1	The crucial influence of trophic status on the relative requirement of nitrogen to
2	phosphorus for phytoplankton growth
3	Mengqi Jiang ^{1*} , Shin-ichi Nakano ^{1,}
4	¹ Center for Ecological Research, Kyoto University, 520-2113 Shiga, Japan
5	* Corresponding author
6	Email addresses: mqjiang@ecology.kyoto-u.ac.jp (M.J.), nakano@ecology.kyoto-
7	u.ac.jp (S.N.)
8	Keywords: nitrogen; phosphorus; trophic status; phytoplankton; nitrogen-to-
9	phosphorus ratio; limiting factor
10	Send correspondence to: [Mengqi Jiang]
11	[Center for Ecological Research, Kyoto University, 520-2113 Shiga, Japan, 080-5711-
12	6059, mqjiang@ecology.kyoto-u.ac.jp]
13	Authorship statement
14	MJ conceived the study design, performed experiments, analysed data, and wrote the
15	first draft of the manuscript; SN contributed to data analysis and manuscript writing.
16	Both authors contributed substantially to the manuscript and gave final approval for
17	publication.
18	

19 Highlights

20	1.	The relative	N:P	requirement	for	growth	was	explored	for	eight	phytopla	nkton
21		species.										

- 22 2. Trophic status is negatively related to the N:P ratio required for optimal growth.
- 23 3. Both N and P are important for phytoplankton growth in eutrophic waters.
- 24 4. Phytoplankton tend to require higher N relative to P under low-nutrient conditions.
- 25 5. The results contribute to the ongoing debate of N vs. P limitation in freshwaters.
- 26

27 Abstract

Clarifying the pattern of relative nitrogen (N)-to-phosphorus (P) 28 requirements for phytoplankton growth is of great significance for eutrophication 29 30 migration and management of aquatic systems. Relative N-to- P requirement for 31 phytoplankton growth is considered an essential trait determining species dominance 32 within ecosystems and explaining phytoplankton response to nutrient availability. These requirements vary with environmental trophic statuses, though this variation 33 remains unclear. Here, we evaluated the relative N-to-P requirements under different 34 35 absolute nutrient levels using previous and current experimental data on eight phytoplankton species (three studied by us and five extrapolated from the previous 36 studies). Results showed that relative N-to-P requirements for phytoplankton growth 37 38 decreased as absolute nutrient levels increased. Thus, N may be crucial for enhancing 39 phytoplankton growth under low nutrient conditions, whereas P may be the primary 40 limiting factor of phytoplankton growth under sufficient nutrient conditions. This 41 result applies to single species as well as species assemblages, which are independent 42 of species shifts occurring along water N:P gradients. The response observed in our large trophic status level gradient may help elucidate the relative importance of N and 43 P reductions in mitigating the impact of eutrophication on ecosystems. 44

1. Introduction

46	Nitrogen (N) and phosphorus (P) are two key macronutrients utilized in the
47	biochemical functions of phytoplankton and are the main nutrients limiting
48	phytoplankton growth in aquatic ecosystems (Elser et al. 2007; Paerl 2009; Abell et
49	al. 2010). The relative importance of the N-to-P supply (i.e., the supply N:P ratio) for
50	phytoplankton growth remains an important subject in research on waterbodies with
51	various trophic statuses, including research on controlling nuisance phytoplankton
52	blooms in eutrophic waters (Lewis et al. 2011; Paerl et al. 2011; Paerl et al. 2016) and
53	enhancing primary production (and thus enhancing zooplankton biomass and fish
54	production) in oligotrophic waters (Budy et al. 1998; Reeder 2017). However, the
55	relative importance of these two elements for phytoplankton growth remains
56	controversial. P is generally considered the main factor responsible for controlling
57	phytoplankton growth (Carpenter 2008; Schindler et al. 2008) largely because the
58	nitrogen fixation of some cyanobacterial species can fulfill their N requirements
59	(Smith 1990). Contrastingly, N limits phytoplankton growth during bloom conditions
60	in some eutrophic lakes (Chaffin et al. 2013). Accordingly, a dual nutrient control (N
61	& P) strategy is considered more effective in controlling phytoplankton growth than
62	either nutrient alone (Elser et al. 2007; Lewis et al. 2011; Paerl et al. 2016).
63	Regardless, related studies have mainly focused on the relative N:P ratios and have
64	seldom mentioned the influence of absolute nutrient levels, which vary greatly. As P
65	accumulates faster than N in freshwaters exposed to anthropogenic impact, the

66	relationship between total nitrogen (TN) and total phosphorus (TP) is relevant to the
67	trophic status of a waterbody, that is, high TN:TP ratios in oligotrophic waters and
68	low TN:TP ratios in eutrophic waters (Downing & McCauley 1992; Yan et al 2016).
69	However, absolute nutrient concentrations may have a greater impact on
70	phytoplankton growth than relative nutrient ratios because phytoplankton tend to be
71	insensitive to resource stoichiometry during their fast-growing phase (Klausmeier et
72	al. 2004; Hilebrand et al. 2013; Yang et al. 2020). Accordingly, if absolute nutrient
73	concentrations are not considered, discussions regarding N:P ratios become largely
74	inaccurate. Therefore, establishing situations where various N:P ratios with different
75	nutrient levels is a prerequisite for evaluating the relative importance of N:P ratios for
76	phytoplankton growth.
77	Most studies on relative N:P requirements are based on observations of how
78	phytoplankton respond to various supply N:P ratios (Liu & Vyverman 2015; Rasdi &
79	Qin 2015; Thrane et al. 2016, 2017; Kelly et al. 2021). However, the importance of
80	trophic status cannot be reflected by a single supply N:P ratio series. Specifically,
81	phytoplankton biomass would increase with the increase in supply N:P ratio when N
82	was limiting, and decrease with the increase in supply N:P ratio when P was limiting.
83	A peak of phytoplankton biomass could be achieved at the supply N:P ratio where N
84	and P are co-limiting, which has been termed the "optimal supply N:P ratio" (the red
85	line in Fig. 1a and b) (Sperfeld et al. 2012; Sperfeld et al. 2016; Tilman 1980). The
86	optimal supply N:P ratio is a definitive value derived from a gradient of supply N:P

