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Abstract

Smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) methods are representative meshfree
article methods used to compute Lagrangian mechanics. The approximations of differential operators in the SPH and
PS methods have several similarities, but the theoretical discussion of the difference between them is limited. This study
athematically describes the difference via a comprehensive derivation of the first- and second-order derivative operators for

ach method. The comprehensive derivation indicates that the SPH and MPS operators are consistent with the pressure Poisson
quation and moving least-squares approximation, respectively. The variation in consistency can explain the difference in the
chemes of the incompressible flow problem. Additionally, the comprehensive derivation of the MPS operators can result
n novel second-order and anisotropic operators. This study strengthens the theoretical understanding of the SPH and MPS

ethods and facilitates the selection of the appropriate method by users. Furthermore, the proposed MPS operators contribute
o developing methods with adaptive or multiscale particle distributions.

2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Smoothed particle hydrodynamics (SPH) [1,2] and moving particle semi-implicit (MPS) [3,4] methods are
epresentative meshfree particle methods for numerically solving Lagrangian mechanics such as incompressible
ows, and these methods have been used in various fields including astrophysics, engineering, and biology [1,5,6].
he approximations of the differential operators in the SPH and MPS methods are very similar because they are

epresented by the weighted averages of the differences between neighboring particles, although their derivations
re different. Accordingly, the applications of these methods are very similar. Furthermore, several studies have
mproved the SPH method by incorporating the ideas of the MPS method [7,8] and vice versa [9].

We pose the following fundamental question:

What is the essential difference between the SPH and MPS methods?

E-mail address: imoto.yusuke.4e@kyoto-u.ac.jp.
https://doi.org/10.1016/j.cma.2022.115012
0045-7825/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.115012
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.115012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:imoto.yusuke.4e@kyoto-u.ac.jp
https://doi.org/10.1016/j.cma.2022.115012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Y. Imoto Computer Methods in Applied Mechanics and Engineering 395 (2022) 115012

u
c
w
b
t
e
(
t
f
m
M
d
t
i

r
t
S
fl
B
w
i
o

2

o
u

2

Although some differences in the numerical accuracy have been investigated [10,11], this is an open question from
a theoretical perspective. This study answers the question through mathematical analysis of the discrete operators
in the SPH and MPS methods.

We review the research on the SPH and MPS operators. Classically, the SPH method derives its operators
sing the integration approximation (convolution by kernel function) and its discretization on particles [6]. In
ontrast, the MPS method derives discrete operators using the directional derivatives between particles and their
eighted average. However, because both the SPH and MPS operators utilize the weighted average of the differences
etween neighboring particles, we can transform them into each other by replacing the parameters [12–14] (the
ransformations are different for the first- and second-order derivative operators). Thus, we cannot identify the
ssential differences between the SPH and MPS methods from the formulations of the operators. The consistency
truncation error) of the SPH and MPS operators are the same from the viewpoint of the convergence order, and
heir numerical truncation errors have no noticeable differences [12,13]. However, we can find a difference in the
ormulation of the pressure Poisson equation in the incompressible flow problem. The incompressible SPH (ISPH)
ethod straightforwardly discretizes the pressure Poisson equation using the SPH operators [8]; in contrast, the
PS method employs the discretization of the source term based on the continuity equation and particle number

ensity [3]. The different formulations represent one of the differences between the SPH and MPS methods, and
hey may lead to differences in the accuracy and stability of simulations using the methods. However, the difference
n the pressure Poisson equation has not been theoretically discussed.

Therefore, this study mathematically investigates the SPH and MPS operators. In particular, we focus on the
elationship between the first- and second-order derivative operators in the SPH and MPS methods. To investigate
his, we perform comprehensive derivations of these operators for each method. Specifically, we analyze the
PH operators using the pressure Poisson equation appearing in the numerical scheme of the incompressible
ow problem [8] (Section 2) and MPS operators using the Taylor expansion and polynomial basis (Section 3).
ased on the results, we discuss the difference between the SPH and MPS operators (Section 4). Additionally,
e suggest that this difference in the SPH and MPS operators leads to the difference in the formulations of the

ncompressible flow problem. Finally, we propose novel MPS operators, second-order and anisotropic models, based
n the comprehensive derivation of MPS operators (Section 5).

The notations used in this study are as follows:

d Dimension (d ≥ 2).
Rd d-dimensional Euclidean space.
Ω Bounded domain in Rd .
y(i) i th coordinate of vector y ∈ Rd .
xi i th point (particle) in Ω without overlap (i ̸= j ⇔ xi ̸= x j ).
N Number of particles (N < ∞).
f Smooth function on Ω .
AT Transpose vector or matrix A.
∂k Partial derivative with respect to the kth variable.
∇ Gradient operator (∇ = (∂1, . . . , ∂d )T).
∇· Divergence operator.
∆ Laplacian operator (∆ = ∂2

1 + · · · + ∂2
d ).

∥ · ∥ Euclidean distance.

. Formulation and derivation of SPH operators

This section introduces the formulation of the differential operators (first-order derivative and Laplacian
perators) in the SPH method. Furthermore, we derive the SPH operators based on the pressure Poisson equation
sed in the ISPH method.

