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This paper presents a nonlinear multi-scale Model Order Reduction (MOR) method based on a piece-wise linearization technique.
On the material scale, the eddy-current (EC) field in laminated cores is expressed through Legendre polynomials. The Cauer Ladder
Network (CLN) method is applied to the homogenized nonlinear EC problem to generate the equivalent electric circuit. The accuracy
and efficiency of the proposed method are verified by mean of a test case with saturated stacked core and Pulse Width Modulation
(PWM) excitation.
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I. INTRODUCTION

OPTIMAL design of electromagnetic drive systems
requires coupled analysis of equipment with their control

units. The accuracy of the model is as essential as the intrinsic
performance of the control strategy. Such models are expected
to allow for the behavior of high-frequency eddy currents in
the case of PWM excitation.

In most electromagnetic devices, stacked silicon steel sheets
are used as iron cores. Accurate evaluation of fine-scale
field fluctuation at the level of the sheets requires a fine
division along the sheet thickness direction. The minimum
grid should be at least in skin depth scale, i.e. as small as
0.05mm in typical power electronic applications. This can
easily exceed the available computational resources. On the
other hand, considering the magnetic saturation is inevitable
since in practical applications electric machines ought to
operate beyond the knee point of the magnetization curve to
meet the power density requirements.

These issues have stimulated researches toward
reduced-order models via the linear/nonlinear finite element
(FE) method, generally known as MOR. Some of the MORs
tackle the homogenization and expressing the behavior of
electromagnetic equipment with microscopic structures, such
as stacked steel sheets [1]–[3].

The other type of MORs aims for efficient electromagnetic
field calculation over the whole machine on the machine scale.
Proper orthogonal decomposition [4] and Krylov subspace
method [5] are among the most popular machine scale MOR
methods in recent literature. Some of the MOR approaches
are capable of generating equivalent circuit models such as
Padé via Lanczos (PVL) approximation to Krylov subspace
[6] or the Cauer Ladder Network (CLN) method [7]. Several
extensions were proposed to the CLN method, including
nonlinear CLN [8], [9] and multi-scale MOR [10], [11]. The
multi-scale MOR combines the homogenization method as a
microscopic MOR and the CLN method as a machine scale
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MOR to construct an efficient and accurate reduced system
including the laminated core [10].

To handle the saturable laminated core, a nonlinear
version of multiscale MOR is required [12]. However, the
nonlinearized homogenization method has always been a big
challenge and is a fortiori so when applied to the multi-scale
MOR. This paper develops the nonlinear multi-scale MOR
based on a piece-wise linearization technique. The main
contribution of this work is to consistently combine the
nonlinear homogenization method with the CLN method to
generate the equivalent circuit model for nonlinear laminated
iron cores.

II. DISCRETE FORM OF THE EC PROBLEM

The proposed method is easier to present if the fields are
expressed in their discrete forms in the FE context although
it is valid over continuous formulation too. The EC problem
in a bounded domain Ω ∈ R3 is subdivided into a set of
finite elements. Then, to the edges and facets of the elements
are associated basis vector functions w1

i (i = 1, · · · , ne)
and w2

j (j = 1, · · · , nf ), respectively, where ne and nf
are the number of degrees of freedom associated to edges
and facets, respectively. Finally, edge and facet quantities
such as magnetic vector potential A and flux density B are
expressed by column vectors a = [a1, a2, · · · , ane

]T and
b = [b1, b2, · · · , bnf

]T , where ai is the line integral of A
over edge i, and bj the surface integral of B on facet j [13].

The matrix formulation of the EC problem is given by

CTh = CTνCa = σe+ j0,

Ce = −∂tb = −∂tCa, (1)

where C is the edge-facet incident matrix, h and j0 are
the discretized magnetic field intensity and external current
density, and ν and σ are the reluctivity and conductivity
matrices given by

ν = {ν[i, j]}, ν[i, j] = (w2
i ,

1

µ
w2

j )Ω, (2)

σ = {σ[i, j]}, σ[i, j] =
(
w1

i , σw
1
j

)
Ω
, (3)
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where σ and µ are the conductivity and permeability, and
(·, ·)Ω denotes the volume integral of the scalar product of
the two vector arguments.

III. MULTI-SCALE MOR

The multi-scale MOR in a nutshell is about employing
MORs consecutively at different scales. This section briefly
describes the implementation of the CLN method (as a
macroscopic MOR) in a homogenized EC problem (as a
microscopic MOR) in its general form.