87	ratios and an indicator for assessing the relative importance of N-to-P requirements
88	(Thrane et al. 2016, 2017). However, the definitive optimal supply value has various
89	possibilities. For example, if a nutrient supply of 16 μ mol N L ⁻¹ and 1 μ mol P L ⁻¹ was
90	calculated as the optimal supply N:P ratio for the growth of a certain phytoplankton
91	species, we cannot easily generalize that 16 is the optimal supply N:P ratio in any
92	environmental condition. Although the nutrient supply of 16 μ mol N L ⁻¹ and 1 μ mol P
93	L ⁻¹ was optimal in a specific series of N:P ratios, we cannot tell whether a nutrient
94	combination of 32 $\mu mol~N~L^{-1}$ and 2 $\mu mol~P~L^{-1}$ or 8 $\mu mol~N~L^{-1}$ and 0.5 $\mu mol~P~L^{-1}$
95	would also be optimal among different supply N:P ratio gradients, despite having a
96	ratio of 16. That is, the relative N:P requirement for phytoplankton may not be
97	equivalent for higher or lower trophic statuses.
98	A definite optimal N:P ratio indicates that the relative importance of N-to-P
99	requirement for phytoplankton growth remains unchanged under different trophic
100	statuses (red line in Fig. 1a and b). Yet, N and P limitations affect phytoplankton cell
101	physiology in significantly different ways. Protein is the largest N-containing
102	component in phytoplankton cells, whereas P is distributed among phospholipids,
103	adenosine triphosphate, and nucleic acids, especially ribosomal ribonucleic acid
104	(rRNA) (Geider & La Roche 2002). N limitation hampers phytoplankton
105	photosynthesis by causing large declines in the availability of photosynthetic
106	pigments and Rubisco pools (Geider et al. 1993; Geider et al. 1998). Meanwhile, P
107	limitation greatly suppresses phytoplankton growth because of the large investment of

108	P in rRNAs and the growth dependence of protein synthesis driven by P-rich
109	ribosomes (Sterner & Elser 2002; Loladze & Elser 2011). Owing to these differences
110	in the physiological functions of N and P, the relative importance of N:P requirements
111	for phytoplankton growth may vary temporally among different environmental
112	conditions. Phytoplankton can regulate the contents of cellular complexes (i.e.,
113	pigments and ribosomes) to acclimate to different irradiance or temperature
114	conditions, which can further influence their relative N:P requirement (Thrane et al.
115	2016, 2017). Furthermore, Galbraith and Martiny (2015) emphasized that the cellular
116	P of phytoplankton has greater plasticity than cellular N, resulting in high
117	phytoplankton N:P ratios in oligotrophic waterbodies. Phytoplankton may have a
118	basic and steady requirement for N, whereas their demand for P may be much more
119	flexible and dependent on phytoplankton growth and nutrient availability.
120	Herein, we propose that optimal supply N:P ratios would be flexible under
121	different trophic statuses and would decline with an increase in absolute nutrient
122	levels (Fig. 1b and c). We assumed that the response of N-fixing cyanobacterium to
123	supply N:P ratios may differ from other phytoplankton species due to its higher
124	tolerance to N starvation. We tested these hypotheses using previous and present
125	experimental data on eight phytoplankton species. Most of the phytoplankton species
126	tested in the present study, including a N-fixing cyanobacterium, yielded similar
127	results supporting our hypothesis: trophic status is negatively related to the N:P ratio
128	required for optimal growth.

129 **2. Materials and methods**

130 2.1 Biological material

- 131 We used three phytoplankton species: the green algae *Chlorella vulgaris* NIES-
- 132 2172, the cyanobacteria Anabaena variabilis NIES-2093 (N-fixing cyanobacterium),
- 133 and Microcystis aeruginosa NIES-44. All axenic stock cultures were obtained from
- 134 the Microbial Culture Collection of the National Institute for Environmental Studies,
- 135 Tsukuba, Japan. Stock cultures were transferred into a modified BG-11 medium,
- added with 0.1 μ mol L⁻¹ vitamin B₁₂ and 0.1 μ mol L⁻¹ biotin. All stock cultures were
- 137 grown under controlled conditions with a light intensity of 15 μ mol photons m² s⁻¹
- 138 and a temperature of 24 °C for a two-transfer acclimation period.

139 2.2 Experimental design

140 To maximize the absolute nutrient concentration and the supply N:P ratio

141 gradients, we set the concentrations of N and P to have 12 levels each (Table S1 and

142 Figure S1). According to trophic state classification criteria, the nutrient levels for N

- 143 and P range from oligotrophic to hypereutrophic (Schlesinger & Bernhardt 2020).
- 144 Forty-eight combinations of N and P were prepared for each of the three
- 145 phytoplankton species, with each level of N or P replicated four times (Fig. S1). The
- 146 concentration of all other nutrients was determined based on the composition of the
- 147 BG-11 medium, which reduced the risk of nutrient limitation by factors other than N

148 and P.

149 To test whether the effects of the N:P ratio on phytoplankton growth would

150	change under different trophic statuses, we categorized the combinations of resource
151	stoichiometries into a series of nutrient levels. Accordingly, we defined the nutrient
152	levels of different resource stoichiometries by assigning weights to N and P. The
153	nutrient supply level (NSL) was defined as the combined result of the absolute
154	concentrations of N and P and expressed as $NSL = (C_N + 16C_P) / 32$, where C_N and C_P
155	represent the concentrations of N and P resources (μ mol L ⁻¹), respectively. The weight
156	allocated to P was defined as 16 times N based on the Redfield ratio (the average N:P
157	ratio of 16:1 observed in marine phytoplankton; Redfield 1934); thus, the NSL of a
158	nutrient resource combination with 16 μ mol L ⁻¹ N and 1 μ mol l ⁻¹ P would be
159	calculated as 1. All N and P combinations (white dots) on decreasing diagonal lines
160	shared the same NSL value, and the value increased across the X-Y plane (Fig. S1).
161	This method ensured that each specific N:P ratio value could be found for any NSL.
162	2.3 Experiment execution
163	We conducted the experiment using 48-well microplates (AGC Techno Glass Co.,
164	Ltd., Shizuoka, Japan), with each well containing 750 μ L medium prepared based on
165	the modified BG-11 medium described above. Prior to the experiment, exponentially
166	growing cultures were harvested through centrifugation ($4000 \times g$ for 8 min), washed
167	with ultrapure water, transferred into BG-11 medium modified to be N-free (NaNO3
168	replaced with an equimolar equivalent of NaCl, and ferric ammonium citrate
169	substituted with ferric citrate) and P-free (K ₂ HPO ₄ replaced with an equimolar
170	equivalent of KCl), and cultivated under the aforementioned conditions for three days

to reduce the effects of N and P stored in phytoplankton cells (Huang *et al.* 2014; Ren *et al.* 2017).

