation 1, 0 IU cc  for base isolation, and 0 LI cc  for TMD 2, 3. 

 

2.1. State equation 

When the structure is excited by seismic excitation, the equation of motion can be expressed as 
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 (1) 

 

where, Ux , Ix , and Lx  are the displacements of the lumped masses relative to the base, and 0y  is the 

ground acceleration input to the structural system. 

 Here, U  is defined as the natural circular frequency of the upper storey, I  is defined as the natural 

circular frequency when the upper storey is assumed to be rigid, and L  is defined as the natural circular 

frequency when the upper storey and inter storey are assumed to be rigid; whereas Uh , Ih , and Lh  are 

introduced as the damping ratios corresponding to the natural circular frequencies. Meanwhile, U  is 

defined as the ratio of the upper lumped mass to the inter-storey lumped mass, and L  is defined as the 

ratio of the total mass of the upper and inter-storey lumped masses to the lower lumped mass. Then, the 

natural circular frequencies, damping ratios and mass ratios are expressed as the follows: 

 

 UUU mk /2  , )/(2
IUII mmk  , )/(2

LIULL mmmk   (2) 

 UUUU mch /2  , )/(2 IUIII mmch  , )/(2 LIULLL mmmch   (3) 

 IUU mm / ， LIUL mmm /)(   (4) 

 

For analytical convenience, Equation (1) can be rewritten as 
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When the state vector is composed of the relative velocities and displacements, the corresponding state 

equation is 
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2.2. Characteristic equation for system 

With the Laplace operator is   (where   is the circular frequency), the characteristic equation is 

derived from the system matrix in Equation (6): 
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Then, the six-dimensional matrix in Equation (7) is defined as matrix A , which is divided into four 

three-dimensional sub-matrices, i.e. 11A , 12A , 21A  and 22A : 
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The determinant of matrix A  can be calculated using the following sub-matrices: 
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1

22121122 AAAAAA   (9) 

 

As a result, the determinant is expressed in polynomial form: 
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2.3. Characteristic equation for assigned poles 

Under practical circumstances, the analytical model has three sets of conjugate poles. For the control target 

in the i-th mode, i  and ih  are defined as the natural circular frequency and the corresponding damping 

ratio, respectively. Then, the characteristic equation for the assigned poles is 
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This equation can be rewritten in the following polynomial form: 
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2.4. Pole allocation 

The characteristic equation, Equation (10), must be designed to be equal to the target characteristic 

equation, Equation (12), which requires the following parameter relationships: 
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These equations have eight unknown design parameters to be solved: U , I , L , Uh , Ih , Lh , U , 

and L . Dividing Equation (17) by Equation (18) yields the following significant relationship: 
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In past research by the authors, it was assumed that a 3-DOF model has one dashpot in only one storey: For 

inter-storey seismic isolation, 0 LU hh  is assumed in Equation (19); for base seismic isolation, 

0 IU hh ; and for TMD, similarly, 0 LI hh . With high generality, Equation (19) integrates an 

earthquake-resistant structure and passively controlled structures (including three control systems) into one 

system. The equation illustrates the trade-off relationship among the three terms on the left side, because 

the right side becomes constant after the target modal properties i  and ih  are determined. 

 

2.5. Independence of trade-off relationship from parameter definition 

The previous sections define I  and  L  as the natural circular frequencies when the storeys above the 

objective storey are assumed to be rigid, Ih  and Lh  as the damping ratios corresponding to these 

frequencies. This section introduces new parameter definitions as follows: 
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where, *I  and *Ih  are the natural circular frequency and damping ratio for an S-DOF model with an 

inter-storey lumped mass, wherein the inter storey is considered as the objective storey. Similarly, *L  and 

*Lh  are the corresponding parameters for another S-DOF model with the lower lumped mass, wherein the 

lower storey is considered as the objective storey. 
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Substituting Equations (22) and (23) into Equation (19) yields a similar relationship: 
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This proves that the trade-off relationship is independent of the parameter definitions in expressing an 

equation of motion. 