A. Material Level MOR

Elaborate material level MORs are proposed to characterize
the homogenized properties of stacked cores [1]–[3]. In [1],
a homogenization method is presented in which the magnetic
flux distribution in a steel sheet is characterized with Legendre
polynomials P2n(−1 ≤ x ≤ 1, n = 0, 1, · · · ) as

B(t, z) = b0(t)P0

(
2z

d

)
+ b2(t)P2

(
2z

d

)
+ · · · (4)

where d is the lamination thickness, z the coordinate
in the stacking direction, and b0, b2, · · · the homogenized
components of B. Solving the 1-D EC problem inside the
sheet links the surface magnetic field intensity, Hs(t), the
average flux density b0, and the truncated homogenized
components by

1

µ
b0(t) =Hs(t) +

σd2

60

db2

dt
− σd2

12

db0

dt
,

1

µ
b2n(t) =

1

4n+ 3

σd2

4(4n+ 5)

db2n+2

dt

−
(

1

4n+ 3
+

1

4n− 1

)
σd2

4(4n+ 1)

db2n

dt

+
1

4n− 1

σd2

4(4n− 3)

db2n−2

dt
, (1 ≤ n ≤ N) (5)

where N is the number of homogenized components and
b2n+2 is truncated.

This brings a new homogenized EC problem governed by

CTν′C a = −
(
σ′nl +CTσ′lC

)
∂ta+ j0, (6)

where matrices and vectors are represented blockwise as

ν′ = blockdiag

{
νH ,

νl

5
, · · · , νl

4N + 1

}
,

σ′nl = blockdiag {σnl, 0, · · · , 0} ,

σ′l = {σ∗l [i, j]}, σ∗l [0, 0] =
σld

2

12

σ∗l [n, n] =

(
1

4n+ 3
+

1

4n− 1

)
σld

2

4(4n+ 1)2
, (1 ≤ n)

σ∗l [n+ 1, n] = σ∗l [n, n+ 1]

=
−σld

2

4(4n+ 1)(4n+ 3)(4n+ 5)
,

C = blockdiag {CH ,Cl, · · · ,Cl} ,

a =
[
aT

0 ,a
T
2,l, · · · ,aT

2N,l

]T
, j

0
=
[
jT0 , 0, · · · , 0

]T
, (7)
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Fig. 1. Cauer ladder network.

where the subscripts l, nl and H refers to the laminated,
non-laminated and the whole domain, respectively. For the
sake of brevity homogenized coefficient matrices K ′ and σ′

are defined as K ′ = CTν′C and σ′ = σ′nl +CTσ′lC. Using
the averaging process in [1], the permeability and conductivity
in Ωl are amended to αµ and ασ, with α the fill factor of the
stacked core (0 < α ≤ 1). The homogenized reluctivity and
conductivity matrices are given by

νl = {νl[i, j]}, νl[i, j] = ((αµ)−1w2
i ,w

2
j )Ωl

,

νH = {νH [i, j]}, νH [i, j] = νl[i, j] + (µ−1
0 w2

i ,w
2
j )Ωnl

,

σl = {σl[i, j]}, σl[i, j] = (ασw2
i ,w

2
j )Ωl

,

σnl = {σnl[i, j]}, σnl[i, j] = (σw1
i ,w

1
j )Ωnl

. (8)

where Ωnl is the non-laminated region with the vacuum
permeability µ0.

B. Machine Level MOR

The order of (6) can be further reduced at a machine level
by means of the CLN method [7]. To do so, a and e = −∂ta
are expressed by orthogonal modes and associated transient
scalar coefficients:

a(t) =
∑
m

I2m+1(t) a2m+1,

e(t) =
∑
m

V2m(t) e2m. (9)

The orthogonal basis vectors are generated recursively as

λ2m = eT2mσ
′e2m,

K ′(a2m+1 − a2m−1) =
1

λ2m
σ′e2m,

λ2m+1 = aT
2m+1K

′a2m+1,

e2m+2 − e2m =
−1

λ2m+1
a2m+1, (10)

starting with a−1 = 0 and e0 corresponding to the electric
field generated by a unit dc excitation voltage applied to the
excitation coil.

Transient coefficients are also obtained from the circuit
equations as

V0 = Vs − λ1∂tI1,

V2m+2 = λ2m+1∂tI2m+1 − λ2m+3∂tI2m+3,

I2m+1 = λ2mV2m − λ2m+2V2m+2, (m = 0, 1, · · · ) (11)

where Vs is the input source voltage.
With constant homogeneous magnetic permeability, (11) is

equivalent to the Cauer ladder network where R2m = 1/λ2m

and L2m+1 = λ2m+1 as depicted in Fig. 1.
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IV. NONLINEAR MULTI-SCALE MOR

The multi-scale MOR in section III was first presented
in [10], where the homogenization and the CLN were
both limited to the linear magnetic materials. In many
practical electromagnetic apparatus, the core is operated under
saturation. This section aims to present a nonlinear analysis,
compatible with both of the MORs.