173	At the start of the experiment (day 0), each well was inoculated with 40 μL
174	phytoplankton stock culture (initial optical density at 595 nm [OD ₅₉₅] < 0.05;
175	background OD ₅₉₅ of the BG-11 medium was approximately 0.03–0.04). All
176	microplates were kept in a climate-controlled room at 24 °C with a 16:8 h light:dark
177	cycle of 15 μ mol photons s ⁻¹ m ⁻² . Irradiance was measured using an LI-1400 data
178	logger (Li-Cor, Lincoln, NE, USA). All microplates were covered with a gas-
179	permeable sealing membrane (Breathe-Easy; Sigma-Aldrich, St. Louis, MO, USA) to
180	prevent evaporation and microbial contamination. The microplates were randomly
181	rearranged daily to ensure comparable light conditions during the experiment. The
182	experiments were initiated in batch cultures. After one week of cultivation, we shifted
183	the batch cultures into semi-continuous cultures. The dilution rate was $0.15 d^{-1}$, which
184	was achieved by replacing 15% of the well volume with fresh culture medium under a
185	laminar flow cabinet every day to refresh the culture media and extend the steady-
186	state growth phase. Each experiment was terminated when the respective culture
187	reached the steady-state growth phase.
188	2.4 Monitoring phytoplankton growth

To determine whether the phytoplankton cultures had reached a quasi-steady
state, the OD₅₉₅ in each well was measured daily using a microplate reader (Infinite
F200 PRO; Tecan Group Ltd., Männedorf, Switzerland). OD₅₉₅ has been widely used

192	as a proxy for monitoring phytoplankton growth (Huesemann et al. 2009; Kapoore et
193	al. 2019); we demonstrated that OD_{595} is highly correlated with the cell density of the
194	three phytoplankton species (Fig. S2a-c). However, OD measurements for
195	phytoplankton biomass are susceptible to errors due to pigment interference during
196	different growth phases (Griffiths et al. 2011). Therefore, to better evaluate the culture
197	biomass, a colorimetric analysis was performed according to our preparatory work
198	(Jiang & Nakano, 2021). Immediately before cell enumeration of the three
199	phytoplankton species (day 14 for A. variabilis, day 16 for M. aeruginosa, and day 21
200	for C. vulgaris), RGB (red, green, and blue) color information for the phytoplankton
201	cultures was collected using a free mobile application called "Color-Meter"
202	(https://apps.apple.com/us/app/color-meter/id1512406137; accessed on 1st December
203	2021). The RGB color information was then converted into the HSI (hue, saturation,
204	intensity) color space for subsequent analysis (Jiang & Nakano, 2021). The results
205	indicated that variations in the hue of the experimental phytoplankton cultures were
206	limited (Fig. S3a), thereby verifying the validity of the optical and colorimetric
207	analyses. Additionally, the measurements of the phytoplankton biomass via OD595 and
208	color intensity were highly correlated (Fig. S3b-d). We used the results of the optical
209	and colorimetric analyses to confirm that the cultures reached a quasi-steady state, as
210	the timing varied depending on the cultivation conditions (Fig. S4). However, the
211	steady state of the phytoplankton in some experimental units could not be maintained
212	for an extended period due to nutrient limitation (Fig. S4); thus, it was difficult to

accurately and timely judge whether the cultures reached a steady state during the 213 experiments. Therefore, the steady-state OD₅₉₅ was estimated as the mean of the 214 215 OD₅₉₅ values greater than 95% of the maximum OD₅₉₅ during the growth period for 216 each experimental unit. We counted the cell density during the quasi-steady state or 217 near the peak of the growth curves with a Neubauer hemocytometer (Brand, 218 Wertheim, Germany) under an optical microscope (Olympus BX51; Olympus, Tokyo, 219 Japan). The steady-state phytoplankton cell density ($C_{\text{steady-state}}$) was calculated as: $C_{\text{steady-state}} = C_{\text{count}} \frac{\text{OD}_{595(\text{steady-state})} - \text{OD}_{595(\text{BG-11})}}{\text{OD}_{595(\text{count})} - \text{OD}_{595(\text{BG-11})}}$ 220 221 where OD_{595(count)} represents the OD₅₉₅ of the counted subsamples, OD_{595(steady-state)} 222 represents the steady-state OD₅₉₅, C_{count} represents the phytoplankton cell density counted on the sampling day, and OD_{595(BG-11)} is the background OD₅₉₅ value of the 223 224 BG-11 medium, which was estimated to be 0.035 using a microplate reader (Infinite 225 F200 PRO; Tecan, Austria).

226 **2.5 Determining the transitions between N and P requirements**

- Each phytoplankton species contained 48 experimental units, which were
- 228 classified into several different NSLs (Fig. S1). We established relationships between
- 229 the supply N:P ratio and the steady-state phytoplankton cell density for four NSLs
- 230 (0.91, 1.24, 1.58, and 1.91; Figs. 2 and S5). The transitions between N and P
- 231 limitation at each NSL were calculated using one-dimensional locally weighted
- 232 sequential smoothing method (1D-LOESS; *loess* function in Base R) by drawing
- 233 "peak-shaped" relationship curves (Fig. 2). The parameter span, which controls the

234	degree of smoothing in 1D-LOESS, was accepted at its default value of 0.75.
235	The 1D-LOESS method provided results for limited NSLs because it can only
236	estimate the relationships between supply N:P ratios and phytoplankton biomass
237	based on experimental units sharing the same NSL value (Fig. 2). To obtain a
238	continuous relationship between the optimal N:P ratio and the NSL, we estimated the
239	relationships between two related variables (N and P concentrations) and an outcome
240	(phytoplankton cell density during the steady-state phase) using a two-dimensional
241	LOESS curve with a default span of 0.75 (2D-LOESS; loess function in Base R). By
242	fitting the available 48 experimental data points to the 2D-LOESS model, the steady-
243	state cell density could be calculated for any possible combination of N and P
244	resource concentrations. Using the <i>predict</i> function in Base R, the estimates for each
245	combination of N and P concentrations were generated into a matrix and visualized
246	through contour plots to show a smoothing relationship between the resource
247	stoichiometry and phytoplankton biomass (Fig. 3a-c). Each value of the
248	phytoplankton density on the 2D-LOESS contours was estimated according to pre-
249	defined (N, P) locations (https://stat.ethz.ch/pipermail/r-help/2007-
250	February/125269.html, accessed on 1st December 2021).
251	The phytoplankton density at the intermediate NSLs (0.74–1.94) was calculated
252	with an interval of 0.12 based on the estimates from the 2D-LOESS contours. For
253	each NSL, the cell density of each supply N:P ratio was extracted at an interval of less
254	than 0.01, generating smoothing curves that described the relationships between the

supply N:P ratio and phytoplankton density (Fig. S6). We sorted through all

- 256 phytoplankton density estimates with different supply N:P ratios and extracted the
- 257 maximum value whose N:P ratio was regarded as the most optimal for that NSL (Fig.
- 258 3d–f). The analytical process for determining the optimal supply N:P ratios of

259 different nutrient levels using 2D-LOESS is shown in Figure S7.