To easily determine the passive control when a damper is installed in each storey, Equations (13) to (18) 

are rewritten via substitution by Equations (22) and (23): 
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3．NUMERICAL ANALYSIS WITH APPROXIMATION OF LOW DAMPING 

 

This study focuses on pole allocation when three lumped masses are known a priori. This problem involves 

determining three natural circular frequencies ( U , *I , and *L ) and three damping ratios ( Uh , *Ih , and 

*Lh ) for fixed mass ratios ( U  and L ). In other words, the objective is to determine the stiffness values 

and damping coefficients for the three storeys. 

Equations (25) to (30) have many high-order terms that consist of six unknown parameters ( U , *I , 

*L , Uh , *Ih , and *Lh ). From the viewpoint of applicability, the three natural circular frequencies are first 

obtained via approximation of the damped 3-DOF system as an undamped 3-DOF system. This 

approximation is acceptable because the effect of less than 20% damping ratio is much smaller in 

calculation for the natural frequencies of the structure. In an S-DOF system with 20% damping ratio, the 

damped natural frequency is 98.0% of the corresponding undamped natural frequency. 

Neglecting the target damping ratios ( 1h , 2h , and 3h ) and the products of the structural damping ratios 

leads to the following simplified equations from Equations (26), (28) and (30): 
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where the non-dimensional parameters b  and c  are the ratios of the second and third natural 

frequencies to the first one, respectively: 

 

 12 /b , 13 /c  (35) 

 

Similarly, Equations (32), (33), and (34) can be rewritten using other non-dimensional parameters ( x , y , 

and z ): 
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Here, Uf , *If , and *Lf  are the natural frequencies corresponding to U , *I , and *L , respectively. 

Next, Uh , *Ih , and *Lh  are calculated based on Equation (40) using x , y , and z  obtained from 

Equations (36) to (38): 
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This approximation divides the six simultaneous equations into two sets of three simultaneous equations, 

which is an advantage in solving this pole-allocation problem from the viewpoint of engineering 

applicability. 

Now, we attempt to numerically and easily solve the equation set (36) to (38) with unknown 

second-/three-order variables. Equation (36) is transformed into Equation (41): 
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The equation is substituted into Equations (37) and (38): 
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After 1 , b  and c  are set, the solving process have four steps: Step 1 is to assume the range of x  

and, from this range, select a certain x ; Step 2 is to calculate y  using Equation (43); Step 3 is to check 

whether x  satisfies Equation (42), and if x  satisfies the equation, it is a solution; and Step 4 is to return 

to Step 1 or 2 if x  does not satisfy Equation (42). 

Similarly, Equation (44) can be obtained from Equation (42); y  is assumed for the numerical solving 

process. 
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Equations (43) and (44) imply that the pole allocation has multiple solutions, which will be explained in a 

later chapter. 

 

4．CHARACTERISTICS IN APPLICATION TO INTER-STOREY PASSIVE DAMPERS 

 

Chapter 4 presents an investigation of the fundamental characteristics of the newly introduced pole 

allocation in an application involving passive dampers installed in all storeys of a building. All numerical 

examples assume that the three lumped-mass weights are the same, i.e. 1U  and 2L . 

 

4.1. Natural frequencies 

From the viewpoint of natural frequencies, the existence of solutions for the simultaneous Equations (36) to 

(38) is investigated for the region where the frequency ratio b  ranges from 2.0 to 3.0 and the other 

frequency ratio c  ranges from 3.5 to 5.0. The frequency ratios b  and c  are then varied in increments 

of 0.01, as shown in Figure 2, and the numerical characteristic is searched for an area where a set of 

solutions x, y and z exists. This area occurs where c  is greater than 3.74. In the figure, the area is marked 

by three types of squares (grey filled, grey unfilled, and red filled) and one type of rhombus (blue unfilled). 

