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Identical granular particles in multiple compartments on a vertically shaking table may show an aggregation 
phenomenon termed granular Maxwell's demon for a suitable choice of parameters. Vertically vibrated binary 
granular particles may yield granular Maxwell's demon or the granular clock. Horizontally vibrated binary 
granular particles may form stripe patterns perpendicular or parallel to the vibratory direction for a suitable 
choice of parameters. Influences on the above-mentioned phenomena were analyzed, when the diameter or the 
mass of granular particles was distributed. 
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1. Introduction 
Granular particles under the effect of periodic forcing 

show various collective motions. For example, there are 
granular particles of two sizes that are horizontally forced 
form a stripe pattern parallel or perpendicular to the external 
forcing. A stripe consists of large particles. The stripes 
on both sides of the above stripe consist of small particles 
(Fujii et al., 2012). 

An aggregation, termed granular Maxwell's demon (Eg­
gers, 1999), is observed, when granular particles of the 
same size are in a compartmentalized container under the 
effect of vertical shaking. Both an aggregation and an os­
cillation, termed the granular clock (Lambiotte et al., 2005), 
are also observed in the case of granular particles of the two 
sizes. 

It is recommended that lay experts perform appropri­
ately selected numerical analyses to obtain various granu­
lar collective motions, such as the discrete element method 
(Cundall-Strack, 1979) and the event-driven method (Isobe, 
1999), according to the analysis objective. The former and 
latter are suited for aggregation and gas-like phenomena, 
respectively. 

We analyzed influences on the above-mentioned phe­
nomena, when the diameter or the mass of the granular par­
ticles was distributed. Some observations obtained from nu­
merical simulations are mainly reported in this paper. In the 
second section, numerical results of a netlike appearance of 
non-uniform particles in the case of horizontal shaking are 
presented. The third section shows numerical results of a 
shift of the critical point of granular Maxwell's demon of 
non-uniform particles in the case of vertical shaking. The 
final section is devoted to concluding remarks. 
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2. A Netlike Appearance of Non-Uniform Particles in 
the Case of Horizontal Shaking 

Our starting point is a stripe pattern described in a pre­
vious paper (Fujii et al., 2012). Parameters were mostly 
selected as listed in TABLE I of the paper (Fujii et al., 
2012). The area fractions were oflarge and small particles, 
PL and Ps in units of cm-1, respectively, and the viscous 
friction coefficient between the particle and tray µ, was in 
units of g-s-1. We set (PL, Ps) = (0.25, 0.3) andµ, = 0.17 
(0.14) for large (small) particles. The elastic coefficient, 
amplitude of oscillation of the tray, and its frequency were 
l.0x 104g-cm2 -s-2, 7.5 cm, and 2 Hz, respectively. Masses 
of large and small particles were 1 and 0.3 g, respectively. 
Diameters of large and small particles were 0.5 and 0.25 
cm, respectively. Coefficients of restitution between large 
particles, between small particles, and between large and 
small particles were 0.2, 0.9, and 0.5, respectively. 

Next, we introduced uniform distributions defined in the 
interval [0.5-0.0325, 0.5+0.0325] ([0.25-0.0325, 0.25+ 
0.0325]) around the mean diameter of the large (small) par­
ticle. According to these distributions, we prepared granu­
lar particles and performed numerical simulations based on 
the discrete element method (Cundall-Strack, 1979). Thus, 
we did not obtain stripe patterns, but a fishnet structure, as 
shown in Fig. 1. 

3. A Shift of the Critical Point of Granular Maxwell's 
Demon of Non-Uniform Particles on Vertical Shak­
ing 

Jens Eggers termed a dilute gas of granular material in­
side box Sand as Maxwell's demon, in which a wall sepa­
rates the box into two identical compartments except for a 
small hole at some finite height, kept in a stationary state by 
vertical vibrations, since the particles preferentially occupy 
one side of the box at a suitable value of vibration intensity. 
He analyzed this clustering phenomenon based on a thermo­
dynamical approach to granular material, and constructed a 
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Fig. 1. A fishnet-like pattern gradually formed over the course of time. 
These snapshots started from random initial conditions at t = 0.0, 
followed by t = 4.0, 8.0, 12.0, 16.0, 20.0, and 24.0. Read from left 
to right and top down. 

mean-field model (Eggers, 1999). Schlichting and Nord­
meier described the first experimental implementation in a 
paper entitled: Strukturen im Sand, a literal translation of 
the German title: Structures in the sand, in which one of 
the section titles, Experimente mit Mitteln der Schulphysik 
(experiments as educational tools for school physics), sug­
gested an educational purpose (Schlichting and Nordmeier, 
1996). A generalization from a single dispersion to a dou­
ble dispersion in radius was analyzed to yield a granular 
clock (Lambiotte et al., 2005). It is notable that not only the 
granular clock but also granular Maxwell's demon occurs in 
the case of a double dispersion radius. One of the authors 
(S.M.) advised high-school students studying the granular 
clock, and the students received yuushuushoo (award of ex­
cellence) in the Jr. session of the annual meeting of the 
Physical Society of Japan in 2015 (Inomata et al., 2015). 

