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Abstract Metabolite identification is an essential part of metabolomics to understand 
biochemical characteristics of metabolites, which are small molecules and play important 
functions in biological systems. However, it remains challenging with many unknown 
metabolites in reality. Mass Spectrometry (MS) is a common technology in to deal with such 
small molecules. Over decades, many methods have been proposed for MS based metabolite 
identification task, especially, machine learning, being the key to recent progress in metabolite 
identification. This article provides a survey on computational methods for metabolite 
identification with the focus on machine learning, with a discussion on potential improvements 
for the task. 
 
1. Introduction 
 
Metabolomics involves studies of a plenty number of metabolites, which are small molecules 
present in biological systems. They play a lot of important functions such as energy transport, 
building blocks of cells and so on (Wishart, 2007). Identification of metabolites or 
understanding their biochemical characteristics is an essential and significant part of 
metabolomics to enlarge the knowledge of biological systems. It is also the key to the 
development of many application domains such as biomedicine, biotechnology or 
pharmaceutical. However, metabolite identification still remains a challenging task in 
metabolomics with a huge amount of potentially interesting but unknown metabolites in reality.  
 
Mass spectrometry (MS) is one of common techniques in analytical chemistry (De Hoffmann 
et al., 1997; Gross 2006; McLafferty et al., 1993) for measuring the mass-to-charge ratio (m/z) 
of one or more molecules in a chemical sample. The output of a mass spectrometer, given a 
sample, is a mass spectrum, which is simply represented by a graph with m/z on the x-axis and 
the relative abundance of ions with m/z values on the y-axis. Another way to represent a mass 
spectrum is as a list of peaks, each of which is defined by its m/z and its relative abundance. 
An illustration of a mass spectrum is shown in Figure 1. A mass spectrometer consists of at 
least three components: ionization source, mass analyzer and a detector (De Hoffmann et al., 
1997). The ionization source is the component by which input molecules become charged ions. 
Two common forms of ionization are Electron Ionization (EI) and Electrospray Ionization 
(ESI). The mass analyzer is the component to physically separate ions by their m/z. The 
common types are quadrupole, time-of-flight and orbitrap devices. Once the ions have been 
separated, the detector is responsible for detecting and quantifying these ions. The mass 

mailto:hai@k.u-tokyo.ac.jp
mailto:canhhao@kuicr.kyoto-u.ac.jp
mailto:mami@kuicr.kyoto-u.ac.jp


spectrum contains peaks corresponding to the masses and relative abundance of the charged 
fragments and the precursor ions as well. Since these values provide masses of some of 
substructures, they can be used to elucidate the structure of the measured molecule. In practice, 
MS/MS, also known as tandem MS, is often preferred, and has been versatile and powerful for 
many applications. It consists of two mass analyzers coupled with Collision Induced 
Dissociation (CID). Ions are separated in the first mass analyzer (MS1), then enter a collision 
or fragmentation cell and fragmented, leading to generation of ions, called product ions, which 
are separated in the second mass analyzer (MS2) and detected, eventually resulting in MS/MS 
or tandem mass spectra. Multi-stage MS allows to further fragment the product ions, providing 
ways to link these product ions to their precursor ions, thus, offering more information about 
the fragmentation process (Nguyen et al., 2019). 
 

 
Figure 1. Example MS from Human Metabolome Database (Wishart, 2007) for 1-
Methylhistidine (HMBD00001), with its corresponding chemical structure (top-left) and list of 
peaks (top-right) 
 
 
Metabolite identification from (tandem) mass spectra is an important step for further chem-
biological interpretation of metabolomics samples. In practice, this process is presumed to be 
challenging and also time-consuming task in metabolomics experiments. Different from 
peptides and proteins where the fragmentation is generally simple due to the repetition of their 
structures, that of metabolites under varying fragmentation energies is a more complicated 
stochastic process. Thus, the interpretation of mass spectra is cumbersome and require expert 
knowledge. MS based metabolite identification can be regarded as a retrieval task, that is, given 
a query spectrum of an unknown molecule, the goal is to find molecules (usually from a given 
reference database), which have similar spectra. It is straight-forward to directly compare the 
query against reference spectra in the reference spectra database (also known as spectra library). 
The candidate molecules from the spectra library are ranked based on the similarities between 
their reference spectra and query, and the best matched molecules are returned. However, the 
spectra libraries often contain spectra of a small fraction of molecules in reality, leading to 
unreliable results, if the molecule corresponding to the query spectrum is not in the spectra 



libraries. Therefore, in order to mitigate the insufficiency issue of such database, alternative 
computational approaches are devised (Nguyen et al., 2019). 
 
A number of computational methods and software tools have been developed to deal with the 
task of metabolite identification. We systematically organize them into four groups based on 
their methodologies in (Nguyen et al., 2019): (1) mass spectra library; (2) in silico 
fragmentation; (3) fragmentation trees and (4) machine learning, see Figure 2 for the details. 
We briefly describe the approaches as follows: (1) with a given query spectrum of an unknown 
molecule, mass spectra library is to compare the query against spectra in the library. (2) In 
silico fragmentation based methods attempt to generate simulated spectra from chemical 
structures of reference compounds in the structural databases, which leverage a huge number 
of chemicals structures of known molecules, and then compare the query against the simulated 
ones. (3) Fragmentation trees based approaches take advantages of relations of peaks in spectra, 
represented by fragmentation trees, which can be directly predicted from spectra by some 
combinatorial optimizations and used to cluster molecules into categories. (4) Machine 
learning (ML) approaches are to learn and predict intermediate representations between spectra 
and molecular structures and then use such representations for matching and retrieval. In this 
article, we focus on the above (2) and (4), which are in silico fragmentation and ML, 
respectively, for metabolite identification. 
 
