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Abstract

Helical distortion in the core region and its formation mechanism in weakly reversed magnetic

shear tokamak plasmas are investigated by means of three-dimensional magnetohydrodynamic

(MHD) equilibrium calculations and an MHD stability analysis. It is found that there are two

different types of helical equilibrium states: one is a rigid-body shift in the core region on a

poloidal cross-section, while the other is a local advection only around the magnetic axis. Linear

stability analysis of the corresponding axisymmetric equilibrium is carried out for understanding

the origin of these two types of helical equilibrium states. The analysis shows that the former is

related to the current-driven internal kink instability, while the latter is linked to the pressure-

driven quasi-interchange instability. The kink-mode driven helical equilibrium state appears when

the minimum value of the safety factor qmin is close to unity, while the quasi-interchange driven

helical equilibrium state appears when qmin is below unity. The appearance of the quasi-interchange

state is attributed to the weak magnetic shear at the inner q = 1 rational surface and finite β.
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I. INTRODUCTION

Non-axisymmetric equilibrium states of tokamak plasmas characterized by a helical dis-

tortion in the core region are known as helical cores, and could harm confinement of fusion

plasmas such as the enhancement of fast-particle losses [1]. These non-axisymmetric equi-

librium states attract attention because they are observed in tokamak discharges testing the

ITER hybrid scenario that has weakly reversed magnetic shear magnetic configuration [2–4]

and is expected to be favorable for reducing turbulent transport, for instance, having better

β dependence of turbulent transport [5]. Helical cores are observed in JET[6], MAST[7],

NSTX [1], DIII-D [8], and JT-60U [9] and are sustained long time by keeping the minimum

value of the safety factor q around unity, and accordingly the helical deformation has m = 1

period in the poloidal direction and n = 1 period in the toroidal direction.

Theoretical analysis revealed that helical cores are bifurcated magnetohydrodynamic

(MHD) equilibrium states [10, 11]. For an axisymmetric boundary condition on the plasma

surface, we have two MHD equilibrium states: an axisymmetric equilibrium and a non-

axisymmetric one with a helical distortion in the core region, which is similar to a saturated

state of an internal kink-mode [11]. The conditions for the appearance of the bifurcated

equilibrium are extensively studied by theoretical and numerical means. Helical cores ap-

pear when the q-profile is flat or weakly reversed in the core region, the minimum value

of q is close to unity qmin ≈ 1, and the value of q at the plasma surface is lower than four

[12–15]. In addition, there is a critical onset normalized pressure β value for the formation of

a helical core [11], and the onset is also sensitive to the magnetic shear, accordingly the he-

lical distortion increases with increasing the radial location of qmin for weakly reversed shear

configurations [16]. The qmin scan shows that the maximum distortion is at a qmin of around

unity [1, 11, 12, 15], although a helical core appears at a qmin of above unity. Recently, it

is found that the plasma boundary shape influences the amplitude of the helical distortion,

for instance, the triangularity enhances the helical distortion and lowers the critical onset β

value for the formation of a helical core [17]. It is also found that such a shaped tokamak

can exhibit another bifurcated equilibrium state due to external kink/peeling modes [18].

In addition, reversed D-shape plasmas are also found to exhibit a helical core [17].

The development of a helical core is related to the linear stability of (m,n) = (1, 1)

internal-kink modes [19–21], so that the magnetic shear at q = 1 surface suppresses the
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formation, while the pressure gradient enhances it [16, 21, 22, 24–26]. The enhancement of

the distortion by increasing the triangularity [17] is consistent with the shape dependence of

the linear stability of internal-kink modes [21, 25]. A direct link between a helical equilibrium

state and linear stabilities is demonstrated by nonlinear MHD simulations [23, 24]. The

simulations show that the linear growth of an ideal internal-kink mode gets saturated in its

nonlinear development, and then a helical equilibrium state is established. As a result, the

amplitude of the helical distortion in the equilibrium state is related to the linear growth

rate of the internal-kink instability of the corresponding axisymmetric equilibrium [26].