As described in the figure legend, the grey filled squares indicate the points at which two sets of solutions 

exist, whereas the red filled squares indicate the points at which four sets of solutions exist. The area 

occupied by the grey filled squares is large, whereas the area occupied by the red squares is much smaller. 

The grey filled squares mostly occupy the existing solution area. 

In a standard building, the shear stiffness values tend to decrease in the upper storeys. In the figure, each 

point where at least one set of solutions matches this tendency is marked by a grey unfilled square, defined 

as ‘Gradually decreasing’ in the figure legend. The corresponding area appears as dark grey. The dark grey 

region satisfies the inequality zyx   because the three lumped masses have the same values. The blue 



rhombus, noting ‘−20% to 0% decreasing’, indicates each point at which the non-dimensional x and y are 

within 80%−100% of y and z, respectively. The blue area mathematically satisfies two inequalities, i.e. 

yxy 0.18.0   and zyz 0.18.0  , which indicates that the stiffness change is 

smoothed in the height direction from a practical viewpoint. The black point located at 635.2b  and 

876.3c  (i.e. average values for the blue rhombuses) marks the centre of the blue area. Although we can 

mathematically determine multiple sets of natural circular frequencies ( U , *I , and *L ) satisfying the 

target pole locations, only a limited solution can be applied to an actual building. Multiple sets of solutions 

respond to arbitrariness when pole allocation is applied to secure linear feedback gains for a controlled 

system 15, 25, 26. 

Based on a selection of four cases, i.e. 40.2b , 60.2b , 90.3c , and 95.4c  from Figure 2, 

the solution characteristics are then studied using three non-dimensional frequencies such as 1/ ffx U ，

1* / ffy I , and 1* / ffz L . Figure 3 illustrates a case in which 40.2b . The solutions exist within 

the range c85.3 . Black, red, and blue circles denote the non-dimensional natural frequencies of the 

upper storey, inter-storey, and lower storey, respectively. Two sets of solutions exist in the range 

95.485.3  c , whereas four sets exist in the small range 00.596.4  c . The solution curves are 

drawn with colours and numbers to identify individual sets of solutions. Each number is used merely as a 

label for one set of solutions, whereas the numbering sequence has no meanings. For example, the yellow 

circles represent solution set 3, whereas the green circles represent solution set 4. When b  is fixed at a 

certain value, the same number identifies one set of solutions. The two sets result in three curves with 

convex at 85.3c  and three other curves with convex at 96.4c . In the range 95.485.3  c , the 

upper parts of the 1/ ffU  and 1* / ff I  curves correspond to solution set 1, whereas the lower parts 

correspond solution set 2. In the same range, the upper part of 1* / ffL  corresponds to solution set 2, 

whereas the lower part corresponds to solution set 1. On the other hand, in the range 00.596.4  c , the 

solutions are of a complex nature. For the curves with convex at 96.4c , the upper parts of 1/ ffU  and 

1* / ffL  correspond to solution set 1, whereas the lower part of 1* / ffI  corresponds to solution set 3. 

Meanwhile, for the inter storey, the upper part corresponds to solution set 3, whereas the lower part 

corresponds to solution set 1. In the range 00.596.4  c , solution set 2 occurs locally around the convex 

edges, whereas solution set 4 occurs on the curves with convex at 85.3c . 

Figure 4 illustrates a case in which 60.2b . The solutions exist within the range c75.3 . This case 

always has two solution sets, and its nature is simple compared to the case presented in Figure 3. On the 

other hand, Figure 5 visualises a case in which 90.3c . The solutions exist in the range b34.2 . 