 

 
 

Figure 2. The overview of approaches for metabolite identification. The figure is adapted 
from (Nguyen et al., 2019). 

 
 
 
2. In silico fragmentation tools to aid metabolite identification 
 



Due to the lack of MS/MS data of compounds in mass spectra libraries, the capability of 
identifying unknown molecules through search in mass spectra libraries is limited as mentioned 
in the previous subsection. Therefore, the advent of software tools for predicting fragments and 
their abundance from the molecular structures of compounds can fill the gap between spectra 
and structural databases. This strategy has been successfully applied in protein studies to 
construct database containing data on trypsin-associated cleavage and MS/MS of peptides, 
such as MASCOT (Perkins et al., 1999) and SEQUEST (Eng et al., 1994). However, in 
comparison with the prediction of fragmentation mechanisms for peptides and protein, which 
are simple due to the repetition in their structures, the fragmentation of product ions of 
metabolites in the tandem mass spectrometer is a much more complicated stochastic process, 
and depends on a variety of factors, including: the detailed three-dimensional structure of 
metabolites, the amount of energy to break several certain bonds to obtain the product ion, the 
probabilities of different dissociation reactions, which can be considered as a function of the 
applied collision energy and the pressure in the collision chamber and so on. Nowadays, many 
in silico fragmentation software tools have been developed and are widely used to identify 
MS/MS when the sizes of spectra libraries are limited. In this section, we survey different 
computational tools and methods using various algorithms for in silico fragmentation. The 
algorithms differ in the way they deploy different strategies to generate in silico fragments 
from the molecular structure/graph of the candidate compounds. We divide them into three 
subgroups (Nguyen et al., 2019): rule-, combinatorial- and ML- based fragmentation tools (see 
Figure 2). 

2.1. Rule based methods 

The rule-based in silico fragmentation tools are used to predict/generate theoretical spectra 
from molecular structures/graphs of compounds in the database using a set of chemical rules. 
This set of rules is a collection of general and heuristic rules of fragmentation processes 
extracted from data sets of elucidated MS/MS in literature. The predicted spectra of candidate 
compounds from the database will be compared with the query (Hill et al., 2008; Kumari et al., 
2011).  

A typical commercial software tool, Mass Frontier (Mistrik, 2004), developed by HighChem, 
can generate fragments according to known general rules, or to specific rule libraries. The 
libraries can be defined by users or provided by HighChem or combination of both. ACD/MS 
Fragmenter (referred at: http://www.acdlabs.com), another commercial tool, also uses a 
comparable set of chemical rules to generate fragments. MOLGEN-MSF (Schymanski et al., 
2009), developed by the University of Bayreuth, uses general fragmentation rules and also is 
able to accept additional rules as an optional input file when calculating fragments. 
Additionally, non-commercial rule based software tools, like MASSIS (Chen et al., 2003) and 
MASSIMO (Gasteiger et al., 1992), use different ways. Particularly, structure-specific 
cleavage rules contained in MASSIS are divided into 26 different molecular classes. An input 
molecule is classified into one or some of these classes and the corresponding fragmentation 
rules are applied to obtain a set of fragments. MSSIMO uses a small set of general 
fragmentation reactions parameterized with reaction probabilities drawn from a collection of 
determined fragmentations.  

In practice, these rule-based methods are not widely used due to several drawbacks: 1) the 
fragmentation process can significantly vary under small changes in structure of a molecule. 
Thus, a fragmentation rule collected from a known fragmentation of a molecule may not be 
properly applied to another, despite that they have highly similar molecular structures; 2) it has 



been experimentally demonstrated that a single set of general rules is insufficient to identify 
some observed fragments with a reasonably high accuracy. Even though specific rules are 
constantly added to rule databases, it is not necessary to apply them to a new undiscovered 
compound in many cases, and 3) the product ions of generated spectra have the same intensities 
because the bond cleavage rates are ignored. In reality, different molecules can generate the 
same product ions and the relative intensities can play an important role in discriminating these 
molecules.  

2.2. Combinatorial based methods 

Different from the above software tools, which are mainly based on fragmentation rule 
databases, combinatorial-based methods are to generate a graph of substructures from the 
chemical structure of a candidate compound in the database (see Figure 3), then find the most 
likely subset of the substructures or so-called fragmentation trees that best matches the query 
by solving optimization problems. An advantage offered by this approach is in situations where 
MS/MS of compounds with less known fragmentation rules are queried. Some typical methods 
are reviewed in this subsection. In general, methods belonging to this subsection differ in the 
way of how they find the fragmentation tree best matches to the query spectra to produce 
similarity scores.  