A. Nonlinear Homogenization

There are several approaches proposed to solve (6) on
a nonlinear medium. Some of those methods have intrinsic
consistency with the CLN. In [2], (6) is solved by applying the
Newton-Raphson scheme to the nonlinear algebraic equations
obtained after time discretization. Its accuracy has been
validated over a wide range of frequency; the first drawback
is the computational cost due to the numerical integration
along the lamination thickness to calculate the Jacobian matrix.
The other disadvantage is the incompatibility with the CLN
approach.

In [3], the magnetic field intensity in material scale for
an isotropic, non-hysteric material characterized with |H| =
Hdc(|B|), is approximated by

H(t, z) = Hdc(b0(t) + b2(t)P2 + b4P4 + · · · )

≈Hdc(b0(t)) +
b2(t)P2 + b4(t)P4 + · · ·

µd(b0(t))
(12)

where µd = d|B|/d|H| is the differential permeability. In
contrast to [2], on (12) the permeability is considered frozen
along the lamination thickness, which makes it less accurate,
but computationally cheap and interoperable with the CLN.

B. Nonlinear CLN

The linearization in the machine scale in the CLN context
is investigated in [8], [9]. Sato and Igarashi [8], considered
the magnetic saturation by imposing the nonlinearity on the
first inductor L1, only. In [9], the nonlinearity was extended
to all the circuit elements similar to (12) except that all of the
magnetic modes are interpolated with µ or µd only.

The close analogy in the microscopic linearization [3] and
the macroscopic one [9] brings up the nonlinear multi-scale
MOR procedure summarized in algorithm 1. A table of
parametric CLN elements are computed with respect to
the coil current I1 in line 4. On line 5, two definitions
to nonlinear permeability are adopted by µ and µd and
are presumed for construction of K ′(d). The superscript
(d) represents either apparent of differential definitions. By
neglecting the transition of magnetic modes at two consecutive
time-steps, the network equations become identical to that of
the first-order approximation method (FO-CLN) [9].

According to the FO-CLN, the circuit equations (11) are
approximated in two distinct ways depending on the adoption
of µ or µd.

Algorithm 1 Nonlinear Multi-Scale MOR Procedure
1: a−1 = 0, e0 : given, e0 = [eT0 , 0, · · · ]T
2: λ0 = eT0 σ

′e0

3: for all feasible I1 do
4: solve : ∇× [Hdc(Bdc)] = I1λ

−1
0 σnle0

5: µI1 = |Bdc|/|Hdc| or µd
I1

= d|Bdc|/d|Hdc|
6: for n = 0 to n = #stages do
7: solve : K ′(d)ã2n+1 = σ′e2n/λ

(d)
2n (I1)

8: a2n+1 = ã2n+1 + a2n−1

9: λ
(d)
2n+1(I1) = aT

2n+1K
′(d)a2n+1

10: e2n+2 = e2n − a2n+1/λ
(d)
2n+1(I1)

11: λ
(d)
2n+2(I1) = eT2n+2σ

′e2n+2

12: end for
13: end for

+
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Fig. 2. Parametric Cauer ladder network.

1) Apparent permeability
In the case of apparent permeability the voltages in (11) are

approximated by

V0 = Vs −
d(λ1(|I0|)I1)

dt
,

V2m+2 =
d(λ2m+1(|I0|)I2m+1)

dt

− d(λ2m+3(|I0|)I2m+3)

dt
, (m = 0, 1, · · · ) (13)

where
λm(|I0|) = λm(I1)

∣∣
I1=|I0|

. (14)

2) Differential permeability
If algorithm 1 is performed by µd then

V0 = Vs − λd1(|I1|)
dI1
dt
,

V2m+2 = λd2m+1(|I2m+1|)
dI2m+1

dt

− λd2m+3(|I2m+3|)
dI2m+3

dt
. (m = 0, 1, . . .) (15)

where
λm(|Im|) = λm(I1)

∣∣
I1=|Im|

. (16)

V. NUMERICAL EXAMPLE

To validate the proposed method, we solve an EC problem
in a laminated inductor with 10 sheets of 20×0.5mm extended
to infinity along the z direction, enclosed with a single turn
massive coil with thickness and fill-factor of 0.2mm and 90%,
respectively. By exploiting the symmetry of the problem only
one quarter of the inductor is modeled and illustrated in
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(a) (b)

Fig. 3. FE meshes used in (a) RM and (b) homogenized model.
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Fig. 4. Resistances and inductances of the nonlinear CLN circuit given by µ
and µd.

Fig. 3,where Figs 3(a) and (b) show the FE meshes used in
the reference model (RM) and the homogenized model. The
conductivity of the coil and sheets are set to 40MS/m and
1MS/m, respectively. The nonlinear magnetic characteristic of
the lamination is expressed by

H = 10000ν0

[
5

(
B

B0

)4

+ 1

]
B, (17)

with ν0 the vacuum reluctivity and B0 = 1 T.