.1. Formulation of SPH operators

The SPH method approximates the integration of function f based on the Monte Carlo method, as follows:∫
Ω

f (y)dy ≈

N∑ m j

ρ j
f (x j ). (1)
j=1

2
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Here, m j and ρ j denote the mass and density, respectively, assigned to particle x j , satisfying
N∑

j=1

m j

ρ j
= volume of Ω .

urther, we introduce the smoothing kernel wSPH
h : [0, ∞) → [0, ∞), satisfying the compact support condition

wSPH
h (r )

{
> 0, 0 ≤ r < h,

= 0, r ≥ h,
(2)

nity condition∫
Rd

wSPH
h (∥y∥)dy = 1, (3)

nd smoothness condition

ẇSPH
h (0) = ẇSPH

h (h) = 0. (4)

ere, h denotes a positive parameter known as the smoothing length, and ẇSPH
h is the first-order derivative of wSPH

h .
We generally use smoothing kernels such as cubic and quintic B-spline kernels [6]. We define the index set NPi of
the neighboring particles with respect to particle xi as follows:

NPi := { j = 1, . . . , N ; 0 < ∥xi − x j∥ < h}.

Then, we introduce the SPH operator on particle xi for the first-order derivative with respect to the kth variable as
follows:

⟨∂k f ⟩
SPH
i :=

∑
j∈NPi

m j

ρ j

[
f (x j ) − f (xi )

]
∂kw

SPH
h (∥xi − x j∥). (5)

he corresponding expression for the Laplacian operator is as follows:

⟨∆ f ⟩
SPH
i := 2

∑
j∈NPi

m j

ρ j

f (xi ) − f (x j )
∥xi − x j∥

xi − x j

∥xi − x j∥
· ∇wSPH

h (∥xi − x j∥). (6)

ere, ∂kw
SPH
h is expressed as

∂kw
SPH
h (∥y∥) =

⎧⎨⎩
y(k)

∥y∥
ẇSPH

h (∥y∥), y ̸= 0,

0, y = 0,

nd ∇wSPH
h (∥y∥) = [∂1w

SPH
h (∥y∥), . . . , ∂dw

SPH
h (∥y∥)]T.

.2. Comprehensive derivation of SPH operators

To clarify the relationship between the first-order derivative (5) and Laplacian operators (6) in the SPH method,
e consider the following pressure Poisson equation:

∆p =
ρ

τ
∇ · ũ in Ω , (7)

hich appears in the time discretization based on the projection method for the incompressible Navier–Stokes
quations [8]. Here, p, ũ, ρ, and τ denote the pressure, predicted velocity, density, and time step, respectively. For
implicity, this study does not mention the boundary conditions. Using v = ρ ũ/τ , we consider the following simple

form:

∆p = ∇ · v in Ω . (8)

We show that an approximation of Poisson equation (8) can naturally lead to the SPH operators (5) and (6). We
ssume that p and v are sufficiently smooth. Let Ωin

h be the inner domain obtained as
in
Ωh := {x ∈ Ω; Bh(x) ⊂ Ω},

3
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where Bh(x) denotes the open domain with center x and radius h, that is,

Bh(x) := {y ∈ Rd
; ∥y − x∥ < h}.

e first state the following lemma:

emma 2.1. For x ∈ Ωin
h and k, ℓ = 1, . . . , d,∫

Ω

(x − y)(k)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy = −δk,ℓ

olds, where δk,ℓ denotes the Kronecker delta.

roof. From Bh(x) ⊂ Ω , using the coordinate transformation and compact support condition (2), we obtain∫
Ω

(x − y)(k)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy =

∫
∥y∥<h

y(k) y(ℓ)

∥y∥
ẇSPH

h (∥y∥)dy.

hen k ̸= ℓ, because the integrated function is odd with respect to the origin, we obtain∫
∥y∥<h

y(k) y(ℓ)

∥y∥
ẇSPH

h (∥y∥)dy = 0.

hen k = ℓ, using the symmetry with respect to the origin, polar coordinate transformation, and conditions (3)–(4)
f the weight function, we obtain∫

∥y∥<h

[y(k)]2

∥y∥
ẇSPH

h (∥y∥)dy =
1
d

d∑
s=1

∫
Bh (0)

[y(s)]2

∥y∥
ẇSPH

h (∥y∥)dy

=
1
d

∫
Bh (0)

∥y∥ẇSPH
h (∥y∥)dy

=
1
d

∫
Sd−1

J (θ )
∫ h

0
rdẇSPH

h (r )drdθ

= −

∫
Sd−1

J (θ )
∫ h

0
rd−1wSPH

h (r )drdθ

= −

∫
∥y∥<h

wSPH
h (∥y∥)dy

= −1.

Here, Sd−1 denotes the (d − 1)-dimensional unit sphere, and J (θ ) is the Jacobian with respect to angle θ . □

Now, we introduce the following operators:

∇̃
SPH

· v(x) :=

∫
Ω

[v(y) − v(x)] · ∇wSPH
h (∥x − y∥)dy,

∆̃SPH p(x) := 2
∫
Ω

p(x) − p(y)
∥x − y∥

x − y
∥x − y∥

· ∇wSPH
h (∥x − y∥)dy.