FiD (Fragment iDentificator, Heinonen et al., 2008) performs a search over all possible 
fragmentation paths and outputs a ranked list of alternative structures. In particular, given a 
graph structure of a precursor ion and its MS/MS, FiD first generates all possible connected 
subgraphs by a depth-first graph traversal, then computing the masses of product ions 
corresponding to the generated subgraphs to match with observed peak masses in the spectrum. 
After that, a list of candidate fragments is obtained, then each of which is assigned a cost, 
namely, the standard bond energy required to cleave bonds from the precursor ion. Obviously, 
the candidate fragments with smaller costs are preferred. Finally, a combinatorial optimization 
method, such as mix integer linear programming (MILP) is used to assign candidate fragments 
to measured peaks with minimal cost. Their experimental results showed that the product ions 
predicted by FiD are more consistent with the manual identification produced by domain 
experts than those of the rule-based fragment identification tools mentioned in the previous 
section. However, the main drawback of FiD is the computational expensiveness because of 
the following reasons: 1) rapid increase in the number of connected subgraphs; 2) the 
computational complexity of MILP to explain peaks with most likely candidate fragments. 
Thus, FiD can be applied to only small sized molecules.  



 

Figure 3. An illustration of generating all connected subgraphs of the precursor graph. The 
figure is adapted from (Nguyen et al., 2019). 

Another combinatorial based method is MetFrag (Wolf et al., 2010), which uses heuristic 
strategies, such as a breadth-first search algorithm with a maximum tree depth parameter or 
removing duplicated subgraphs, to narrow down the search space of candidate fragments, 
overcoming the computational issue of FiD, which employs depth-first graph traversal to 
generate subgraphs. Hence, it is much faster than FiD and can be applied to a full structure 
database to search for the compound that explains best the spectrum. MetFrag uses bond 
dissociation energies for the cost of cleaving bonds. The candidate fragments are then used to 
rank the candidate molecules in the database without finding the most likely fragments 
corresponding to the spectrum. In a similar fashion, Ridder et al., (2012) introduced MAGMA, 
an extended version to multistage spectral trees MSn. Different from MetFrag, when a 
substructure is considered to explain an MS2 product ion, which is the precursor ion of MS3, in 
addition to its substructure score, the resulting MS3 is also taken into account. This spectrum is 
temporarily annotated with only sub- set of the substructure, similarly to MS2 level 
fragmentation spectrum. Then, the substructure scores obtained at the third level are added to 
the sore at the second level, and this total core is for ranking substructure candidates for MS/MS 
peak and its fragmentation spectrum. This procedure is applied recursively to handle MSn with 
any level.  

Gerlich et al., (2013) presented a system, namely MetFusion, to combine the results from 
MassBank (search in spectra database) and MetFrag (in silico fragmentation). The combination 
aims at taking advantage of complementary approaches to improve the compound 
identification, that is, the vast coverage of the structural databases queried by MetFrag and 
reliable matching results achieved by search in spectra libraries if similar spectra are available. 
The experimental results showed that a combination of an in silico fragmentation based method 
with curated reference measurements can improve compound identification and achieve the 
best of two approaches. More details about this method and results can be found in (Gerlich et 
al., 2013). 



A drawback of this approach is that the above methods are mainly based on a bond 
disconnection based approach to generate fragments from molecules, e.g. standard bond energy 
and bond dissociation energy used by FiD and MetFrag, respectively. However, these are solely 
approximate estimates and bond dissociation energies are much more complicated in reality. 
These limitations have been tackled with some methods based on learning models, which are 
presented the following subsections. 

2.3. Machine learning based methods 
Besides the above approaches to generate in silico fragmentation from graph structure of 
compounds, there are a few work proposed to use machine learning models to learn the 
fragmentation process from the training data and have shown great promise in generating in 
silico spectra for the structural identification purpose. To avoid the confusion with the content 
in section 3, we clarify here that machine learning methods are used to learn and predict the 
presence of certain fragments (e.g. whether a bond between two atoms is broken or not) to 
generate in silico spectra from molecular structures. In a different sense, methods in section 3 
are to learn and perform classification or clustering from spectra (see Figure 4 for illustration).  

 

Figure 4. An illustration to clarify the difference between ML-based methods for learning and 
predicting in silico spectra from 2D structures of compounds (a) and ML based methods for 
learning and predicting substructures or chemical properties from MS/MS (b). The figure is 

adapted from (Nguyen et al., 2019). 

The previously mentioned methods to generate in silico fragments from molecular structure of 
compounds are based on either chemical reaction equations or approximate bond strength. 
None of them have shown sufficient accuracy in generating in silico spectra for enable 
automated and correct identification of metabolites. To overcome the difficulty, Kangas et al., 
(2012) presented a method, named ISIS, using machine learning to generate in silico MS/MS 
spectra for lipids solely from chemical structure of compounds without fragmentation rules and 
no need to define bond dissociation energy. The main idea is that, for every bond in the 
molecular structure, one artificial neural network (ANN) is designed to predict bond cleavage 
energy from which bond cleavage rates can be calculated to determine the relative intensities; 



another is to predict which side of the bond is charged and captured by the detector in the mass 
spectrometer. These ANNs are iterated over all bonds in a molecule to find bond cleavage 
energies and charged ions. For the leaning process, the weights of the former ANN are trained 
by genetic algorithm (GA) to better predict the bond cleavage energies that produce ions and 
their corresponding intensities in the in silico spectra. The objective of GA is to have the in 
silico spectra match those in the experimental spectra using a Pearson R2 correlation. The latter 
ANN is trained by backpropagation algorithm in which the labels can be found by comparing 
the fragment masses to the experimental spectra.  