In this paper, we present two different types of equilibrium states with a helical core

depending on the minimum value of reversed-shear safety factor qmin by means of three-

dimensional MHD equilibrium calculations and a linear stability analysis of the correspond-

ing axisymmetric equilibrium. At a qmin of around unity, a helical core is driven by an

internal-kink instability and exhibits a rigid-body displacement in the core region. On the

other hand, at a qmin of below unity, a helical core is generated by a quasi-interchange insta-

bility which causes a local advection of the magnetic axis. We also found that the presence

of quasi-interchange driven helical cores is due to a weak magnetic shear at the inner q = 1

rational surface. Since the radial profiles of these instabilities are different, the resulting he-

lical equilibrium states exhibit significantly different helical-distortion profiles on a poloidal

cross section.

The organization of the remainder of this paper is as follows. Section II describes our

numerical method. We present two types helical equilibrium states: internal-kink and quasi-

interchange driven states in Sec. III, then we investigate the excitation mechanism of these

two types in Sec. IV. The magnetic shear dependence of the quasi-interchange driven helical-

core is described in Sec. V. We summarize our results in Sec. VI.

II. NUMERICAL METHOD

In order to calculate a three-dimensional MHD equilibrium for given q and pressure pro-

files, we use the VMEC code [27–29]. We also calculate an axisymmetric MHD equilibrium

which has the same q and pressure profiles as the helical equilibrium state, using the MEU-

DAS code [30] that solves the Grad-Shafranov equation. Then, we calculate the linear MHD

stability of the axisymmetric equilibrium by using the MINERVA code [31] to understand

3



the formation mechanism of the helical equilibrium state.

We investigate the helical-core formation in weakly reversed magnetic shear plasmas.

First, we calculate an axisymmetric equilibrium by using the MEUDAS code for given

toroidal current and pressure profiles Jt = (1−ψbp)
c+α exp[(ψp−ψ0)

2/(2σ)] and p = 1−ψp

as a function of the poloidal flux ψp, where b = 4, c = 10, α = 1, σ = 0.2, and ψ0 = 0.53 with

the total current 1 [MA]. The corresponding safety factor profile q is weakly reversed in the

core region as shown in Fig. 1. In order to decrease the minimum value of the safety factor

qmin, we reduce the strength of the toroidal magnetic field in our calculations. The major

and minor radii are R0 = 3 m and a = 1 m, respectively. The normalized plasma pressure

is defined by the volume averaged toroidal beta β ≡ βt = 2µ0

∫

pdV/(V B2
t ), where V is the

plasma volume. We calculate MHD equilibria for various shapes of the last-closed magnetic

surface by varying the elongation and triangularity from (κ, δ) = (1, 0) to (1.8,0.344).

Three-dimensional MHD equilibrium states are calculated by using the VMEC code [27–

29] which minimizes the plasma potential energy by means of the steepest-decent method.

The inputs for the VMEC code are the profiles of the rotational transform ι(s) =
∑6
n=0 lns

n =

1/q(s) and pressure p(s) = p0

∑5
n=0 pns

n obtained by interpolating the output from the

MEUDAS code with the method of least squares, where the normalized toroidal flux is given

by the poloidal flux as s =
∫ ψt

0 q(ψp)dψp/
∫ 1
0 q(ψp)dψp. We impose a fixed boundary condition

that has up-down symmetry, and the boundary shape of the plasma is represented in terms

of the ellipticity κ, triangularity δ, and aspect ratio A = 3 as described in Ref. [17]. In order

to obtain helical cores in low qmin regime, we need to increase the number of radial grid points

from Ns = 251 to Ns = 3001 as discussed in Ref. [17]. We use eight modes for toroidal and

poloidal spectrum, i.e. −8 ≤ ntor ≤ 8 and 0 ≤ mpol ≤ 8, in most of our calculations. We

increased the number of modes up to 20 and confirmed the convergence. We do not use the