Using Eq. (1), we can consider these operators as approximations of the SPH operators, that is,

∇̃
SPH

· v(xi ) ≈
Eq. (1)

⟨∇ · v⟩
SPH
i and ∆̃SPH p(xi ) ≈

Eq. (1)
⟨∆p⟩

SPH
i .

ere, ⟨∇ · v⟩
SPH
i is the divergence operator in SPH method defined as

⟨∇ · v⟩
SPH
i :=

d∑
k=1

⟨∂kv
(k)

⟩
SPH
i =

∑
j∈NPi

m j

ρ j

[
v(x j ) − v(xi )

]
· ∇wSPH

h (∥xi − x j∥).
Using Lemma 2.1, we have the following theorem:

4
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h ,

∆̃SPH p(x) = ∇̃
SPH

· v(x) + RESSPH(x) (9)

holds. Here, RESSPH is the residual obtained by higher-order derivatives of p and v, i.e.,

RESSPH(x) := RESv(x) − RESp(x),

RESp(x) := 2
∫
Ω

R4(p, x, y)
∥x − y∥

ẇSPH
h (∥x − y∥)dy,

RESv(x) :=
1
3

∫
Ω

R3(v, x, y) · ∇wSPH
h (∥x − y∥)dy,

here Rn denotes the residual of the Taylor expansion defined as

Rn( f, x, y) :=

∫ 1

0
(1 − t)n−1 [(x − y)T∇]n f (t y − (1 − t)x)

n!
dt.

roof. From Lemma 2.1, for x ∈ Ωin
h , we obtain

0 = ∆p(x) − ∇ · v(x)

=

∑
k,ℓ∈{1,...,d}

[∂k∂ℓ p(x) − ∂kv(x)(ℓ)]δk,ℓ

= −

∑
k,ℓ∈{1,...,d}

[∂k∂ℓ p(x) − ∂kv(x)(ℓ)]
∫
Ω

(x − y)(k)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy. (10)

Now, we consider the nth order Taylor expansion of the multivariable function f :

f (x) =

n∑
k=0

[(x − y)T∇]k f (y)
k!

+ Rn+1( f, x, y). (11)

y using the Taylor expansions (11) of p and v, we obtain

−

∑
k,ℓ∈{1,...,d}

∂k∂ℓ p(x)
∫
Ω

(x − y)(k)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy

= −

∫
Ω

∑
k,ℓ∈{1,...,d}

(x − y)(k)(x − y)(ℓ)∂k∂ℓ p(x)
∥x − y∥

ẇSPH
h (∥x − y∥)dy

= −

∫
Ω

[(x − y)T∇]2 p(x)
∥x − y∥

ẇSPH
h (∥x − y∥)dy.

= 2
∫
Ω

p(x) − p(y)
∥x − y∥

ẇSPH
h (∥x − y∥)dy

+ 2
∫
Ω

(x − y)T∇ p(x)
∥x − y∥

ẇSPH
h (∥x − y∥)dy

= 0

+
1
3

∫
Ω

[(x − y)T∇]3 p(x)
∥x − y∥

ẇSPH
h (∥x − y∥)dy

= 0

+ RESp(x)

= 2
∫
Ω

p(x) − p(y)
∥x − y∥

ẇSPH
h (∥x − y∥)dy + RESp(x)

= 2
∫
Ω

p(x) − p(y)
∥x − y∥

x − y
∥x − y∥

· ∇wSPH
h (∥x − y∥)dy + RESp(x)

= ∆̃SPH p(x) + RESp(x)
5
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and ∑
k,ℓ∈{1,...,d}

∂kv(x)(ℓ)
∫
Ω

(x − y)(k)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy

=

∫
Ω

∑
k,ℓ∈{1,...,d}

(x − y)(k)∂kv(x)(ℓ)(x − y)(ℓ)

∥x − y∥
ẇSPH

h (∥x − y∥)dy

=

∫
Ω

[(x − y)T∇]v(x) · (x − y)
∥x − y∥

ẇSPH
h (∥x − y∥)dy

=

∫
Ω

[(x − y)T∇]v(x) · ∇wSPH
h (∥x − y∥)dy

= −

∫
Ω

[v(y) − v(x)] · ∇wSPH
h (∥x − y∥)dy

−
1
2

∫
Ω

[(x − y)T∇]2v(x) · ∇wSPH
h (∥x − y∥)dy

= 0

− RESv(x)

= −

∫
Ω

[v(y) − v(x)] · ∇wSPH
h (∥x − y∥)dy − RESv(x)

= −∇̃
SPH

· v(x) − RESv(x).

Here, underlined terms are zero because the integrated functions are odd. Using the same transformation as that
used previously, we obtain thus, from Eq. (10), we obtain Eq. (9). □

From the integration approximation (1) and Theorem 2.2, we can derive the approximation of Poisson Eq. (8)
in the SPH method using the following procedures:

∆p = ∇ · v in Ω
=

−→
Eq. (10) &

Taylor expansion

∆̃SPH p = ∇̃
SPH

· v + RESSPH in Ωin
h

≈
−→

Truncate RESSPH
∆̃SPH p ≈ ∇̃

SPH
· v in Ωin

h

≈
−→

Eq. (1)
⟨∆p⟩

SPH
i ≈ ⟨∇ · v⟩

SPH
i for i = 1, . . . , N .