Similar to the case presented in Figure 4, this case has two sets of solutions. When b  becomes larger, the 

large–small relation of solution values between 1/ ffU  and 1* / ffI  is reversed completely. Figure 6 shows 

a case in which 95.4c . The solutions exist in the range b09.2 . In this case, four sets of solutions 

exhibit a complex phenomenon with the S-shape curves at approximately 38.2b , and their appearances 

are different from those of the curves shown in Figure 3. 

Based on a selection of two sets of solutions at 60.2b  and 90.3c  and an assumption of an 

undamped eigenvalue problem, Figure 7 illustrates the participation functions as mode shapes with 



participation factors for input ground motion. The depicted mode shapes are not affected by the first natural 

frequency or the assumed mass weights. Figure 7 (a) corresponds to solution set 1, whereas Figure 7 (b) 

corresponds to solution set 2. For solution set 1, it seems that three natural frequencies can be obtained via 

adjustment of the modal amplitudes for all lumped-masses. On the other hand, for solution set 2, it seems 

that first and second natural frequencies are the first to be obtained via adjustment of the amplitudes for the 

upper and inter-storey lumped masses, after which the third natural frequency is obtained via adjustment of 

the amplitudes for all lumped masses. This inference may be supported by the fact, for the lower lumped 

mass (mass number 1), the first modal amplitude is nearly equal to the second modal amplitude. The mode 

shapes in Figure 7 (a) correspond to solutions satisfying the two inequalities yxy 0.18.0   

and zyz 0.18.0  , which indicate that the stiffness change is smoothed. By contrast, the mode 

shapes in Figure 7 (b) do not satisfy the inequality conditions. 

The stiffness values of a building model can be calculated using Equations (2) and (20). Based on an 

assumption 1.0 Hz as the first natural frequency and 9.80665 × 103 kN (1,000 tf) as the weight of each 

lumped mass, Table 1 outlines the stiffness for each storey. These data confirm that the stiffness undergoes 

a smoothing change, which is natural from a practical viewpoint. 

 

4.2. Damping ratios 

Based on an assumption of an undamped eigenvalue problem, to obtain natural frequency solutions 

independently of structural damping, the six-dimensional simultaneous equations can be divided into two 

sets of three-dimensional simultaneous equations. The previous section focuses on the fundamental 

characteristics of the natural frequencies. Following the results, this section focuses on the control effect of 

the dampers. To make a building model consistent with engineering applications, its damping coefficients 

represented by dashpots should be positive instead of negative. For the numerical examples in this section, 

60.2b  and 90.3c , which are the same parameters for the mode shapes shown in Figure 7. These 

parameters produce two sets of solutions for ( 1/ ffx U , 1* / ffy I , 1* / ffz L ), i.e. (1.938, 2.232, 

2.344) and (1.697, 1.868, 3.199). The former is solution set 1, with practicability shown in Figures 4 and 5, 

whereas the latter is solution set 2, without practicability. The control effect is discussed only solution set 1. 

Figure 8 shows combinations of three target modal damping ratios ( 1h , 2h , and 3h ) that produce 

positive values for the structural damping ratios ( Uh , *Ih , and *Lh ). Each target modal damping ratio ih

( 3,2,1i ) is varied from 0.01 to 0.20 in increments of 0.01. The horizontal coordinate indicates the target 

first damping ratio ( 1h ), whereas the vertical coordinate indicates the target second and third damping 

ratios ( 2h  and 3h ). The squares represent the relationship between 1h  and 2h , whereas the triangles 

represent the relationships between 1h  and 3h . The area where all the structural damping coefficients 

become positive is limited, and in which 2h  and 3h  are larger than 1h . As with the structural natural 

frequencies, only suitable structural damping ratios can be applied to an actual building. For the stiffness 

and damping that are to be applied in actual practice, a useful solution should be selected from among the 

candidate solutions obtained via the mathematical calculations. 