260 2.6 Literature dataset analyses

261 Published datasets from previous studies were compared with the results of the present study. Datasets were selected based on the four following criteria: (1) 262 263 phytoplankton monocultures were cultivated under conditions with different absolute and relative N and P concentrations; (2) the combinations of the supply N and P 264 265 concentrations were sufficient for calculating the optimal N:P ratios for at least two 266 NSLs; (3) the cultures were cultivated through the steady-state phase, and the steady-267 state biomass was determined; and (4) N and P were the only limiting factors for 268 phytoplankton growth during cultivation. Although studies have focused on the 269 influence of supply N:P ratios on phytoplankton growth, the majority of the obtained 270 datasets did not cover two or more NSLs. Nevertheless, datasets derived from Frank et al. (2020) and Kunikane et al. (1984) fulfilled the aforementioned criteria. 271 272 For Frank et al. (2020), we applied the 2D-LOESS method described above to 273 determine the effects of the NSL on the optimal supply N:P ratios during the steady 274 state for the same four phytoplankton species in monoculture (Ankistrodesmus sp., 275 Chlamydomonas reinhardtii, Scenedesmus obliguus, and Staurastrum sp.) (Fig. 4a-d)

276	and in admixture (Fig. 4e). Optimal supply N:P ratios at the NSLs from 1.7 to 4.7
277	were estimated with an interval of 0.1, and only the NSLs resulting in a unimodal
278	curve with a peak (the curve describes the relationship between steady-state
279	phytoplankton biomass and the supply N:P ratios; Fig. S7) were applied to assess the
280	impacts of the NSL on the optimal supply N:P ratio (Fig. 4f-j, Fig. S7).
281	In Kunikane et al. (1984), higher dilution rates led to higher available N and P
282	concentrations in the medium during the steady-state phase, which was equivalent to
283	the high NSLs used in the present study. We calculated the transitions between N and
284	P requirements using smoothing spline curves in GraphPad Prism (GraphPad, San
285	Diego, CA, USA) (Fig. 4k and l).
286	The dataset in Frank et al. (2020) was directly obtained from the authors, whereas
287	the data presented in Figure 4 of Kunikane et al. (1984) was estimated using the open-
288	access digitizing software Engauge Digitizer version 12.1 because we were unable to
289	contact the authors.
290	3. Results
291	For most of the NSLs of the three phytoplankton species, the steady-state
292	phytoplankton density followed a significant unimodal relationship with the supply
293	N:P ratio, with the exceptions of C. vulgaris and A. variabilis cultures at the NSL of
294	1.91 (Fig. 2). The optimal ratios estimated using 1D-LOESS generally decreased with
295	an increased NSL (Fig. 2). 2D-LOESS predictions of the relationships between the
296	supply N:P ratio and the NSL were obtained from all 48 experimental units rather than

297	only the experimental units having the same NSL (Fig. 3a-c), and this method
298	generated more detailed relationships between the optimal supply N:P ratio and the
299	NSL. The results of the 2D-LOESS models showed the same pattern as the 1D-
300	LOESS: the optimal supply N:P ratio decreased with the increase in NSL for all three
301	studied phytoplankton species (Fig. 3d-f).
302	The datasets obtained from the literature also supported this trend. Three of the
303	four phytoplankton species studied by Frank et al. (2020) were found to have the
304	decrease in optimal supply N:P ratio with an increasing NSL (Fig. 4f-i). C. reinhardtii
305	was the only exception, as its optimal supply N:P ratios were distributed in a narrow
306	range (mean \pm SD: 23.9 \pm 1.2; Fig. 4i). In addition, the results of the mixed culture in
307	Frank et al. (2020) showed a similar trend of a decreasing optimal supply N:P ratio
308	with NSLs (Fig. 4j). The calculated results of the data from Kunikane et al. (1984)
309	indicated that the optimal N:P ratios of S. dimorphus decreased with the increase in
310	dilution rate (Fig. 41). At the steady state observed in the chemostat, the growth rate of
311	the phytoplankton density was equal to the dilution rate. In other words,
312	phytoplankton with high growth rates tended to require more P than N. Overall, seven
313	out of the eight analyzed phytoplankton species exhibited a decreasing optimal supply
314	N:P ratio with the increase in nutrient availability. This trend was achieved under
315	different culture conditions (i.e., semi-continuous culture in the present study, batch
316	cultures in Frank et al. [2020], and chemostat cultures in Kunikane et al. [1984]) and
317	methods for regulating the absolute nutrient concentrations (i.e., varying input

nutrients in the present study and Frank *et al.* [2020], varying dilution rates in
Kunikane *et al.* [1984]).

320	Although the optimal supply N:P ratio generally decreased with the increase in
321	NSL, the downward trend was not immutable, especially for high NSLs. The decline
322	tended to level off at high NSLs (or high dilution rates in the chemostat experiment),
323	which was observed in half of the studied species: C. vulgaris and M. aeruginosa
324	cultures in the present experiments (Fig. 3), S. obliquus, Staurastrum sp. and mixed
325	cultures in Frank et al. (2020), and S. dimorphus in Kunikane et al. (1984) (Fig. 4).
326	4. Discussion
327	N and P requirements for phytoplankton growth seem to be flexible among
328	various trophic statuses, as reflected by the decrease of the optimal supply N:P ratio
329	with the increase in NSL. The optimal supply N:P ratio was defined as the supply N:P
330	ratio in a medium where the transition from N limitation to P limitation for
331	phytoplankton growth occurred. We found only one exception (C. reinhardtii) among
332	the eight studied species (Fig. 4d and 4i), while stable ranges of the optimal supply
333	N:P ratio were observed in half of the other phytoplankton cultures at high NSLs.
334	Therefore, we cannot identify whether the optimal supply N:P ratio for C. reinhardtii
335	was truly stable over all NSLs, or whether the NSLs studied by Frank et al. (2020)
336	were too high to cover the decreasing ranges of the optimal supply N:P ratio. Despite
337	this exception, a significant proportion of the phytoplankton species supported the
338	conclusion that phytoplankton has higher N requirements than P requirements at low