(12)

Many studies related to the derivation and consistency for the SPH operators exist [12,15–19], but these works
derived the first- and second-order SPH operators individually. In contrast, as shown in Theorem 2.2 and Eq. (12),
we approximate both sides of the Poisson equation in the same manner (transformation (10) → Taylor expansion
→ truncate RESSPH

→ approximation (1)). This implies that the definitions of the SPH operators (5) and (6) are
consistent with the pressure Poisson equation.

3. Formulation and derivation of MPS operators

This section introduces the formulation of the differential operators (first-order derivative operator and Laplacian)
in the MPS method. Furthermore, we derive the MPS operators based on the Taylor expansion and polynomial
approximation associated with the moving least-squares (MLS) method. Additionally, we propose new MPS
operators for anisotropic distributions based on the derivation.

3.1. Formulation of MPS operators

The MPS method forms approximations of the differential operators based on the weighted average of the
differences between the neighboring particles. For particle xi , the MPS method introduces the particle number
density ni defined as

ni :=

∑
wMPS

h (∥x j − xi∥).

j∈NPi

6
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The MPS method introduces the weight function wMPS
h with the compact support condition as follows:

wMPS
h (r )

{
> 0, 0 < r < h,

= 0, r ≥ h.

he MPS method does not require the unity (3) and smoothness conditions (4), which are required for the smoothing
ernel of the SPH method. We generally use the weight function as an infinite model

wMPS
h (r ) =

⎧⎨⎩
h
r

− 1, 0 < r < h,

0, otherwise

r a quadratic model

wMPS
h (r ) =

{
(r − h)2, 0 < r < h,

0, otherwise.

hen, we introduce the MPS operator on particle xi for the first-order derivative with respect to the kth variable as
ollows:

⟨∂k f ⟩
MPS
i :=

d
ni

∑
j∈NPi

f (x j ) − f (xi )
∥x j − xi∥

x (k)
j − x (k)

i

∥x j − xi∥
wMPS

h (∥x j − xi∥). (13)

he corresponding expression for the Laplacian is as follows:

⟨∆ f ⟩
MPS
i :=

2d
niλi

∑
j∈NPi

[
f (x j ) − f (xi )

]
wMPS

h (∥x j − xi∥), (14)

where λi is defined as

λi :=
1
ni

∑
j∈NPi

∥x j − xi∥
2wMPS

h (∥x j − xi∥).

lthough ni and λi are classically fixed [3] for simplicity, we use non-fixed values as employed in recent models [4].

.2. Comprehensive derivation of MPS operators

We initially showed the comprehensive derivation of the MPS operators in a two-dimensional space (d = 2) [20].
This section shows the general case (d ≥ 2).

We first define the notations. For simplicity, we use fi j = f (x j ) − f (xi ) and ri j = x j − xi hereinafter. We define
i,k,ℓ and θi (i = 1, . . . , N , k, ℓ = 1, . . . , d) as follows:

θi,k,ℓ :=

∑
j∈NPi

[r (k)
i j ]2[r (ℓ)

i j ]2

∥ri j∥
2 wMPS

h (∥ri j∥), (15)

θi :=
2

d(d − 1)

d∑
ℓ=k+1

d∑
k=1

θi,k,ℓ.

ere, θi denotes the average of θi,k,ℓ for k ̸= ℓ. Let D and pi j be vectors with length d(d + 3)/2, belonging to the
econd-order and lower partial derivatives and to the polynomial bases, respectively. They are defined as follows:

D = [∂1, . . . , ∂d
1st order

, ∂2
1 , . . . , ∂2

d
2nd order (duplicated)

, ∂1∂2, . . . , ∂d−1∂d
2nd order (mixed)

]T,

pi j =

[
r (1)

i j , . . . , r (d)
i j ,

[r (1)
i j ]2

2
, . . . ,

[r (d)
i j ]2

2
, r (1)

i j r (2)
i j , . . . , r (d−1)

i j r (d)
i j

]T

.

The second-order Taylor expansion on particle xi can be expressed as follows:

f (x ) = pT D f (x ) + R ( f, x , x ). (16)
j i j i 3 j i

7
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Fig. 1. Examples of neighboring particles that satisfy conditions (U1)–(U3). a, non-structural distribution that satisfies (U1). b, anisotropic
structural distribution that satisfies (U1)–(U2). c and d, isotropic structural distributions that satisfy (U1)–(U3).

Using pi j , we define the moment matrix Mi on particle xi as

Mi :=

∑
j∈NPi

pi j pT
i j

∥ri j∥
2 wMPS

h (∥ri j∥).