For the case of 05.01 h , Figures 9 and 10 visualise the structural damping ratios for the three storeys 



( Uh , *Ih , and *Lh ). As shown in Figure 8, all the structural damping ratios become positive when 

206.0 h . Figure 9 shows the case for 10.006.0 2  h , whereas Figure 10 shows the case for 

20.011.0 2  h . The horizontal coordinates represent 3h . Although the sums of the three ratios 

( ** LIU hhh  ) are always within the range 0.25 to 0.37，the damping distribution depends mainly on 3h . 

When 2h  is fixed at a certain value, a larger 3h  increases Uh  for the upper storey and *Ih  for the inter 

storey. This phenomenon can be explained by the mode shapes in Figure 7 (a), where an increasing in 2h  

remarkably affects Uh  because the second mode shape has the largest amplitude for the upper storey. 

Similarly, an increasing in 3h  affects *Ih  because the third mode shape has the largest amplitude for the 

inter storey. 

 For the case of 10.01 h , Figure 11 illustrates similar distributions for the structural damping ratios. 

More specifically, Uh , *Ih , and *Lh  become positive when 217.0 h . A similar tendency can be 

observed in the distributions. However, the damping ratios for the lower storey are larger than those shown 

in Figures 9 and 10, because the higher 1h  increases the effect of the first mode, which has the largest 

amplitude for the lower storey. 

An unrealistic set of solutions is where at least one structural damping ratio ( Uh , *Ih , or *Lh ) becomes 

negative. In an unrealistic set of solutions, the target damping ratios are archived via an extreme increase in 

the positive damping ratio for a storey. 

Finally, Equations (19) and (24), which express the trade-off relationship, can be interpreted 

geometrically. If the natural circular frequencies ( U , *I , and *L ) are replaced with the corresponding 

natural frequencies ( Uf , *If , and *Lf ), Equation (24) can be rewritten as 
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Solving the undamped eigenvalue problem described in Chapter 3 provides the values of Uf , *If , and *Lf  

before Uh , *Ih , and *Lh  are calculated. This two-step calculation process fixes all denominators on the left 

side of Equation (45), whereas the corresponding numerators become variables. When the variables are 

plotted on a Cartesian coordinate system in three dimensions, the trade-off equation can be illustrated by 

the plane shown in Figure 12. The area with engineering applicability is Uh0 ， *0 Ih  and *0 Lh . 

 

5. CONCLUSIONS 

 

The fundamental equation governing a passively controlled building is derived through the application of 

pole allocation to a 3-DOF lumped-mass damped shear model. Based on a selection of approximate model 

parameters, the model can represent an earthquake-resistant structure, a base-isolated structure, an 

inter-storey-isolated structure, or a controlled structure with a TMD or viscous dampers. The newly 

introduced closed-form expression describes how the model parameters are related to the control target and 

generally proves the trade-off relationship in the passive control effect. Numerical examples demonstrate 

that the pole allocation is arbitrary in selecting a solution. Nevertheless, only a limited solution can be 



applied to an actual building. The research results are summarised as follows: 

1) Past research studies have applied pole allocation to individually different models that express base 

isolation, inter-storey isolation, or TMD. Each model had only one dashpot, which strongly influences 

the dynamic nature of the corresponding structural system. This study applies pole allocation to a 

general 3-DOF model that has one dashpot in each storey. With its high generality, the newly 

introduced closed-form trade-off relationship integrates earthquake-resistant buildings and passively 

controlled buildings, and can account for seismic isolation. This relationship indicates that the model 

parameters are automatically constrained by the assignment of three target modal properties. This 

relationship is not affected by the definition of the model parameters. 

2) The pole allocation provides six simultaneous equations with eight unknown parameters to be solved. 

Based on an assumption of lumped-mass weights and through simplification of the problem into an 

undamped eigenvalue problem, the simultaneous equations can be divided into two sets of three 

simultaneous equations. As a result, the structural damping ratios can be evaluated after the stiffness 

values are determined. This approximation has the advantage of enabling pole allocation to be easily 

solved from the viewpoint of engineering applications. Through the decoupling of the structural 

damping ratios and stiffnesses in solving the problem, it becomes possible to infer the trade-off occurs 

in structural damping ratios. This inference can be expressed by an equation of a plane in Cartesian 

coordinates in three dimensions. 