Allen et al., (2015) proposed a probabilistic generative model, namely Competitive 
fragmentation mode, for the fragmentation process. They assume that each peak in the 
spectrum is generated by a fixed length sequence of random fragment states. It consists of two 
models: transition model to define the probability of each fragment leads to another at one step 
in the process and an observation model to map the final intermediate fragment state to the give 
peak. The parameter estimation for the transition and observation models is performed by an 
Expectation Maximization-like algorithm. The trained CFM can be used to predict peaks in the 
spectrum and for metabolite identification. The results showed that, CFM obtained 
significantly better ranking for the correct candidate than bot of MetFrag and FingerID 
(Heinonen et al., 2012). However, like above methods, this method is limited to small 
molecules due to the combinatorial enumeration of fragmentation possibilities. It is also worthy 
noting that, while ISIS is based on supervised machine learning, CFM is based on unsupervised 
learning to predict spectra. 

 

Figure 5. An illustration to clarify the difference between supervised and unsupervised learning 
for metabolite identification: (a) substructure prediction using supervised learning to map a 
given MS/MS to an intermediate representation (e.g. fingerprints), which is subsequently used 
to retrieve candidate metabolites in the database. (b) substructure annotation using 
unsupervised learning to extract biochemically relevant substructures with certain confidence 
from the given spectrum. Then, the similarity between the MS/MS and a chemical structure of 
a metabolite is estimated according to their common substructures. Note that the output of 
supervised learning (e.g. fingerprints) may indicate the presence/absence of all ‘predefined’ 
substructures whereas that of unsupervised learning may be a list of substructures frequently 
occurring in the database. The figure is adapted from (Nguyen et al., 2019). 



 
3. Machine learning for metabolite identification 
 
A number of computational methods or tools have been introduced to deal with the task of 
metabolic identification. Remarkably, ML is the key to recent development of the task. Besides 
identifying molecular compounds by searching in spectra and structural database as presented 
in the previous sections, there are a number methods proposed to predict predefined 
substructures or more generally chemical properties such as (Heinonen et al., 2012; Dührkop 
et al., 2015; Brouard et al., 2016; Nguyen et al., 2018; Nguyen et al., 2019), to name a few. 
Another direction is to automatically discover substructures directly from a set of MS/MS, 
from which we can identify the candidate compounds from the database based on their 
substructures, such as (Mrzic et al., 2017; Van Der Hooft et al., 2016). This section is devoted 
to covering ML frameworks for these purposes, which can be divided into two groups: 
supervised learning for predicting substructures and unsupervised learning for annotating 
substructures. Furthermore, the difference between the two subgroups can be intuitively 
illustrated as in Figure 5. 
 

 
Figure 6: A general scheme to identify unknown metabolites based on molecular fingerprint 
vectors. There are two main stages: 1) fingerprint prediction: learning a mapping from a 
molecule to the corresponding binary molecular fingerprint vector by classification methods, 
given a set of MS/MS spectra and fingerprints; 2) candidate retrieval: using the predicted 
fingerprints to retrieve candidate molecules from the databases of known metabolites. The 
figure is adapted from (Nguyen et al., 2019). 
 
 
3.1. Supervised learning for predicting substructures. 
 
The task of supervised learning for metabolite identification is that, given a set of MS/MS and 
corresponding molecular structures of known molecules, supervised learning methods are to 
learn a mapping function from a MS/MS to a molecular structure of molecule. However, this 



task is technically challenging because both input and output spaces (spectra and molecular 
structures, respectively) are highly structured objects. Instead of directly learning a mapping 
from spectra to molecules, the approach of learning through intermediate representations 
between spectra and molecules has been used in many systems. The intermediate 
representations can be either manually designed fingerprints of molecules or representations 
directly learned from the data. We go into details of such kinds of intermediate representations 
in the following subsections. 
 
3.1.1. Fingerprint based methods 

 
A molecular fingerprint is a feature vector, which is used to encode the structure of a molecule. 
In general, the values of this vector are often binary, indicating the presence or absence of a 
certain substructure or chemical property. The methods based on fingerprints are often carried 
out in two steps as illustrated in Figure 6. The first step is to predict a fingerprint with 
supervised ML, which is regarded as a collection of binary classification task, each corresponds 
to a bit in the fingerprint. The second step then uses the predicted fingerprint to query the 
database with techniques in ranking/information retrieval. 
 
Kernel methods have been shown effective in dealing with the first step of predicting 
fingerprints from MS/MS. A notable method is FingerID (Heinonen et al., 2012), which used 
support vector machine (SVM, Burges et al., 1998) with kernels defined on MS/MS to predict 
fingerprints. The kernels for pairs of MS/MS were defined, including integral mass kernel and 
probability product kernel (PPK, Jebara et al., 2004). It is worth noting that the above kernels 
are mainly based on the information from individual peaks present in the spectra while ignoring 
their interactions. In fact, such information is proven to be useful in predicting fingerprints. 
 