We define mα
i as

mα
i :=

∑
j∈NPi

rα
i j

∥ri j∥
2 wMPS

h (∥ri j∥).

ere, α = (α1, . . . , αd ) denotes the d-dimensional multi-index, which is the d-variable of non-negative integers
ith the following operations:

yα
= [y(1)]α1 × . . . × [y(d)]αd ,

|α| = α1 + · · · + αd .

he term mα
i can represent the elements of Mi ; for instance, when d = 2,

Mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m(2,0)
i m(1,1)

i
m(3,0)

i

2
m(1,2)

i

2
m(2,1)

i

m(1,1)
i m(0,2)

i
m(2,1)

i

2
m(0,3)

i

2
m(1,2)

i

m(3,0)
i

2
m(2,1)

i

2
m(4,0)

i

4
m(2,2)

i

4
m(3,1)

i

2
m(1,2)

i

2
m(0,3)

i

2
m(2,2)

i

4
m(0,4)

i

4
m(1,3)

i

2

m(2,1)
i m(1,2)

i
m(3,1)

i

2
m(1,3)

i

2
m(2,2)

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we introduce the conditions for the neighboring particles as follows:

(U1) Mi is invertible.
(U2) mα

i = 0 for all α that contain odd component(s) and |α| ≤ 4.
(U3) The distribution of the neighboring particles is isotropic with respect to all coordinate systems with origin

xi ; that is, for all j ∈ NPi and s, t = 1, . . . , d , there exists k ∈ NPi such that r (s)
i j = r (t)

ik , r (t)
i j = r (s)

ik , and
r (ℓ)

i j = r (ℓ)
ik for all ℓ not s or t .

e show examples of the neighboring particles that satisfy conditions (U1)–(U3) in Fig. 1.
Then, we obtain the following theorem for the derivation of the MPS operators.
8
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Theorem 3.1. If the neighboring particles of particle xi satisfy condition (U1), then

D̃ f (xi ) = D f (xi ) + RESMPS (17)

olds, where

D̃ f (xi ) := M−1
i

∑
j∈NPi

fi j

∥ri j∥
2 pi jw

MPS
h (∥ri j∥),

RESMPS
:= M−1

i

∑
j∈NPi

pi j
R3( f, x j , xi )

∥ri j∥
2 wMPS

h (∥ri j∥).

oreover, if the neighboring particles of particle xi satisfy conditions (U1)–(U3), then MPS operators (13) and
14) are consistent with D̃ f (xi ); that is,

⟨∂k f ⟩
MPS
i = ∂̃k f (xi ), k = 1, . . . , d, (18)

⟨∆ f ⟩
MPS
i = ∆̃ f (xi ), (19)

here D̃ = [̃∂1, . . . , ∂̃d , ∂̃
2
1 , . . . , ∂̃2

d , ∂̃1∂̃2, . . . , ∂̃d−1∂̃d ]T and ∆̃ = ∂̃2
1 + · · · + ∂̃2

d .

roof. By multiplying both sides of the second-order Taylor expansion (16) with pi jw
MPS
h (∥ri j∥)/∥ri j∥

2 and
summing for j ∈ NPi , we obtain∑

j∈NPi

fi j

∥ri j∥
2 pi jw

MPS
h (∥ri j∥) = Mi D f (xi ) +

∑
j∈NPi

pi j
R3( f, x j , xi )

∥ri j∥
2 wMPS

h (∥ri j∥).

From the invertible condition (U1), by multiplying both sides of the above equation with M−1
i , we obtain Eq. (17).

Next, we show Eqs. (18) and (19). From condition (U2), we can represent the moment matrix Mi as follows:

Mi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ni,1
. . .

ni,d
1
4
Θi

θi,1,2
. . .

θi,d−1,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (20)

where

ni,k :=

∑
j∈NPi

[r (k)
i j ]2

∥ri j∥
2 wMPS

h (∥ri j∥), k = 1, . . . , d (21)

nd Θi is a d × d matrix obtained as Θi = (θi,k,ℓ) (k, ℓ = 1, . . . , d) (θi,k,ℓ is defined in Eq. (15)). The empty
lements in Eq. (20) are zero. In addition, from condition (U3), we obtain

ni,k =
1
d

d∑
ℓ=1

∑
j∈NPi

[r (ℓ)
i j ]2

∥ri j∥
2 wMPS

h (∥ri j∥)

=
1
d

∑
j∈NPi

wMPS
h (∥ri j∥)

=
ni

d

9
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Θ

U

T

for k = 1, . . . , d and θi,k,ℓ = θi for k ̸= ℓ. Hence, we can represent the moment matrix Mi as the following block
atrix:

Mi =

⎡⎢⎢⎣
ni

d
Id

1
4
Θi

θi Id(d−1)/2

⎤⎥⎥⎦ ,

where Ik denotes the k × k identity matrix. Then, we can calculate the inverse M−1
i as follows:

M−1
i =

⎡⎢⎢⎢⎣
d
ni

Id

4Θ−1
i

1
θi

Id(d−1)/2

⎤⎥⎥⎥⎦ .