We first used a system consisting of a box with width 
W and N granular particles. The particles with radius r 
and mass m = p • nr2 collide with a coefficient of normal 
restitution e, where p is the mass density. The following 
three cases are considered: 

Table 1. Parameters used for the simulation in Fig. 2. 
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hole height h = 1.0. The upper and lower lines correspond to the sin­
gle-valued case and uniformly distributed case of the radii, respectively. 

Uniform distribution The radii obey the uniform distribu­
tion defined in the interval [ (r) (1 - ,J3 ~), (r) (1 + 
vJ~)] around the mean diameter (r) with (r) = 0.01 
and~= 0.15. 

Two-valued distribution The two-valued distribution 
1 
2 [8(r - (r)(l - ~)) + 8(r - (r)(l + ~))] has the 

same average (r) and variance ~ 2 (r) 2 as the above 
uniform distribution. 

Single-valued case Uniform particles with radius r = (r) 
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Fig. 4. Snapshots of particles in the container at time t = 0.0, 490.0, 990.0, and 3990.0 corresponding to the first, second, third, and fourth lines, 
respectively. The right and left columns correspond to the large ( •) and small ( o) particles and uniform particles, respectively. The hole of the 
dividing wall is located at z = 1. 

are considered in comparison with the above two 
cases. 

The container consists of two identical compartments and 
a dividing wall. The latter has a small hole at height h 
through which particles can pass to the other side. The 
box is mounted on a shaker with a bottom vibration pattern 
and saw-tooth amplitude function; therefore, the velocity 
of the bottom has a constant positive value, U. Particles 
accelerated by gravity g bounce back on the floor and gain 
energy. 

According to the preceding study of Eggers (Eggers 
2N1-N 

1999), we defined the bias as E = ---, and we cal-
2N 

culated it at equilibrium as a function of h based on the Ex-
tended Exclusive Particle Grid Method (EEPGM) (Isobe, 
1999), with the results are shown in Fig. 2, where N1 is the 
particle number in the left compartment. The three cases 
are indicated by the symbols □ (uniform distribution), I:::,. 

(two-valued distribution), and o (single-valued case). The 
parameters shown in Table 1 were used for the simulation, 
and 20 samples were taken for each value of hole height h, 
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and the bias E was measured at t = 6000.0, which was con­
sidered to be larger than the relaxation time. The variance 
of the 20 samples is represented by error bars in Fig. 2. The 
width of the hole was 21 = 0.05. 

As shown in Fig. 2, The case of uniform distribution is 
fairly well-approximated by the case of two-valued distri­
bution. For the fixed value of the hole height, h = 1.0, 
the bias E of the case of uniform distribution has a smaller 
value than the single-valued case, suggesting that uniform 
distribution causes less condensation in a compartment than 
the single-valued case. For a fixed hole height, we plot the 
bias E against time t in cases of single ( upper line) and uni­
formly distributed (lower line) values of the radii in Fig. 3. 
The equilibrium value and gradient of the curve, which is 
identical to the speed to the equilibrium value, of single­
valued radii are larger than those of uniformly distributed 
radii. The variance of the radii suppresses the condensation. 
Snapshots of the particles in the container at time t = 0.0, 
490.0, 990.0, and 3990.0 are shown in Fig. 4, in which the 
right and left columns correspond to the uniform particles 
and the large ( •) and small ( o) particles, respectively. 

4. Concluding Remarks 
We demonstrated the numerical results with the limited 

number of pages available. The fishnet or stripe patterns 
discussed in the second section should be quantitatively an­
alyzed by two-dimensional spatial spectrum, with the inten­
sity of the spatial Fourier coefficients as a function of the 
two-dimensional wave-number vector. The phase transition 
of the single-valued radius discussed in the third section was 

theoretically studied (Eggers, 1999). Theoretical treatments 
of the case of uniform distribution of the radius may be diffi­
cult. The two-valued distribution is promising as an approx­
imation, and the approach taken by Eggers may be extended 
to the two-valued case. Vertical non-uniformity of periodi­
cally forced granular particles, also known as the Brazil nut 
effect (Rosato et al., 1987), is essential to yield a granular 
clock. Phenomenologically derived equations of motion for 
the case of two-valued radii (Lambiotte et al., 2005) can be 
used not only for the granular clock but also for condensa­
tion in a single compartment (granular Maxwell's demon). 
These will be reported in a separate paper. 
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