CSI:FingerID (Dührkop et al., 2015), an extended version of FingerID, jointly takes MS/MS 
and corresponding fragmentation trees (FTs, Böcker et al., 2008) as input to improve the 
predictive performance. FTs play an important role in interpreting the structure of molecule 
since it is usually assumed that only MS/MS is insufficient to describe the fragmentation 
process. It is noteworthy that FTs are constructed from spectra and can be used to provide prior 
knowledge about the structure of compounds e.g. dependencies between peaks in the spectra, 
which was ignored in the FingerID. In order to incorporate MS/MS and FTs, kernels for FTs 
have to be defined, which range from simple ones for vertices, including node binary (NB), 
node intensity (NI); for edges, including loss binary (LB), loss count (LC), loss intensity (LI) 
to complicated ones like common path counting (CPC), common subtree counting (CSC) and 
so on (see more details in Dührkop et al., 2015). Subsequently, multiple kernel learning (MKL, 
Gönen et al., 2011) is used to combine these kernels with ones defined for MS/MS using one 
of the following methods: centered alignment (ALIGNF), quadratic combination and 𝑙𝑙𝑝𝑝-norm 
regularized combination. The combined kernel is then used in learning the final model for 
fingerprint prediction. CSI:FingerID presented improved scores against other benchmark tools 
but has the current limitation of processing MS/MS one at a time because of the need of 
computationally heavy conversion of spectra into FTs. For a similar purpose of incorporating 
peak dependencies into the learning for fingerprint prediction, Nguyen et al., (2018) designed 
a kernel for peak interactions and combine this kernel with other kernels defined for individual 
peaks through MKL. The combined kernels were then combined with SVM to predict 
fingerprints. The experimental results showed that the micro-average accuracy and F1 score of 
the combined kernels were higher than PPK, while being comparable with the state-of-the-art 
kernels for CSI:FingerID. More importantly, this kernel achieved faster computation than 
CSI:FingerID because it does not use FTs in the training and testing phases. 



 
Input output kernel regression (IOKR, Brouard et al., 2016) is another kernel based method 
and has been shown to outperform the previous methods, in terms of both predictive 
performance and computational speed. It learns a function mapping from MS/MS to molecular 
fingerprints (or molecular structures directly). For this purpose, IOKR defines two kernels to 
encode similarities in the input space (e.g. MS/MS) and output space (fingerprint or molecular 
structures). The information about input and output is implicitly encoded in these two kernels. 
Then, the advantage of IOKR over previous kernel methods stem from the two following 
points: (i) unlike previous kernel based methods, IOKR can handle the structured output space 
(e.g. feature interactions in molecular fingerprints) by the kernel defined for the output, which 
improves the predictive performance; (ii) IOKR can simultaneously predict fingerprints rather 
than considering fingerprint prediction as a set of separate tasks, leading to an efficient 
computation in the prediction stage. In fact, one can take structures of molecules into account 
by using graph kernels such as path, shortest-path or graphlet kernels. It is shown that kernels 
defined on molecular fingerprints obtained the best performance (Brouard et al., 2016). 
 
Kernel-based methods are difficult to deal with sparse data and lack of interpretation. That is, 
each bit in a fingerprint represents a predetermined chemical property or substructure and its 
presence is often decided by a few number of peaks in MS/MS. Also the number of training 
data is small, while sparse learning models have not been considered yet. In addition, sparse 
learning models are advantageous in that their results are easily interpretable. Nguyen et al., 
(2018) proposed a sparse, interpretable model, called SIMPLE, to incorporate peak interactions 
explicitly and have a high interpretability. The model is as follows: given a MS/MS, 
represented by a feature 𝒙𝒙 = [𝒙𝒙𝟏𝟏,𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒅𝒅], for one particular bit in the fingerprint, they 
formulate the model for individual peaks and interactions as follows: 

𝑓𝑓(𝑥𝑥;𝑤𝑤,𝑊𝑊) = 𝑏𝑏 + �𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖
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= 𝑏𝑏 + 𝑤𝑤𝑇𝑇 + 𝑥𝑥𝑇𝑇𝑊𝑊𝑥𝑥 
where 𝑏𝑏 ∈ ℝ, 𝑤𝑤 ∈ ℝ𝑑𝑑  and 𝑊𝑊 ∈ ℝ𝑑𝑑×𝑑𝑑. The prediction function consists of a bias 𝑏𝑏 and two 
terms: main effect term parameterized by the weight vector 𝑤𝑤  and interaction term 
parameterized by the weight matrix 𝑊𝑊. Their roles are different, as illustrated in Figure 7. 
While the former captures the information about the individual peaks, the latter captures the 
information about peak interactions. For the purpose of interpreting the weights learned by the 
model, they impose 𝑙𝑙1- norm (Tibshirani et al., 1996) and nuclear norm (Srebo et al., 2005) 
regularizations on main effect and interaction terms to induce sparsity in 𝑤𝑤 and lowrankness 
in 𝑊𝑊 after training. The training stage is performed by minimizing a convex objective function, 
guaranteeing that the obtained solution is globally optimal. The incorporation of peak 
interactions in the prediction model 𝑓𝑓(𝑥𝑥;𝑤𝑤,𝑊𝑊)  were found to significantly improve the 
prediction accuracy of not using interaction, resulting in comparable performance with the 
current top methods. Furthermore, SIMPLE could show the interpretability of results (see 
Nguyen et al., 2018 for more details).  
 



 
 
Figure 7: Illustration of the predictive model of SIMPLE: the weight vector w of the main 
effect term captures information about the individual peaks, while interaction weight matrix W 
of the interaction term captures information about the peak interactions. 
 