339	NSLs, or vice versa at high NSLs. Although we focused mainly on monocultures in
340	the present study, it is noteworthy that mixed cultures studied in Frank et al. (2020)
341	produced similar results that support our hypothesis (Fig. 4j). The trend of decreasing
342	optimal supply N:P ratio with NSLs was unaffected by species shifts within the mixed
343	cultures. All four species in the mixed cultures belonged to a single phylum
344	(Chlorophyta); however, we have not yet determined whether our hypothesis is also
345	applicable to mixed cultures comprising various taxa.
346	To the best of our knowledge, this study is the first to demonstrate that trophic
347	status is negatively related to the relative N:P requirement for phytoplankton growth.
348	Changes in the optimal N:P ratio at different NSLs could be explained by the growth-
349	rate hypothesis, which states that the variation in cellular N:P ratios is largely
350	attributed to cellular protein and rRNA contents (Elser et al. 2000; Sterner & Elser
351	2002), as proteins are the largest cellular N pool, and rRNAs are the largest
352	contributor of P to phytoplankton cells (Geider & La Roche 2002; Sterner & Elser
353	2002). For phytoplankton cultures under the same supply N:P ratio but at different
354	NSLs, higher NSLs (or high dilution rates in the chemostat experiment) likely
355	increased nutrient availability and promoted phytoplankton growth, resulting in higher
356	biomass (Fig. 2-4). Phytoplankton growth enhancement would increase the rRNA
357	requirement, resulting in a higher requirement of P relative to N. It is also possible
358	that the changes in the optimal N:P ratios were related to certain adaptive responses of
359	phytoplankton to low nutrient supplies. In low P environments, phytoplankton would

360	selectively increase the synthesis of P-free compounds rather than P-containing
361	compounds to reduce the P demand, such as by replacing phospholipids in cell
362	membranes with sulfonated lipids (Snyder et al. 2009; Wurch et al. 2011). However,
363	N seems to be more essential for phytoplankton photosynthesis than P. N limitation in
364	phytoplankton can cause a substantial decline in the content of the major
365	photosynthetic pigment, chlorophyll <i>a</i> , and increase the amount of non-photosynthetic
366	pigments (Herrig & Falkowski 1989; Geider et al. 1993). However, the effects of P
367	limitation on cellular chlorophyll <i>a</i> are relatively smaller than those of N limitation
368	(Geider et al. 1998). In addition, N limitation may greatly reduce the efficiency of
369	photosystem II and the relative abundance of Rubisco in phytoplankton cells
370	(Falkowski et al. 1989; Geider et al. 1993), whereas P limitation moderately affects
371	phytoplankton photosystems (Geider et al. 1998). Accordingly, we assumed that
372	phytoplankton may have a steady N requirement because of its importance for
373	photosynthesis, while P requirement may be more flexible via adaptation and
374	acclimation responses. This assumption is consistent with the results of Galbraith and
375	Martiny (2015), who found that the cellular abundance of N in phytoplankton tends to
376	be less plastic than the P content. Phytoplankton under dual N and P limitation,
377	therefore, would show a higher requirement for N than P.
378	The decreasing curve of the optimal N:P ratio tended to level off with increasing
379	NSL, as observed in half of the studied phytoplankton species (Figs. 3 and 4). For
380	datasets derived from experiments with a factorial design (the present study and Frank

381	et al. [2020]), high NSLs were only studied with limited experimental units, and the
382	supply N:P ratios of these units were distributed in a narrow range. As shown in
383	Figure 2, the peaks of the unimodal curves became indistinct at high NSLs, and the
384	optimal supply N:P ratios for C. vulgaris and A. variabilis at the NSL of 1.91 (molar
385	supply N:P ratios distributed from 7.71 to 33.29) could not be identified using 1D-
386	LOESS method. Hence, the disappearance of the decreasing trend may be partly
387	explained by the factorial design used in the present study and by Frank et al. (2020).
388	The data of Kunikane et al. (1984) showed similar results, as the optimal N:P ratio
389	became stable at high absolute NSLs (Fig. 41); however, this trend could not be
390	explained by the same reason because NSLs were regulated by dilution rates instead
391	of nutrient input. Thus, stable optimal N:P ratios at high NSLs may not be a
392	coincidence. Stable optimal N:P ratios at high NSLs may result from the decrease in
393	nutrient affinity alongside the increase in absolute nutrient concentrations (Smith et
394	al. 2009; Bonachela et al. 2011). Phytoplankton cells can increase the number of
395	surface uptake sites (proteins that incorporate nutrients from the cell membrane into
396	the cytoplasm) to increase the encounter with nutrients in low-nutrient waterbodies
397	(Smith et al. 2009; Bonachela et al. 2011), leading to a high nutrient affinity for
398	phytoplankton cells. With the increase in nutrient availability, phytoplankton growth
399	is no longer limited by extracellular nutrients, and the nutrient uptake rates are thus
400	controlled by intracellular enzymes that assimilate the encountered nutrients (Smith et
401	al. 2009). Therefore, we can find explicitly decreasing curves of optimal N:P ratios

402	under low NSLs due to the high nutrient affinity in this phase, and the curves become
403	stable at high NSLs because of the decrease in nutrient affinity (Fig. 5). For high
404	NSLs, the optimal supply N:P ratios can be calculated using the 2D-LOESS method
405	(Fig. 3), but cannot always be estimated using 1D-LOESS method (Fig. 2). The
406	optimal N:P ratios at high NSLs derived from the 2D-LOESS method were calculated
407	using experimental units of both high NSLs and low NSLs. So, the values calculated
408	on the smoothing curves of high NSLs could be regarded as an inertial extension of
409	values estimated at low NSLs. Thus, although the optimal N:P ratios at high NSLs
410	could be calculated mathematically, the ecological significance of the calculated N:P
411	ratios would be negligible (Fig. 5).
412	The cyanobacterium A. variabilis is capable of nitrogen fixation (Thiel et al.
413	2014), which is thought to have the potential to offset the decline in resource N
414	supply. The results indicate that the optimal supply N:P ratios for A. variabilis cultures
415	at low NSLs are much higher than those at high NSLs (Fig. 2b and 3d). In other
416	words, nitrogen fixation in A. variabilis cells did not offset the decline in the N
417	supply, which supports the idea that, although nitrogen fixation could stimulate
418	cyanobacterial growth, cyanobacterial N fixers do not fully compensate for N
419	deficiency (Lewis Jr & Wurtsbaugh 2008; Scott & McCarthy 2010).
420	Experimental setups and culture systems varied between the experiment in the
421	present study and those of previous studies from which datasets were used in the
422	present study (Kunikane et al. 1984; Frank et al. 2020). NSLs calculated from batch