GMRES preconditioning [14] in most of our calculations, but we confirmed that the GMRES

preconditioning does not influence the converged states presented in this work. We define

the amplitude of the helical distortion of the magnetic axis by the transverse displacement

of the axis Rax
01 ≡ R01(s = 0, θ, ζ), and use the normalized displacement δH ≡ Rax

01/a in

figures, where a is the plasma minor radius. It is noted that our definition of the helical

displacement is simplified from
√

(Rax
01)

2 + (Zax
01 )2/a used in other work[12, 14]. We omit Zax

01

to avoid some inconvenience in the comparison of δH for different elongation values, because

Zax
01 becomes large for large elongations when we normalize δH by the minor radius.

4



The stability of the axisymmetric equilibrium obtained from the MEUDAS code [30]

is evaluated by using the MINERVA code [31] which calculates the linear growth rate of

instabilities and associated eigen-functions based on the energy principle of ideal MHD by

using the eigen-value method.

III. TWO TYPES OF HELICAL CORES

First, we describe the outlook of two types of helical cores observed in our three-

dimensional MHD equilibrium calculations. Figure 2 shows magnetic flux surfaces at a

toroidal angle φ = 0 for κ = 1.2, δ = 0, and β = 3%. For qmin ≥ 0.86, we obtain a helical-

core structure of the flux surfaces that exhibit a rigid-body displacement in the core region

inside the q = 1 surface. This type of helical-core is similar to the plasma displacement in

the core region due to an (m,n) = (1, 1) internal kink mode, and is commonly observed in

our previous work [17]. For qmin = 0.80, by contrast, the contours are significantly squeezed

in the core region, and the magnetic axis is locally advected to the outer-board of the torus.

This deformed helical-core is significantly different from the internal-kink type observed at

qmin ≥ 0.86, and it will turn out to be caused by a quasi-interchange mode as presented be-

low. These features do not depend on the shapes of the cross-section as shown by magnetic

surfaces for κ = 1.6, δ = 0.344 in Fig. 3. It is remarked that a large number of grid points is

required in radial direction to obtain the quasi-interchange type helical-core in calculations

using the VMEC code, specifically, we set the number of radial grid points up to Ns = 3001

in our calculations.

These two types of helical cores are formed in different qmin regimes. Figure 4 shows

the helical displacement δH as a function of the minimum value of the safety factor qmin for

several shapes of the cross-section characterized by the elongation and triangularity (κ, δ).

There are two peaks for each shape of the plasma surface, which correspond to the two types

of helical cores, except for the circular cross-section (κ, δ) = (1, 0). At a qmin of around unity,

we have a peak of the displacement δH corresponding to the internal-kink driven helical-core

which has a larger displacement for a larger shaping (κ, δ). On the other hand, at a qmin of

about 0.8, we have another peak corresponding to the quasi-interchange driven helical-core.

It is remarked that the amplitude of the peak is not so influenced by the shaping for this

type of helical-core.
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IV. MECHANISM OF THE APPEARANCE OF TWO TYPES

In this section, we will investigate the formation mechanism of the helical equilibrium

states observed in the previous section by means of linear stability analysis of the corre-

sponding axisymmetric equilibrium. The stability is evaluated by using the MINERVA code

[31]. We calculate an axisymmetric equilibrium that has the same q and pressure profiles as

the helical-core equilibrium by using the MEUDAS code [30], then we calculate the linear

stability of this axisymmetric equilibrium by using the MINERVA code.

Here, we compare the helical displacement δH and the linear growth rate γ of an (m,n) =

(1, 1) instability of the corresponding axisymmetric equilibrium. Figure 5 shows the helical

displacement δH and linear growth rate γ as a function of qmin for the cases of (κ, δ) =

(1.6, 0.344) and (1.8, 0.344). The finite δH and positive γ span the same qmin regime, and thus

the helical core can be a nonlinearly saturated state of an (m,n) = (1, 1) MHD instability.

Both of the helical displacement and growth rate have their peaks at a qmin of about unity.