We explicitly calculate Θ−1
i . From

θi,k,k =
1
d

d∑
ℓ=1

∑
j∈NPi

[r (ℓ)
i j ]4

∥ri j∥
2 wMPS

h (∥ri j∥)

=
1
d

∑
j∈NPi

1
∥ri j∥

2

{
d∑

ℓ=1

[r (ℓ)
i j ]2

}2

wMPS
h (∥ri j∥)

−
2
d

d∑
ℓ=1

d∑
s=ℓ+1

∑
j∈NPi

[r (ℓ)
i j ]2[r (s)

i j ]2

∥ri j∥
2 wMPS

h (∥ri j∥)

=
1
d

∑
j∈NPi

∥ri j∥
2wMPS

h (∥ri j∥) −
2
d

d∑
ℓ=1

d∑
s=ℓ+1

θi,ℓ,s

=
niλi − d(d − 1)θi

d
,

i becomes the d × d symmetric matrix, obtained as follows:

[Θi ]kℓ =

⎧⎨⎩
niλi − d(d − 1)θi

d
, k = ℓ,

θi , k ̸= ℓ.

sing Cramer’s rule, we can calculate Θ−1
i as follows:

[Θ−1
i ]kℓ =

⎧⎪⎪⎨⎪⎪⎩
d(niλi − dθi )

niλi (niλi − d2θi )
, k = ℓ,

−
d2θi

niλi (niλi − d2θi )
, k ̸= ℓ.

herefore, we obtain

∂̃k f (xi ) = [D̃ f (xi )](k)

=
d
ni

∑
j∈NPi

fi j

∥ri j∥

r (k)
i j

∥ri j∥
wMPS

h (∥ri j∥)

= ⟨∂k f ⟩
MPS
i

10
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t
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for k = 1, . . . , d and

∆̃ f (xi ) =

d∑
k=1

(D̃ f (xi ))(d+k)

= 4
d∑

k=1

d∑
ℓ=1

[Θ−1
i ]kℓ

∑
j∈NPi

fi j

∥ri j∥

[r (ℓ)
i j ]2

2∥ri j∥
wMPS

h (∥ri j∥)

=

d∑
k=1

{
4d(niλi − dθi )

niλi (niλi − d2θi )

∑
j∈NPi

fi j

∥ri j∥

[r (k)
i j ]2

2∥ri j∥
wMPS

h (∥ri j∥)

−
4d2θi

niλi (niλi − d2θi )

∑
ℓ̸=k

∑
j∈NPi

fi j

∥ri j∥

[r (ℓ)
i j ]2

2∥ri j∥
wMPS

h (∥ri j∥)
}

=
2d(niλi − dθi )

niλi (niλi − d2θi )

∑
j∈NPi

fi jw
MPS
h (∥ri j∥)

−
2d2(d − 1)θi

niλi (niλi − d2θi )

∑
j∈NPi

fi jw
MPS
h (∥ri j∥)

=
2d

niλi (niλi − d2θi )
[(niλi − dθi ) − d(d − 1)θi ]

∑
j∈NPi

fi jw
MPS
h (∥ri j∥)

=
2d

niλi

∑
j∈NPi

fi jw
MPS
h (∥ri j∥)

= ⟨∆ f ⟩
MPS
i . □

In addition, we describe the relationship with the MLS method [21,22] as follows.

emark 3.2. The MLS approximation with basis pi j is consistent with D̃ f (xi ); that is, for the weighted
east-square error∑

j∈NPi

(cT pi j − fi j )2wMPS
h (∥ri j∥), (22)

he solution cMLS minimizing Eq. (22) with respect to c, satisfies

D̃ f (xi ) = cMLS.

From Theorem 3.1 and Remark 3.2, we can comprehensively derive the MPS operators using the following
rocedures:

Taylor expansion
=

−→
Theorem 3.1 (17)

D̃ f (xi ) = D f (xi ) + RESMPS

≈
−→

Truncate RESMPS
D̃ f (xi ) ≈ D f (xi ) (MLS approximation)

=
−→

Theorem 3.1 (18)–(19)

⎧⎪⎨⎪⎩
⟨∂k f ⟩

MPS
i = (D̃ f (xi ))(k), k = 1, . . . , d,

⟨∆ f ⟩
MPS
i =

d∑
k=1

(D̃ f (xi ))(d+k).

(23)

Unlike the SPH operators, the MPS operators are derived based on the MLS approximation under uniform particle
distribution conditions. Based on the different comprehensive derivations, we will discuss the difference between
the SPH and MPS operators in the next section. Additionally, by developing a comprehensive derivation of the
existing MPS operators, we propose new MPS operators in Section 5.
11
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4. Discussion of the difference between SPH and MPS operators

We first explain the similarity between the SPH and MPS operators. The first-order derivative operators can be
transformed into each other as follows:

⟨∂k f ⟩
SPH
i =

∑
j∈NPi

m j

ρ j
fi j∂kw

SPH
h (∥r j i∥)

= −

∑
j∈NPi

m j

ρ j
fi j

r (k)
i j

∥ri j∥
ẇSPH

h (∥ri j∥)(
replace −

m j

ρi
ẇSPH

h (∥ri j∥) and
d

ni∥ri j∥
wMPS

h (∥ri j∥)
)

↔
d
ni

∑
j∈NPi

fi j
r (k)

i j

∥ri j∥
2 wMPS

h (∥ri j∥)

= ⟨∂k f ⟩
MPS
i . (24)

Further, we can transform the Laplacian operators in the following way:

⟨∆ f ⟩
SPH
i = 2

∑
j∈NPi

m j

ρ j

f j i

∥r j i∥

r j i

∥r j i∥
· ∇wSPH

h (∥r j i∥)

= −2
∑
j∈NPi

m j

ρ j
fi j ẇ

SPH
h (∥ri j∥)(

replace −
m j

ρi
ẇSPH

h (∥ri j∥) and
d

λi ni
wMPS

h (∥ri j∥)
)

↔
2d
λi ni

∑
j∈NPi

fi jw
MPS
h (∥ri j∥)

= ⟨∆ f ⟩
MPS
i . (25)

he transformation in the case of integral forms has been shown by Souto-Iglesias et al. [13]. From these
ransformations, we can understand that the SPH and MPS operator are similar formulations.

However, the replaced parameters that convert the SPH and MPS operators are different for the first-order
erivative and Laplacian operators. This implies that the relationships between the first- and second-order derivative
perators differ in the SPH and MPS methods.

Next, we discuss the difference between the SPH and MPS operators. We have shown the comprehensive
erivations of the SPH and MPS operators. The SPH operators were consistent with the pressure Poisson equation
Section 2), whereas the MPS operators were consistent with the second-order Taylor expansion (Section 3). As
entioned in the previous paragraph, the first- and second-order derivative operators in the SPH and MPS methods

re not converted by replacing the same parameters. Thus, the comprehensive derivations of each do not apply to
he other. Consequently, we can conclude that there is an essential difference between the SPH and MPS operators
see Fig. 2).

This difference can explain the contrast in the schemes for the incompressible Navier–Stokes equations. The
SPH method straightforwardly discretizes the pressure Poisson equations using the SPH operators. In contrast, the

PS method models the source term (the right-hand side of Eq. (7)) using the particle number density. This may
e because the MPS operators have lesser consistency with the pressure Poisson equations than the SPH operators.
he similar discussion can be seen in the previous study [14].

It has been reported that the SPH method is more stable than the MPS method in incompressible flow
imulations [10]. Moreover, we mathematically proved the stability for only the ISPH method [23,24]. Furthermore,
he improved second-order derivative operators of the SPH methods have been proposed while maintaining the
elationship between the first- and second-order derivative operators [25]. Hence, the relationship between the first-
nd second-order derivative operators in the SPH method is critical for stability and accuracy, and it may yield

etter discretization of the incompressible Navier–Stokes equations.

12
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�

Fig. 2. Relationship and consistency between SPH and MPS operators.

5. Additional results for MPS operators

Considering the components of D̃ f (xi ) in Theorem 3.1, we can derive the following second-order derivative
operators:

Second-order partial derivative operators� �
• Regular derivative operator:

⟨∂2
k f ⟩

MPS
i :=

2d
niλi − d2θi

∑
j∈NPi

fi j

∥ri j∥

[r (k)
i j ]2

∥ri j∥
wMPS

h (∥ri j∥)

−
2d2θi

niλi (niλi − d2θi )

∑
j∈NPi

fi jw
MPS
h (∥ri j∥). (26)

• Mixed derivative operator:

⟨∂k∂ℓ f ⟩
MPS
i :=

1
θi

∑
j∈NPi

fi j

∥ri j∥

r (k)
i j r (ℓ)

i j

∥ri j∥
wMPS

h (∥ri j∥), (k ̸= ℓ). (27)

�
Notably, ⟨∂2

k f ⟩
MPS
i and ⟨∂k∂ℓ f ⟩

MPS
i consist of (d +1)th, . . . , 2dth and 2dth, . . . , d(d +3)/2th components of D̃ f (xi ),

respectively, under conditions (U1)–(U3). Therefore, we can comprehensively derive second-order partial derivative
operators (26)–(27) and conventional operators (13)–(14) using the same procedure as Eq. (23).

The regular operator (26) is complex, unlike the mixed operator (27), which is simple. The regular derivative
operator (26) contains the approximation term for the kth direction (first term) and a correction term independent
of a specific direction (second term). This fact is consistent with that of the second-order derivative operators in the
SPH method [25]. However, we note that these second-order MPS operators can never be derived from the SPH
operators by transformation using existing knowledge, such as the replacements in Eqs. (24) and (25). The mixed
derivative operator for a two-dimensional space was initially proposed and verified based on numerical results for
an incompressible flow problem in our previous study [20].

Next, considering anisotropy (without condition (U3)), we introduce new MPS operators for anisotropic particle
distributions. We recall ni,k defined in Eq. (21) and the d × d matrix Θi defined as Θi = (θi,k,ℓ) (k, ℓ = 1, . . . , d),
where θ is defined in Eq. (15). Then, we define the MPS operators for anisotropic particle distributions.
i,k,ℓ

13
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Anisotropic operators� �
• First-order derivative operator:

⟨∂k f ⟩
Aniso
i :=

1
ni,k

∑
j∈NPi

fi j

∥ri j∥

r (k)
i j

∥ri j∥
wMPS

h (∥ri j∥). (28)

• Second-order derivative operator:

⟨∂2
k f ⟩

Aniso
i :=

⎡⎣2Θ−1
i

∑
j∈NPi

fi j

∥ri j∥

qi j

∥ri j∥
wMPS

h (∥ri j∥)

⎤⎦(k)

, (29)

where qi j := {[r (1)
i j ]2, . . . , [r (d)

i j ]2
}
T.