423	cultures in Frank et al. (2020) were almost 2.5-fold higher than NSLs calculated using
424	data derived from the present semi-continuous cultures in the present study (Figs. 3
425	and 4) because the initial nutrient level of the batch cultures was higher than that of
426	the semi-continuous cultures. Additionally, both values and changing ranges of
427	optimal supply N:P ratios calculated from the present semi-continuous cultures were
428	lower and narrower than those in previous studies (Kunikane et al. 1984; Frank et al.
429	2020), which could be attributed to the differences in experimental setups and
430	phytoplankton taxa among the experiments. Additionally, light intensity applied in
431	Frank <i>et al.</i> (2020) $(40.45 \pm 15.00 \ \mu\text{mol photons m}^2 \ \text{s}^{-1})$ was much higher than that in
432	our study (15 μ mol photons m ² s ⁻¹), which could explain the broader optimal supply
433	N:P ratio ranges in Frank et al. (2020).

434 **5.** Conclusions

The response curves depicting the relationships between the optimal supply N:P 435 ratio and trophic status varied among the eight tested phytoplankton species, but seven 436 437 of them showed similar declining trends. Our results support the idea that the transition 438 from N requirements to P requirements is not a definite boundary, but it varies 439 depending on trophic status, with lower nutrient supply leading to higher N requirements than P requirements (Fig. 5). The N vs. P limitation for controlling 440 phytoplankton growth has been discussed for decades, but it still remains an open 441 question (Schindler et al. 2008; Conley et al. 2009; Xu et al. 2010; Paerl et al. 2016). 442 The present study assumed that neither N nor P was superior in controlling 443

444 phytoplankton growth. P was considered to have high priority in conditions with sufficient N and P supplies (i.e., phytoplankton blooms in eutrophic waterbodies), 445 which is consistent with studies showing that P is more effective in controlling 446 447 eutrophication than N (Carpenter 2008; Schindler et al. 2008). In contrast, we suggest 448 that the importance of N to phytoplankton productivity is greater in environments with 449 a low nutrient supply (i.e., in oligotrophic waterbodies). Generally, our results could be 450 instructive for the control of phytoplankton biomass and eutrophication mitigation in aquatic ecosystems. 451 452 Acknowledgements

The authors thank Dr. Yukiko Goda for assistance with the experimental setup and Dr. Koichi Ito for valuable comments on statistics. Further, the authors thank Maren Striebel and Michael Danger for valuable comments on the manuscript. This work was partly supported by KAKENHI, Grants-in-Aid for Scientific Research, grant number 19H03302 and 21J15473 from the Japan Society for the Promotion of Science.

459 **References**

Abell, J.M., Özkundakci, D. & Hamilton, D.P. (2010). Nitrogen and Phosphorus
Limitation of Phytoplankton Growth in New Zealand Lakes: Implications for
Eutrophication Control. *Ecosystems*, 13, 966-977.

463

464 Bonachela, J.A., Raghib, M. & Levin, S.A. (2011). Dynamic model of flexible

465	phytoplankton nutrient uptake. Proceedings of the National Academy of
466	Sciences, 108, 20633-20638.
467	
468	Budy, P., Luecke, C. & Wurtsbaugh, W.A. (1998). Adding Nutrients to Enhance the
469	Growth of Endangered Sockeye Salmon: Trophic Transfer in an Oligotrophic
470	Lake. Transactions of the American Fisheries Society, 127, 19-34.
471	
472	Carpenter, S.R. (2008). Phosphorus control is critical to mitigating eutrophication.
473	Proceedings of the National Academy of Sciences, 105, 11039-11040.
474	
475	Chaffin, J.D., Bridgeman, T.B., & Bade, D.L. (2013). Nitrogen Constrains the Growth
476	of Late Summer Cyanobacterial Blooms in Lake Erie. Advances in
477	Microbiology, 3, 16-26
478	
479	Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E.
480	et al. (2009). Controlling Eutrophication: Nitrogen and Phosphorus. Science,
481	323, 1014.
482	
483	Downing, J.A. & McCauley, E. (1992). The nitrogen : phosphorus relationship in lakes.
484	Limnology and Oceanography, 37, 936-945.
485	

486	Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole, W.S., Hillebrand, H.
487	et al. (2007). Global analysis of nitrogen and phosphorus limitation of primary
488	producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10,
489	1135-1142.
490	
491	Elser, J.J., Sterner, R.W., Gorokhova, E., Fagan, W.F., Markow, T.A., Cotner, J.B. et al.
492	(2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3,
493	540-550.
494	
495	Falkowski, P.G., Sukenik, A. & Herzig, R. (1989). Nitrogen limitation in Isochrysis
496	galbana (Haptophyceae). II. Relative abundance of chloroplase proteins.
497	Journal of Phycology, 25, 471-478.
498	
499	Frank, F., Danger, M., Hillebrand, H. & Striebel, M. (2020). Stoichiometric constraints
500	on phytoplankton resource use efficiency in monocultures and mixtures.
501	Limnology and Oceanography, 65, 1734-1746.
502	
503	Galbraith, E.D. & Martiny, A.C. (2015). A simple nutrient-dependence mechanism for
504	predicting the stoichiometry of marine ecosystems. Proceedings of the National
505	Academy of Sciences, 112, 8199-8204.
506	

507	Geider, R. & La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine
508	microalgae and its biochemical basis. European Journal of Phycology, 37, 1-17.
509	
510	Geider, R., Macintyre, Graziano, L. & McKay, R.M. (1998). Responses of the
511	photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen
512	and phosphorus limitation. European Journal of Phycology, 33, 315-332.
513	
514	Geider, R.J., La Roche, J., Greene, R.M. & Olaizola, M. (1993). Response of the
515	photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to
516	nitrate, phosphate, or iron starvation. Journal of Phycology, 29, 755-766.
517	
518	Griffiths, M.J., Garcin, C., van Hille, R.P. & Harrison, S.T.L. (2011). Interference by
519	pigment in the estimation of microalgal biomass concentration by optical
520	density. Journal of Microbiological Methods, 85, 119-123.
521	
522	Herrig, R. & Falkowski, P.G. (1989). Nitrogen limitation in Isochrysis galbana
523	(Haptophyceae). I. Photosynthetic energy conversion and growth efficiencies.
524	Journal of Phycology, 25, 462-471.
525	
526	Hillebrand, H., Steinert, G., Boersma, M., Malzahn, A., Meunier, C.L., Plum, C. et al.
527	(2013). Goldman revisited: Faster growing phytoplankton has lower N:P and