The peak of the growth rate is caused by the current-driven internal-kink mode because the

pressure driven term is very small compared to the current driven term in the ideal MHD

energy principle [34] as shown in Fig. 6. Figure 6 shows the ratio of the pressure driven

term δWpre to the current driven term δWcur as a function of qmin for (κ, δ) = (1.8, 0.344) at

β = 3%. The ratio δWpre/δWcur is very small at 0.9 < qmin < 1, implying that the instability

in this regime is a current-driven internal-kink mode. Thus, the helical core is driven by a

current-driven internal-kink mode when the qmin is close to unity.

Next, we investigate the mechanism of the helical core formation in the low qmin regime,

qmin ≈ 0.8. Figure 5 shows a shoulder of the linear growth rate at a qmin of around 0.8

where the helical displacement has a sharp peak. This shoulder of the growth rate suggests

that there is another instability causing the helical core at a qmin of around 0.8. When the

shoulder appears at qmin < 0.85 in Fig. 5, the ratio δWpre/δWcur in Fig. 6 correspondingly

becomes finite at qmin < 0.85, and thus the pressure term play a role in destabilizing the

(m,n) = (1, 1) mode at qmin < 0.85. The pressure driven term δWpre becomes comparable to

the current driven term δWcur at qmin = 0.82, and then dominates the drive of instability at

qmin = 0.77, implying that the shoulder of the growth rate of (m,n) = (1, 1) mode is caused

by a pressure-driven quasi-interchange mode. Hence, the helical state in the low qmin regime

is driven by a pressure-driven quasi-interchange mode. The transition from the internal-kink
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mode to the quasi-interchange mode is continuous as δWpre/δWcur increases gradually with

decreasing qmin.

In addition to the driving mechanism of instabilities, the plasma displacement of the

instability suggests that the instabilities at qmin ≈ 1 and 0.8 are significantly different. The

peak of the growth rate in Fig. 5 is caused by the internal kink mode as the profile of the radial

plasma displacement of the instability exhibits a rigid-body displacement inside the q = 1

mode rational surface in Fig. 7 (a). Figure 7 (a) also shows that the helical displacement has

the similar profile as the eigen-function of the internal-kink mode, implying that the helical

core is a saturated state of the growth of an (m,n) = (1, 1) internal-kink instability. In the

low qmin regime, the profile of the eigen function of the instability is significantly different

from that of the internal-kink mode as shown in Fig. 7 (b). The displacement is large near

the magnetic axis, implying that the instability is the quasi-interchange mode [32, 33]. A

stationary state established by a nonlinear saturation of the quasi-interchange instability is

expected to have the helical displacement strongly peaked at the magnetic axis shown in

Fig. 7 (b), resulting in the advected deformation of the magnetic flux surfaces around the

axis at qmin = 0.8 in Figs. 2 and 3. The quasi-interchange modes are observed in a wide

range of (κ, δ) parameter space as shown by the shoulder at a qmin of around 0.8 in Fig. 8.

It is remarked that we suitably rescale the eigenfunction to compare its shape with that

of helical displacement in Fig. 7, because the amplitude of the eigenfunction obtained from

linear stability numerical calculation is arbitrary.

As well as the radial displacement ξr, the poloidal component of the plasma displacement

ξθ suggests that the instabilities at qmin ≈ 1 and 0.8 are significantly different. Figure 9 (a)

shows that the poloidal displacement ξθ has a peak with negative sign at q = 1 rational

surface where the radial displacement ξr has a sharp drop, while the amplitude of ξθ in

the core region is small compared to the peak. These are typical features of the eigen

function of the internal-kink mode. Figure 9 (b) shows that the plasma displacement (ξr, ξθ)

for qmin = 0.80 is similar to that for qmin = 1.01 at q = 1 rational surface. In the core

region, by contrast, both ξr and ξθ are large, and the amplitude of ξθ near the magnetic

axis is comparable with that of the peak at q = 1 rational surface at ρ ≈ 0.35. This large

amplitude of the displacement (ξr, ξθ) near the magnetic axis also implies that the instability

at a qmin of around 0.8 is the quasi-interchange mode. As shown in Fig. 6, the transition from

the internal-kink mode to the quasi-interchange mode is continuous, and thus the plasma
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displacement of the quasi-interchange mode in Fig. 9 (b) partially includes the feature of

internal-kink mode.