3.1.2. Learning intermediate representations for molecules from spectra 
 
Using molecular fingerprints as representations for molecules have been shown effective in 
metabolite identification task. However, they have a couple of drawbacks: (i) molecular 
fingerprints should be large in size to encode all possible substructures and chemical properties 
related to molecules, causing slow prediction in the candidate retrieval step; (ii) molecular 
fingerprints are not necessarily specific to any task nor data, and therefore redundant in the 
sense that they might contain much information irrelevant to the task and data, resulting in 
limited predictive performance.  
 

 
Figure 8: Schematic illustration of ADAPTIVE and OEL for learning representations for 
molecules from the given set of spectra and molecular structures. (a) ADAPTIVE has two 
functions to learn: (1) function 𝜙𝜙� (parameterized by a graph neural network) mapping from 
molecular structures to representations; (2) function ℎ� regressing representations from given 
input spectra. (b) OEL jointly learns two functions: (1) 𝐺𝐺 (and 𝐺𝐺∗) mapping from molecular 



structures in the Hilbert space to representations; (2) function ℎ�  regressing representations 
given input spectra.  
 
 
Motivated by these drawbacks of molecular fingerprints, Nguyen et al., (2019) proposed 
ADAPTIVE, which allows to generate representations for molecules using their molecular 
structures. The representations are learned from pairs of spectra and corresponding molecular 
structures, and thus specific to both data and task of metabolite identification. In a technical 
detail, ADAPTIVE has two subtasks in the learning step: (1) learning a mapping 𝜙𝜙�  from 
molecular structure space 𝒴𝒴 to representation space ℱ𝑑𝑑 and (2) learning another mapping ℎ� 
from spectra space 𝒳𝒳 to the representations obtained from step (1), as illustrated in Figure 8a. 
In subtask (1), the mapping function 𝜙𝜙�  is parameterized by a model, named a message passing 
neural network (MPNN, Gilmer et al., 2017) for mapping a molecular structure of molecule to 
a representation vector. MPNN is a framework, which can take graphs of arbitrary sizes and 
structures as inputs, to generate their representations at different levels (i.e. nodes, subgraphs 
and the whole graph) with regard to a number of learning tasks including supervised, 
unsupervised and semi-supervised learning (see Gilmer et al., 2017; Nguyen et al., 2017; 
Duvenaud et al., 2015 for more details). A key advantage is that MPNN allows to learn 
representations specific to the given task from the given data. The parameters of the MPNN 
are trained so that the correlation between the spectra and vectors mapped from molecular 
structures is maximized. The correlation is estimated by Hilbert-Schmidt Independence 
Criterion (HSIC, Gretton et al., 2005). For subtask (2), IOKR is used to learn the mapping ℎ� 
from spectra to representations. The empirical validation of ADAPTIVE with a benchmark 
data set showed the advantages of ADAPTIVE over existing methods, including the state-of-
the-art IOKR, both in predictive performance and computation time for prediction step. 
 
In a somewhat similar fashion, Output Embedding Learning (OEL, Brogat-Motte et al., 2020) 
is a kernel based framework, which jointly learns a finite embedding (representation) of the 
outputs (chemical structures of molecules) and the regression of the representations given 
inputs (spectra), using the prior information about the structure of outputs and unlabeled output 
data. Formally, given a collection of pairs of spectra and structures {(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛} and 
a collection of unlabeled molecular structures �𝑦𝑦𝑖𝑖 , 𝑗𝑗 = 1, … ,𝑚𝑚�, the optimization problem is as 
follows: 
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where 𝐺𝐺:𝒴𝒴 → ℋ𝑦𝑦  is a function that maps structured objects (molecular structures) into a 
Hilbert space ℋ𝑦𝑦; 𝐺𝐺 is an operator from the Hilbert space ℋ𝑦𝑦 to the space of representations 
ℱ𝑑𝑑 and orthogonal (𝐺𝐺𝐺𝐺∗ = 𝐼𝐼𝐼𝐼𝑑𝑑); 𝛾𝛾 is a hyperparameter controlling the tradeoff between two 
terms in the objective function. It is noted that the first term corresponds to the regression of 
the embedding of chemical structures given spectra. The second term corresponds to learning 
a one-layer linear auto-encoder (parameterized by 𝐺𝐺∗𝐺𝐺) whose inputs and outputs belong to 
the Hilbert space ℋ𝑦𝑦. However, the hidden layer is trained in the supervised manner by having 
a constraint with the regression part. The learning scheme of OEL is illustrated in Figure 8b. 
 
While both of the methods above have the same purpose of learning the representations for 
molecular structures of molecules through the available data, the key difference lies on the 
ways they learn representations. While the former relies on the graph neural network to 



parameterize the model to generate representations for chemical structures, the latter adopts 
kernels to encode the information about structures in an implicit way. Both methods have been 
shown to outperform the fingerprint-based methods for the metabolite identification tasks in 
terms of both the predictive performance and speed. The improvements suggest that learning 
representations for molecular structures with the available information of spectra is beneficial 
for the metabolite identification task in overcoming the limitations of manually-designed 
feature vectors for molecules such as molecular fingerprints. However, a drawback of 
ADAPTIVE and OEL would be interpretability, because structural information of molecular 
structures is implicitly encoded by complicated nonlinear neural networks and kernels in 
ADAPTIVE and OEL, respectively, and cannot be made explicit easily. In metabolite 
identification, it would be desirable to connect the set of peaks to the corresponding 
substructures or chemical properties of molecules (see SIMPLE, Nguyen et al., 2018). 
Developing a model with the advantages of interpretability and high predictive performance 
would be interesting future work. 
 