A. Equivalent Circuits

The proposed method is implemented on (6) with N = 0
and N = 1 as 0th and 2nd order homogenization, resulting
in four equivalent circuits. Fig. 4 demonstrates the variation
of CLN elements with respect to the coil current. As shown
in Fig. 2, the first resistor λ0 which corresponds to the coil
conductance is invariant to the saturation level and is equal to
0.95MS/m.

B. Global Quantities

The coil is excited with PWM voltage with fundamental
and carrier frequencies of 50Hz and 3kHz, respectively. Fig.
5 illustrates the currents obtained from solving (1) via FE
(RM) and the four parametric CLNs; they are high enough for
saturating the core. The results are also magnified at maximum
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Fig. 5. Transient analysis results, (a) input voltage, (b) current waveforms, (c)
enlarged view of the first box showing 0th and 2nd order hom. via apparent
permeability, (d) enlarged view of the second box showing 0th and 2nd order
hom. via apparent permeability (e) enlarged view of the first box showing
0th and 2nd order hom. via differential permeability, (f) enlarged view of the
second box showing 0th and 2nd order hom. via differential permeability

saturation and zero-crossing time intervals. When the core is
highly saturated, the permeability decreases enough to increase
the skin depth and extinguish the effect of EC. It justifies
the conformity of 0th and 2nd order results in Fig. 5(c) and
(e). Around the zero-crossing points, Fig. 5(d) and (f), the
networks obtained from 2nd order homogenizations clearly
outperform the 0th order counterparts.

C. Local Quantities

It is feasible to reconstruct the field values B(t, z) by (9).
However on nonlinear case, the field reconstruction depends
on the selection of µ or µd in algorithm 1. First of all, It
is required to store the distribution of reluctivities ν(d)(I1)
and the field values a2m+1(I1). Then, the homogenized
components of the magnetic modes should be decomposed
into

a2m+1 =
[
aT

0,2m+1, · · · ,aT
2N,2m+1

]T
, (18)
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Fig. 6. The reconstructed field at the center-line of the lamination on the top.

where, e.g., aT
0,2m+1 is the first component of the 2m + 1th

mode. The rest of the operation depends on the choice of µ
or µd.

1) Apparent permeability
If the nonlinear multi-scale MOR is derived with µ, then

B(t, z) = P0(
2z

d
)
∑
m

I2m+1(t)

α
CHa0,2m+1(|I0(t)|)

+ P2(
2z

d
)
∑
m

I2m+1(t)

α
Cla2,2m+1(|I0(t)|)

+ · · · . (19)

2) Differential permeability
In the case of differential permeability, the local field inside

the laminations is obtained by

B(t, z) = P0(
2z

d
)
∑
m

I2m+1(t)

α
ν−1
l νd

lCHa0,2m+1(|I2m+1|)

+ P2(
2z

d
)
∑
m

I2m+1(t)

α
Cla2,2m+1(|I2m+1|)

+ · · · . (20)

The reconstructed magnetic flux density on the center-line
, x = 0, at t = 3.4ms and t = 18ms are shown in Fig. 6. It
is clear that in sense of nonlinearity, all the cases provide
high accuracy (i.e., at t = 3.4ms the average discrepancy
with RM is less than 0.05T). Additionally, the parametric
CLN obtained with the 2nd order homogenization using µd,
achieves slightly better accuracy. This is consistent with (12)
where the operating point is approximated by µ and the small
perturbations are modeled with µd.

D. Computational Time

The computational cost in time-domain is determined by the
number of time-steps, which is 901 in the case of the results in
Fig. 5. The time required to solve the RM with 5344 triangular
elements and 2751 vertices is 2 hours and 20 minutes, using
a computer with clock frequency of 2.9 GHz and 16.0 GB of
RAM.

On the nonlinear-multi-scale MOR side, the computation of
parametric elements dominates the total computational time,

while the circuit equations require less resources. To obtain
the parameters depicted in Fig. 4 with 20 points on I1, it
takes 65s and 78s for the 0th and 2nd order homogenizations,
respectively. Solving the circuit equations (13) and (15) takes
only 2s each. It means that the proposed multi-scale MOR
yields a speed-up factor of at least 105 per cycle with
negligible loss of accuracy.

VI. CONCLUSION

A coupled linearization technique was proposed to extend
the multi-scale MOR to handle mediums with nonlinear
magnetic properties. The developed procedures of generating
parametric equivalent circuits, solving the state equations and
field reconstructions were explained in detail. Finally, the
proposed approach was verified via numerical examples. It
has been shown that the proposed method has acceptable
performance both in terms of accuracy and efficiency.
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