• Second-order mixed derivative operator:

⟨∂k∂ℓ f ⟩
Aniso
i :=

1
θi,k,ℓ

∑
j∈NPi

fi j

∥ri j∥

r (k)
i j r (ℓ)

i j

∥ri j∥
wMPS

h (∥ri j∥), k ̸= ℓ. (30)

• Laplacian operator:

⟨∆ f ⟩
Aniso
i :=

d∑
k=1

⟨∂2
k f ⟩

Aniso
i . (31)

�
The anisotropic operators can be derived by computing the inverse of the moment matrix represented by Eq. (20).

he anisotropic operators (Eqs. (28) to (31)) are equal to the conventional and proposed operators (Eqs. (13), (14),
26), and (27)) under isotropic conditions (U1)–(U3).

Finally, we present the numerical results for the proposed MPS operators. First, we investigate the second-order
artial derivative operators (26) and (27). We set the domain Ω = [0, 1] × [0, 1]. We consider the uniform and

non-uniform particle distributions. We set the uniform distribution as the grid distribution with a spacing distance
∆x = 2−3, 2−4, 2−5, 2−6 (Fig. 3a left) and generate the non-uniform particle distributions by adding a random
perturbation that follows the uniform distribution U[−0.2∆x,0.2∆x] with a uniform distribution (Fig. 3b left). We
compute the truncation error for the differential operator D based on the relative error

ED =
1

#Λin

∑
i∈Λin

∥D f (xi ) − ⟨D f ⟩i∥

max
x∈Ω

∥D f (x)∥
,

where Λin
:= { j; x j ∈ Ωin

h }, #Λin denotes the number of particles in Ωin
h , and ⟨D f ⟩i is the discrete operator of

D f (xi ). We set f as f (x) = sin(x (1)
+ 2x (2)) and f (x) = exp(x (1)

+ 2x (2)). The proposed operators converge in
the second order in the uniform case, but diverge in the non-uniform case, similar to the existing Laplace operator
(Fig. 3). Since both the proposed and existing second-order MPS operators consist of the components of D̃ f (xi ),
their approximation processes are the same, as shown in Eq. (23). Therefore, this similarity can guarantee that
the proposed operators are well defined. Although the truncation errors of proposed operators are not accurate for
non-uniform distributions, they may be applicable for practical situations, similar to how the conventional MPS
method is useful.

Next, we verify the proposed anisotropic operators (28) and (31) by comparing the isotropic operators (13) and
(14) on the anisotropic particle distribution. We omit the verification of the mixed derivative operator (30) because
it is equal to the isotropic operator (27) in the case of a two-dimensional space. We used the same methods as
previously described for domain Ω , function f , and relative error ED. We created an anisotropic particle distribution
by generating particles with a half-spacing distance for the first axis (Fig. 4a). We can observe better accuracy and

convergence of the anisotropic operators than the conventional operators (Fig. 4b and c)

14
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p

Fig. 3. Particle distributions and truncation errors for the second-order derivative operators: regular derivative (26), mixed derivative (27),
and existing Laplacian operators (14). a, Uniform distribution case; b, non-uniform distribution case. The particle distributions are shown
for case ∆x = 0.1.

Fig. 4. Particle distribution and truncation errors for the anisotropic operators (28) and (31) and existing operators (13) and (14). a, Anisotropic
article distribution with ∆x = 0.1; b, truncation errors for first-order derivative operators (28) and (13); c, truncation errors for Laplacian

operators (31) and (14).
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6. Conclusion

We have investigated the difference between SPH and MPS operators via a comprehensive derivation of each
ethod’s first- and second-order operators. First, we have derived the SPH operators using the pressure Poisson

quation and integration approximation. Next, we have derived the MPS operators using the Taylor expansion and
olynomial basis. Further, we have clarified that the MPS derivation is equal to an MLS approximation with an
ppropriate basis. From the different derivations, we have concluded that the difference between the SPH and MPS
perators is the targets (the pressure Poisson equation or MLS approximation) that their first- and second-order
perators are consistent with (Fig. 2). Furthermore, we have confirmed that the consistency of the SPH method
as advanced the numerical and theoretical stability analyses of incompressible flow problems. In addition, we
ave proposed novel second-order derivative and anisotropic operators from the comprehensive derivation of the
onventional MPS operators. Finally, we have verified these operators through numerical truncation error analysis
nd have confirmed that they had equal or greater accuracy than the conventional MPS operators.

We expect that this study will help in the development of a theoretical analysis of the SPH and MPS methods
r help in the selection of the appropriate method by users. Furthermore, the new MPS operators can contribute to
he development of methods with adaptive or multiscale particle distributions. However, this study cannot guarantee
he stability or accuracy of practical computations using the SPH and MPS methods. In the future, we will enhance
he theoretical study of the SPH and MPS methods by focusing on aspects such as convergence and stability, to
nspire confidence in their numerical results.
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