3. 2. Unsupervised Learning for Substructure Annotation 
 
Unlike supervised learning methods which aim to learn the mapping function from input to 
output, the purpose of unsupervised learning methods is to learn the underlying structures from 
a set of inputs without outputs specified. In the context of MS/MS of metabolites, the inputs 
are only a collection of MS/MS. Metabolites may have common substructures, yielding similar 
product ions in their MS/MS. Many substructures among them contain information pertaining 
to the biochemical processes present. Therefore, extraction of such biochemically relevant 
substructures allows metabolites to be grouped based on their shared substructures regardless 
of classical spectral similarity. Also, this can be used to improve the accuracy of metabolite 
identification (Nguyen et al., 2019). 
 
One of the typical software tools for chemical substructure exploration is MS2Analyzer (Ma 
et al., 2014), which is a library-independent tool. It allows to exploit the potential structure 
information contained in MS/MS. It was developed to elucidate substructures of small 
molecules from accurate MS/MS. The main function of this tool is to search mass spectral 
features including neutral loss, precursor, fragment ions mass and mass differences in a large 
number of spectra. Through the combination of searching results and substructures/compound 
class relationship knowledge, compounds can be identified. However, MS2Analyzer can find 
all molecules sharing a specific set of mass spectral features provided by users, and sample-
specific features are likely to be ignored. Another technique, namely molecular networking 
(Wang et al., 2016; Watrous et al., 2012; Yang et al., 2013), groups parent ions i.e. MS1 peaks, 
based on their MS2 spectral similarity, e.g. cosine score, such that metabolites which are 
structurally annotated in a cluster can be used to annotate their neighbors. However, a drawback 
of molecular networks is that only MS1 peaks with high similarity are grouped and spectral 
features specifying the clusters have to be manually extracted. Thus, it may fail to cluster 
molecules sharing small substructures with low MS2 spectral similarity. 
 

 



Figure 9: Simplified graphical representation of LDA. The figure is adapted from (Nguyen et 
al., 2019). 

 
 
MS2LDA, presented in (Van Der Hooft et al., 2016), is a software tool offering benefits of 
both above methods, while overcoming their disadvantages. It can automatically extract 
relevant substructures in molecules based on their co-occurrence of mass fragments and neutral 
losses, and cluster the molecules accordingly. Based on the assumption that each observed 
MS/MS is composed of one or more substructures, MS2LDA adopts Latent Dirichlet 
Allocation (LDA, Blei et al., 2003), initially developed for text mining for extracting such 
substructures. LDA is a Bayesian version of probabilistic latent semantic analysis. In standard 
setting for text mining, each of 𝐷𝐷 documents is modeled as a discrete distribution over 𝑇𝑇 latent 
topics, each of which corresponds to a discrete distribution over a vocabulary of 𝑉𝑉 words. For 
a document 𝐼𝐼 , the distribution over topics, denoted by 𝜃𝜃𝑑𝑑 , is drawn from a Dirichlet 
distribution 𝐷𝐷𝑖𝑖𝐷𝐷(𝛼𝛼), and for each topic 𝑡𝑡, the distribution over words, denoted by 𝜙𝜙𝑡𝑡, is drawn 
from a Dirichlet distribution 𝐷𝐷𝑖𝑖𝐷𝐷(𝛽𝛽). A generative process in LDA is defined on document 𝐼𝐼 
as follows (note that the index 𝐼𝐼 for document 𝐼𝐼 is omitted for simplification): 

i) Choose 𝜃𝜃~𝐷𝐷𝑖𝑖𝐷𝐷(𝛼𝛼). 
ii) For each word 𝑤𝑤𝑖𝑖 in document 𝐼𝐼: 

a. Choose a topic 𝑧𝑧𝑖𝑖  ~𝑀𝑀𝑀𝑀𝑙𝑙𝑡𝑡𝑖𝑖𝑛𝑛𝑀𝑀𝑚𝑚𝑖𝑖𝑀𝑀𝑙𝑙(𝜃𝜃). 
b. Choose a word 𝑤𝑤𝑖𝑖 ~𝑀𝑀𝑀𝑀𝑙𝑙𝑡𝑡𝑖𝑖𝑛𝑛𝑀𝑀𝑚𝑚𝑖𝑖𝑀𝑀𝑙𝑙(𝜙𝜙𝑧𝑧𝑖𝑖). 

Where latent variable 𝑧𝑧𝑖𝑖   is a topic assignment for 𝑖𝑖𝑡𝑡ℎ  word 𝑤𝑤𝑖𝑖  in the document 𝐼𝐼 . The 
parameters to be learned include 𝛼𝛼  and 𝛽𝛽 . The graphical representation of this process is 
illustrated in Figure 9. 
 

 
 
Figure 10: The correspondence between LDA for text and MS2LDA for mass spectra: LDA 
finds topics based on the co-occurrence of words while MS2LDA finds substructures based 



on the co-occurrence of mass fragments and neutral losses. This figure is adapted from (Van 
Der Hooft et al., 2016). 
 