As we discussed above, the displacement δH of a helical equilibrium state is related to

the linear growth rate of an (m,n) = (1, 1) instability for the corresponding axisymmetric

equilibrium. Here, we investigate this relation in detail. Figure 10 shows the helical displace-

ment δH as a function of the linear growth rate γ. The curve is drawn as an implicit function

of qmin, and the value of qmin is indicated by some arrows in the frame. Each of the loops

presented starts at the origin in the δH versus γ plane in the counter clockwise sense in which

the value of qmin is decreasing along the path followed before returning to the origin at low

enough qmin. Each curve exhibits a loop and a sharp peak corresponding to the internal-kink

and quasi-interchange driven helical cores, respectively, except for the circular cross section

that has only a loop. The loop extending to the top-right corner of the frame represents the

internal-kink driven helical-core at qmin ≈ 1. The helical displacement is almost proportional

to the linear growth rate, implying that the helical core is a nonlinearly saturated state of

the internal-kink mode. With increasing the elongation and triangularity, both the linear

growth rate and the excited helical displacement are enhanced. There is another peak of

the helical displacement. This sharp peak appearing in the top-left corner represents the

quasi-interchange driven helical-core at qmin ≈ 0.8. The displacement is large in the finite γ

regime, but its dependence on the linear growth rate is not clear. This is perhaps because

this type of helical-core is a nonlinearly saturated state of the quasi-interchange mode that

causes the local advection of the magnetic axis.

V. INFLUENCE OF MAGNETIC SHEAR AND BETA

Here, we present that a weak magnetic shear is relevant for the onset of quasi-interchange

driven helical cores in the low qmin regime, qmin ≈ 0.8. Although we have two q = 1 rational

surfaces when qmin is less than unity as shown in Fig. 1, the helical displacement is large

within the inner q = 1 surface. One of the reason is that the global magnetic shear ŝ = ρ

q

dq

dρ
is

smaller at the inner rational surface than the outer one. The absolute value of the magnetic

shear decreases with lowering qmin in Fig. 1, and thus the large helical displacement in the

low qmin regime can be linked to the weak magnetic shear at the inner q = 1 rational surface.

In order to clarify this link, we change the magnetic shear at the inner rational surface with
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keeping qmin. The magnetic shear is changed by modifying the value of q at the magnetic

axis q0 and by changing the radial location of the minimum of safety factor ρqmin, while

q(ρqmin) = qmin = 0.8, q(ρ = ρ1 = 0.4) = 1, and q(ρ = 1) = 1.5 are kept as shown in Fig. 11.

Figure 12 shows the helical displacement δH as a function of the magnetic shear at the inner

q = 1 rational surface ŝ(ρ = ρ1) with keeping qmin = 0.8. The helical displacement increases

as the absolute value of the magnetic shear |ŝ| decreases for both the ρqmin change and q0

change cases. Thus, the quasi-interchange driven helical-core at low qmin in Fig. 4 is caused

by the weak magnetic shear |ŝ| ≪ 1.

Finally, we demonstrate that the magnitude of the quasi-interchange driven helical-core

is enhanced with increasing the plasma β. Since the quasi-interchange mode is a pressure-

driven instability, the resulting helical displacement due to this instability is expected to

be increased with β. Figure 13 shows the helical displacement δH as a function of the

averaged toroidal beta for the q-profile with qmin = 0.8, q0 = 1.025 and ρqmin = 0.75

shown in Fig. 11 (b). For (κ, δ) = (1.2, 0), the helical displacement vanishes at β = 0, and

is very small at low-β (β = 0.5%), then the displacement increases with increasing β at

β > 0.5%, consistent with the linear growth rate of the quasi-interchange mode [32]. For