3) The pole allocation is arbitrary in mathematically determining the model parameters even if the target 

modal properties are the same and the lumped-mass weights are fixed. Nevertheless, a limited 

practical solution is selected based on two facts: the shear stiffness values become lower in the upper 

storeys, and the damping coefficients for a standard building have positive values. The areas where 

practical solutions exist are relatively small. For the realistic solutions, three natural frequencies are 

obtained via adjustment of the modal amplitudes for all lumped masses. On the other hand, for the 

unrealistic solutions, the first and second natural frequencies are first obtained via adjustment of the 

amplitudes for the upper and inter-storey lumped masses, after which the third natural frequency is 

obtained via adjustment of the amplitudes for all lumped masses. 

4) Structural damping coefficients, referred to as the control effect, are strongly affected by the target 

model damping ratios and modal shapes. When the target modal damping ratios are larger in the 

second and third modes, it is easy to secure positive values for the structural damping coefficients. 
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Captions for Tables 

 

TABLE 1 Storey stiffness values for case presented in Figure 7 (Each weight: 1,000 tf, 1st natural 

frequency: 1.0 Hz) 

 

 

TABLE 1 Storey stiffness values for case presented in Figure 7 

         (Each weight: 1,000 tf, 1st natural frequency: 1.0 Hz) 

 

Storey Solution set 1 Solution set 2 

Upper (3rd) 148,310 113,730 

Inter (2nd) 196,630 137,710 

Lower (1st) 216,940 403,940 

(Unit: kN/m) 

 

  



 

 

Captions for Figures 

 

FIGURE 1 3-DOF model for pole allocation 

FIGURE 2 Region of solution existence 

FIGURE 3 Non-dimensional natural frequencies (b = 2.40) 

FIGURE 4 Non-dimensional natural frequencies (b = 2.60) 

FIGURE 5 Non-dimensional natural frequencies (c = 3.90) 

FIGURE 6 Non-dimensional natural frequencies (c = 4.95) 

FIGURE 7 Modal shapes (μU = 1, μD = 2, b = 2.60, c = 3.90) 

FIGURE 8 Useful and practical combinations of target damping ratios (b =2.60, c =3.90) 

FIGURE 9 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.05, h2 = 0.06-0.10) 

FIGURE 10 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.05, h2 = 0.11-0.20) 

FIGURE 11 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.10, h2 = 0.17-0.20) 

FIGURE 12 Damping ratio plane 

 

 

 
 

FIGURE 1 3-DOF model for pole allocation 

  



 

 

 

 

 

FIGURE 2 Region of solution existence 

  



 

FIGURE 3 Non-dimensional natural frequencies (b = 2.40) 

 

 

FIGURE 4 Non-dimensional natural frequencies (b = 2.60) 



 

FIGURE 5 Non-dimensional natural frequencies (c = 3.90) 

 

 

FIGURE 6 Non-dimensional natural frequencies (c = 4.95) 



 

 

       

(a) Solution set 1                      (b) Solution set 2 

 

FIGURE 7 Modal shapes (μU = 1, μL = 2, b = 2.60, c = 3.90) 

 

 

 

 

FIGURE 8 Useful and practical combinations of target damping ratios (b =2.60, c =3.90) 

  



 
FIGURE 9 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.05, h2 = 0.06-0.10) 

 

 
FIGURE 10 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.05, h2 = 0.11-0.20) 

 

 
FIGURE 11 Damping ratios for each storey (b = 2.60, c = 3.90, h1 = 0.10, h2 = 0.17-0.20) 

 



 

 

 

 

FIGURE 12 Damping ratio plane 

 