 
The correspondence between text documents and fragmentation spectra can be obviously 
observed from machine learning perspective. LDA decomposes a document into topics based 
on the co-occurring words, while MS2LDA decomposes MS/MS into patterns of co-occurring 
fragments and losses. Learning LDA (MS2LDA) is to extract these topics (patterns or so-called 
(Mass2) Motifs) as illustrated in Figure 10. For reference, either collapsed Gibb sampling 
(Griffiths et al., 2004) or Variational Bayes (Blei et al., 2003) can be used to assign topics 
(Mass2Motifs) to words (peaks). This step applied to MS/MS is called substructure annotation. 
By MS2LDA, each metabolite can be explained by one or more Mass2Motifs by which we can 
partly identify unknown metabolites via their spectra. Also, it can be used to quickly classify 
metabolites into functional classes without knowing the complete structures. 
 
Table 1: Comparison of main representative methods for supervised and unsupervised learning 
approaches. The performance of supervised methods is evaluated by the accuracy of the 
returned list of candidates, whereas that of unsupervised methods is evaluated by their 
capability of substructure annotation. 

Approaches Methods Info. Type for 
learning 

Performance Training 
cost 

Predictio
n cost 

Supervised FingerID (Heinonen et al., 2012) spectra high low low 
CSI:FingerID (Dührkop et al., 2015) spectra+trees high high high 
SIMPLE (Nguyen et al., 2018) spectra high low low 
IOKR (Brouard et al., 2016) spectra+trees high medium medium 
OEL (Brogat-Motte et al., 2020) spectra+trees high medium medium 
ADAPTIVE (Nguyen et al., 2019) spectra+trees high high low 

Unsupervised MS2Analysis (Ma et al., 2014) user-specific features low N/A N/A 
MolecularNetwork (Wang et al., 2016) spectra Low N/A N/A 
MS2LDA (Van Der Hooft et al., 2016) 
 

spectra High 
(expert-driven) 

N/A N/A 

MESSAR (Mrzic et al., 2017) spectra+molecular 
graph 

High 
(automation) 

N/A N/A 

 
 
A drawback of the aforementioned MS2LDA is that, the extracted motifs still need to be 
structurally annotated based on expert knowledge, which is a complex and time-consuming 
process. To overcome this issue, Mrzic et al., (2017) introduced a method, named MESSAR, 
for automated substructure recommendation from mass spectra, motivated by frequent set 
mining (Goethals et al., 2005). Similar to MS2LDA, this method is also capable of extracting 
recurring patterns from a given set of spectra. Briefly, molecular substructures are first 
generated from molecular structures/graphs of metabolites in a given database, which consists 
of both MS/MS and corresponding molecular structures of known metabolites. Then, they are 
associated with fragment ions (i.e. peaks) and mass differences between peaks to construct a 
single data set in the transactional format. Subsequently, frequent set mining techniques are 
applied to this set to extract rules of the following format: peaks 𝑝𝑝 (or mass difference 𝑚𝑚𝐼𝐼) can 
be associated with substructure 𝑠𝑠 with support 𝑓𝑓 and confidence 𝑐𝑐. Such rules can be used to 
annotate substructures with calculated scores of support and confidence for mass spectra, in 
which the given peaks and mass differences are observed. Moreover, the recommended 
substructures can also be used for ranking candidate metabolites retrieved from a database by 
the similarity between recommended substructures and candidate molecular structures. 



Metabolites with a high number of substructures with high confidence are assigned higher 
ranks. 
 
It is noteworthy that the aim of the aforementioned methods is similar, i.e. substructure 
annotation. While MS2LDA needs a set of unlabeled MS/MS for learning without prior 
information about the molecular structures, MESSAR utilizes both experimental spectra and 
the corresponding structures, thus, providing an automated substructure recommendation as 
opposed to expert-driven substructure annotation by MS2LDA. To end this section, we give a 
brief comparison of methods in both supervised and unsupervised approaches for substructure 
prediction and substructure annotation, respectively, in Table 1. 
 
 
4. Conclusion 
 
Metabolite identification is an essential part in metabolomics to enlarge the knowledge of 
biological systems. However, this remains a challenging task with a huge number of potentially 
interesting but unknown metabolites in reality. The aim of this article is to review 
computational techniques and software tools to deal with the task of metabolite identification 
with the focus on machine learning based methods used in in silico fragmentation and machine 
learning approaches, which are the key to recent progress in metabolite identification.  
 
It is suggested in this article that statistical machine learning-based methods should be a 
reasonable choice for the task of metabolite identification. Especially, when the amount of 
spectra and molecular structure data is increasing over time, the ability of machine learning 
algorithms to learn and predict relationships inherent in the data will be more enhanced. For 
example, IOKR, ADAPTIVE and OEL are currently best ML-based tools/methods for learning 
useful representations for molecules and achieving the best performance in the metabolite 
identification task. Additionally, we also emphasize that the combination of different 
approaches should be also taken into account, by which we can take advantages of them for 
significant improvement. For example, IOKR and CSI:FingerID are using machine 
learning and fragmentation trees to incorporate structure information from trees and ML for 
prediction. Another is MetFusion, mentioned in subsection 2.2, combines the results from 
MassBank (mass spectra library) and MetFrag (in silico fragmentation) to take advantages of 
complementary approaches. 
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