528	lower stoichiometric flexibility. Limnology and Oceanography. 58, 2076–2088.
529	
530	Huang, W., Bi, Y. & Hu, Z. (2014). Effects of Fertilizer-Urea on Growth, Photosynthetic
531	Activity and Microcystins Production of Microcystis aeruginosa Isolated from
532	Dianchi Lake. Bulletin of Environmental Contamination and Toxicology, 92,
533	514-519.
534	
535	Huesemann, M.H., Hausmann, T.S., Bartha, R., Aksoy, M., Weissman, J.C. &
536	Benemann, J.R. (2009). Biomass Productivities in Wild Type and Pigment
537	Mutant of Cyclotella sp. (Diatom). Applied Biochemistry and Biotechnology,
538	157, 507-526.
539	
540	Jiang, M. & Nakano, S. (2021). Application of image analysis for algal biomass
541	quantification: a low-cost and non-destructive method based on HSI color space.
542	Journal of Applied Phycology, 33, 3709–3717.
543	
544	Klausmeier, C. A., Litchman, E. & Levin, S.A. (2004). Phytoplankton growth and
545	stoichiometry under multiple nutrient limitation. Limnology and Oceanography.
546	49, 1463–1470.
547	

548 Kapoore, R.V., Huete-Ortega, M., Day, J.G., Okurowska, K., Slocombe, S.P., Stanley,

549	M.S. et al. (2019). Effects of cryopreservation on viability and functional
550	stability of an industrially relevant alga. Scientific Reports, 9, 2093.
551	
552	Kelly, P.T., Taylor, J.M., Andersen, I.M., Stovall, J. and Scott, J.T. (2021). Highest
553	primary production achieved at high nitrogen levels despite strong
554	stoichiometric imbalances with phosphorus in hypereutrophic experimental
555	systems. Limnology and Oceanography. 66, 4375-4390.
556	
557	Kunikane, S., Kaneko, M. & Maehara, R. (1984). Growth and nutrient uptake of green
558	alga, Scenedesmus dimorphus, under a wide range of nitrogen/phosphorus
559	ratio—I. Experimental study. Water Research, 18, 1299-1311.
560	
561	Lewis Jr, W.M. & Wurtsbaugh, W.A. (2008). Control of Lacustrine Phytoplankton by
562	Nutrients: Erosion of the Phosphorus Paradigm. International Review of
563	<i>Hydrobiology</i> , 93, 446-465.
564	
565	Lewis, W.M., Wurtsbaugh, W.A. & Paerl, H.W. (2011). Rationale for Control of
566	Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland
567	Waters. Environmental Science & Technology, 45, 10300-10305.
568	
569	Liu, J. & Vyverman, W. (2015). Differences in nutrient uptake capacity of the benthic

570	filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp.
571	under varying N/P conditions. <i>Bioresource Technology</i> , 179, 234-242.
572	
573	Loladze, I. & Elser, J.J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio
574	are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14, 244-250.
575	
576	Paerl, H.W. (2009). Controlling Eutrophication along the Freshwater-Marine
577	Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries and
578	Coasts, 32, 593-601.
579	
580	Paerl, H.W., Scott, J.T., McCarthy, M.J., Newell, S.E., Gardner, W.S., Havens, K.E. et
581	al. (2016). It Takes Two to Tango: When and Where Dual Nutrient (N & P)
582	Reductions Are Needed to Protect Lakes and Downstream Ecosystems.
583	Environmental Science & Technology, 50, 10805-10813.
584	
585	Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y. et al. (2011). Controlling
586	harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China):
587	The need for a dual nutrient (N & P) management strategy. Water Research, 45,
588	1973-1983.
589	
590	Rasdi, N.W. & Qin, J.G. (2015). Effect of N:P ratio on growth and chemical

591	composition of Nannochloropsis oculata and Tisochrysis lutea. Journal of
592	Applied Phycology, 27, 2221-2230.
593	
594	Redfield, A. (1934). On the proportions of organic derivatives in sea water and their
595	relation to the composition of plankton. In Daniel, R.J. (ed James Johnstone
596	Memorial Volume). University Press of Liverpool, 177–192.
597	
598	Reeder, B.C. (2017). Primary productivity limitations in relatively low alkalinity, high
599	phosphorus, oligotrophic Kentucky reservoirs. Ecological Engineering, 108,
600	477-481.
601	
602	Ren, L., Wang, P., Wang, C., Chen, J., Hou, J. & Qian, J. (2017). Algal growth and
603	utilization of phosphorus studied by combined mono-culture and co-culture
604	experiments. Environmental Pollution, 220, 274-285.
605	
606	Saito, M.A., Goepfert, T.J. & Ritt, J.T. (2008). Some thoughts on the concept of
607	colimitation: Three definitions and the importance of bioavailability. Limnology
608	and Oceanography, 53, 276-290.
609	
610	Schindler, D.W., Hecky, R.E., Findlay, D.L., Stainton, M.P., Parker, B.R., Paterson, M.J.
611	et al. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen

612	input: Results of a 37-year whole-ecosystem experiment. Proceedings of the
613	National Academy of Sciences, 105, 11254-11258.
614	
615	Schlesinger, W.H. & Bernhardt, E.S. (2020). Chapter 8 - Inland Waters. In:
616	Biogeochemistry (Fourth Edition) (eds. Schlesinger, WH & Bernhardt, ES).
617	Academic Press, pp. 293-360.
618	
619	Scott, J.T. & McCarthy, M.J. (2010). Nitrogen fixation may not balance the nitrogen
620	pool in lakes over timescales relevant to eutrophication management.
621	Limnology and Oceanography, 55, 1265-1270.
622	
623	Smith, S.L., Yamanaka, Y., Pahlow, M. & Oschlies, A. (2009). Optimal uptake kinetics:
624	physiological acclimation explains the pattern of nitrate uptake by
625	phytoplankton in the ocean. Marine Ecology Progress Series, 384, 1-12.
626	
627	Smith, V.H. (1990). Nitrogen, phosphorus, and nitrogen fixation in lacustrine and
628	estuarine ecosystems. Limnology and Oceanography, 35, 1852-1859.
629	
630	Snyder, D.S., Brahamsha, B., Azadi, P. & Palenik, B. (2009). Structure of
631	Compositionally Simple Lipopolysaccharide from Marine Synechococcus.
632	Journal of Bacteriology, 191, 5499-5509.