(κ, δ) = (1.6, 0.344), the helical displacement increases with increasing β, while the helical

displacement is finite at β = 0. This helical core at β = 0 is not quasi-interchange driven but

internal-kink driven as shown by magnetic surfaces. Figure 14 shows magnetic flux surfaces

for (κ, δ) = (1.6, 0.344). A rigid-body displacement in the core region at β = 0 implies that

this helical core is due to an internal-kink mode, while the local advection of the axis region

at β = 3% suggests that this helical core is caused by a quasi-interchange mode. Thus,

the quasi-interchange driven helical-core is formed as β increases. It is remarked that the

shape of magnetic surfaces of the quasi-interchange driven helical core partially includes the

feature of internal-kink modes, because the transition from the internal-kink mode to the

quasi-interchange mode is continuous as shown in Fig. 6.

VI. SUMMARY

We have investigated equilibrium states with a helical core in weakly reversed magnetic

shear tokamaks by means of three-dimensional MHD equilibrium calculations and a linear

stability analysis of the corresponding axisymmetric equilibrium. Our qmin scan, where qmin
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is the minimum value of safety factor, revealed that helical cores are of two types. The first

type appears at a qmin of around unity and is characterized by a rigid-body displacement in

the core region. This type of helical-core is commonly observed in our previous work. The

other appears at a qmin of about 0.8 and is characterized by a local advection of the plasma

at the magnetic axis.

In order to understand the formation mechanism of these two different helical cores we

carried out a linear stability analysis of the corresponding axisymmetric equilibrium that

has the same q and pressure profiles as the helical equilibrium state. We have found that

the helical core appearing at a qmin of around unity is caused by an (m,n) = (1, 1) internal-

kink mode, resulting in a rigid-body radial displacement in the core region on a poloidal

cross-section. The radial profile of the displacement of the helical core is almost constant

inside the q = 1 rational surface, which is similar to the eigen function of the internal

kink mode. On the other hand, the helical core appearing at a qmin of about 0.8 is caused

by an (m,n) = (1, 1) quasi-interchange mode, leading to the displacement only near the

magnetic axis. The radial profile of the displacement is sharply peaked at the magnetic

axis, that is similar to the profile of the eigen function of the quasi-interchange mode. The

appearance of the quasi-interchange driven helical-core in the low qmin regime is related to

the weak magnetic shear at the inner q = 1 rational surface, and its magnitude is enhanced

as β increases. Hence, the weak magnetic shear is the key player in the formation of the

quasi-interchange helical state rather than the low qmin.
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FIG. 1: Profiles of safety factor, where ρ =
√

s is the normalized minor radius.
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FIG. 2: Magnetic surfaces at a toroidal angle φ = 0, 0.44π and π for elongation κ = 1.2, triangu-

larity δ = 0, and β = 3%, showing a rigid-body shift in the core region like an internal kink mode

at qmin ≥ 0.86 and a locally advected shift at the magnetic axis suggesting a quasi-interchange

mode at qmin = 0.80.
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FIG. 3: Magnetic surfaces at a toroidal angle φ = 0, 0.44π and π for elongation κ = 1.6, triangular-

ity δ = 0.344, and β = 3%, showing a rigid-body shift in the core region like an internal kink mode

at qmin ≥ 0.86 and a locally advected shift at the magnetic axis suggesting a quasi-interchange

mode at qmin = 0.80.
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FIG. 5: Helical displacement δH and linear growth rate γ of an (m, n) = (1, 1) mode as a function

of qmin at β = 3% for (a) κ = 1.6 and δ = 0.344 and (b) κ = 1.8 and δ = 0.344.
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FIG. 12: Helical displacement δH as a function of magnetic shear ŝ at the inner q = 1 rational

surface for qmin = 0.8.
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FIG. 13: Helical displacement δH as a function of β for qmin = 0.8.
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FIG. 14: Magnetic surfaces for (κ, δ) = (1.6, 0.344) showing an internal-kink driven helical-core at

β = 0% and a quasi-interchange driven helical-core at β = 3%.
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