634	Sperfeld, E., Martin-Creuzburg, D. & Wacker, A. (2012). Multiple resource limitation
635	theory applied to herbivorous consumers: Liebig's minimum rule vs. interactive
636	co-limitation. Ecology Letters, 15, 142-150.
637	
638	Sperfeld, E., Raubenheimer, D. & Wacker, A. (2016). Bridging factorial and gradient
639	concepts of resource co-limitation: towards a general framework applied to
640	consumers. Ecology Letters, 19, 201-215.
641	
642	Sterner, R.W. & Elser, J.J. (2002). How to Build an Animal: The Stoichiometry of
643	Metazoans. In: Ecological Stoichiometry: Biology of Elements from Molecules
644	to the Biosphere. Princeton University Press, pp. 135-178.
645	
646	Thiel, T., Pratte, B.S., Zhong, J., Goodwin, L., Copeland, A., Lucas, S. et al. (2014).
647	Complete genome sequence of Anabaena variabilis ATCC 29413. Standards in
648	Genomic Sciences, 9, 562-573.
649	
650	Thrane, JE., Hessen, D.O. & Andersen, T. (2016). The impact of irradiance on optimal
651	and cellular nitrogen to phosphorus ratios in phytoplankton. Ecology Letters, 19,
652	880-888.
653	

654	Thrane, JE., Hessen, D.O. & Andersen, T. (2017). Plasticity in algal stoichiometry:
655	Experimental evidence of a temperature-induced shift in optimal supply N:P
656	ratio. Limnology and Oceanography, 62, 1346-1354.
657	
658	Tilman, D. (1980). Resources: A Graphical-Mechanistic Approach to Competition and
659	Predation. The American Naturalist, 116, 362-393.
660	
661	Wurch, L.L., Bertrand, E.M., Saito, M.A., Van Mooy, B.A.S. & Dyhrman, S.T. (2011).
662	Proteome Changes Driven by Phosphorus Deficiency and Recovery in the
663	Brown Tide-Forming Alga Aureococcus anophagefferens. <i>PloS one</i> , 6, e28949.
664	
665	Xu, H., Paerl, H.W., Qin, B., Zhu, G. & Gaoa, G. (2010). Nitrogen and phosphorus
666	inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology
667	and Oceanography, 55, 420-432.
668	
669	Yan, Z., Han, W., Peñuelas, J., Sardans, J., Elser, J.J., Du, E. et al. (2016). Phosphorus
670	accumulates faster than nitrogen globally in freshwater ecosystems under
671	anthropogenic impacts. Ecology Letters, 19, 1237-1246.
672	
673	Yang, Y., Pan, J., Han, BP. & Naselli-Flores, L. (2020). The effects of absolute and
674	relative nutrient concentrations (N/P) on phytoplankton in a subtropical

675 reservoir. <i>Ecological Indicators</i> , 115, 106466.	
--	--

678 Figures

680 Figure 1 Hypothesis of the experiment. (a) Hypothetical response of phytoplankton 681 growth under simultaneous co-limitation of nitrogen (N) and phosphorus (P) (Saito et al. 2008; Sperfeld et al. 2012; Sperfeld et al. 2016). Resource-dependent growth 682 isoclines (black lines) indicate equal growth at varying resource availabilities. Colored 683 684 dash lines represent the trophic statuses. The red line indicates the optimal supply N:P 685 ratio. (b) Unimodal relationship between supply N:P ratios and phytoplankton biomass under different trophic statuses. Solid colored curves represent the hypotheses of 686 687 previous studies that the position of the peaks are fixed. Dashed colored curves 688 represent the hypothesis of the present study that the peaks will shift with trophic status 689 (i.e., that higher trophic statuses have lower optimal supply N:P ratios, and lower 690 trophic statuses have higher ratios). (c) The predicted development of the optimal N:P 691 ratios, which have a negative relationship with trophic status. Phytoplankton tend to be 692 more P-limited than N-limited at high trophic statuses, and vice versa at low trophic 693 statuses.

Figure 2 Analytical results of the onedimensional locally weighted sequential smoothing method (1D-LOESS). Response of steady-state phytoplankton curves biomass (cell density) of (a) C. vulgaris, (b) A. variabilis, and (c) M. aeruginosa to the supply N:P ratios under four NSLs (0.91, 1.24, 1.58, and 1.91). Dashed lines represent the position of the optimal supply N:P ratios calculated using 1D-LOESS fits. The bar graphs summarize the calculated optimal supply N:P ratios under each NSL for the corresponding phytoplankton species.

50

200

500

500

1.91

Figure 3 2D-LOESS response surface contours of the effects of nitrogen (N) and phosphorus (P) on the steady-state phytoplankton biomass of (a) *C. vulgaris*, (b) *A. variabilis*, and (c) *M. aeruginosa*. (d–f) Summary of the relationships between the optimal supply N:P ratios and the NSLs for the three phytoplankton species. Results were derived from the 2D-LOESS response surface contours.

Figure 4 Literature data review. 2D-LOESS response surface contours were applied to the data of Frank et al. (2020) to assess the effects of N and P on the steady-state phytoplankton biomass of (a) Ankistrodesmus sp., (b) Scenedesmus obliquus, (c) Staurastrum sp., (d) Chlamydomonas reinhardtii, and (e) mixed cultures. Relationships between the optimal supply N:P ratios and NSLs were determined for (f) Ankistrodesmus sp., (g) S. obliquus, (h) Staurastrum sp., (i) C. reinhardtii, and (j) mixed cultures, which were derived from the corresponding 2D-LOESS response surface contours (ae). With the data of Kunikane et al. (1984), we examined the (k) response curves of the steady-state biomass of Scenedesmus dimorphus to the supply N:P ratios under four dilution rates (D, d^{-1}), and (1) the change in the optimal supply N:P ratios at different levels of D.

Figure 5 Schematic of the effects of trophic status on the relative N:P limitations for phytoplankton growth. The threshold between N limitation (blue area) and P limitation (orange area) is determined by the curve of the optimal supply N:P ratio. The curve of the optimal supply N:P ratio decreases with the rise of the trophic status. The decreasing curve is steep during low trophic phases and becomes shallow at high trophic phases. Additionally, the threshold between the N and P limitations for phytoplankton may become indistinct at high trophic phases due to the decreased affinity for nutrients.