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ABSTRACT
An analogy between the thermodynamic inequalities presented by Nicholson et al. [Nat. Phys. 16, 1211 (2020)] and by Yoshimura and Ito
[Phys. Rev. Res. 3, 013175 (2021)] is discussed. As a result, a time–energy uncertainty relation in chemical thermodynamics in terms of
Gibbs free energy and chemical potential is derived. It is numerically demonstrated that the uncertainly relation holds in a model system of
oscillatory Brusselator reactions. Our result bridges the thermodynamic time–information uncertainty relation and free energy evolution in
chemical reactions.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084251

I. INTRODUCTION
Stochastic thermodynamics has emerged as a comprehensive

framework to understand the energetics and thermodynamics of
stochastic processes away from equilibrium. Nonequilibrium sys-
tems inevitably have entropy production as one of their most
distinguished characteristics in contrast to thermal equilibrium.
However, it is not typically easy to quantitatively determine the
entropy production associated with a nonequilibrium process with-
out a detailed knowledge of the system. Recently developed ther-
modynamics uncertainty relations provide a bound on entropy
production in terms of current fluctuations.1–3 Nicholson et al.
presented time–information uncertainty relations for the flux of
heat, entropy, and work, demonstrating that the timescales of their
dynamical fluctuations away from equilibrium are all bounded by
the fluctuations in information rates and indicating that natural pro-
cesses must trade speed for thermodynamic costs.4 Yoshimura and
Ito presented information geometric inequalities that give a speed
limit for the changing rate of the Gibbs free energy and a general
bound of chemical fluctuations, offering a framework to analyze
the thermodynamic profile of biological systems.5 The formula-
tions in Refs. 4 and 5 are built on the basis of a firm combination
of finite-time thermodynamics6–8 and information geometry,9–11

with an employment of the Fisher information.12–14 In this paper,
we discuss an analogy between their thermodynamic inequalities
and, consequently, derive a time–energy uncertainty relation in

chemical thermodynamics in terms of Gibbs free energy and
chemical potential.

II. THEORY AND FORMULATION
Nicholson et al. presented the following time–information

uncertainty relation:4

∣Ȧ∣ ≤ ΔİΔA, (1)

where A is a general variable and Ȧ denotes the evolution rate or time
derivative of the variable, Ȧ := dA/dt. Δİ is the standard deviation of
the evolution rate of the surprisal or information content Ii,

Ii = − ln pi, (2)

where pi is the probability of the state i (=1, 2, . . ., N). An
entropy version of the time–information uncertainty relation in
thermodynamics is also shown as4

∣Ṡ∣/kB ≤ ΔİΔI. (3)

S is the Shannon entropy,

S/kB = −∑ pi ln pi, (4)
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where kB is the Boltzmann constant, and the simplified symbol of
summation in this paper denotes

∑ ai :=
N

∑
i=1

ai, (5)

where ai is a general variable. ΔI is the standard deviation of the
surprisal. A derivation of Eq. (3) using pi is given in Ref. 15.

Yoshimura and Ito presented the following inequality:5

∣Ġ∣ ≤
√

ϕ
√
⟨⟨Δμ2⟩⟩. (6)

G is the Gibbs free energy, and ϕ is the Fisher information,

ϕ = ∑[Ẋi]
2
/[Xi], (7)

where [Xi] is the concentration of the chemical species Xi. ⟨⟨Δμ2
⟩⟩

is defined as the chemical variance of the chemical potential μ,

⟨⟨Δμ2
⟩⟩ := ∑(μi − μi

eq
)

2
[Xi], (8)

where μi is the chemical potential of the chemical species Xi,

μi = μi
0
+ RT ln[Xi], (9)

for an ideal solution, where μi
0, R, and T are the standard chemical

potential, the gas constant, and the temperature, respectively, and
μi

eq is the equilibrium chemical potential.
First, we employ a conversion of the concentration of the chem-

ical species [Xi] used in Ref. 5 into the probability pi to fit the variable
in the context of statistical mechanics,

pi = [Xi]/∑[Xi]. (10)

If [Xi] is defined as the molar fraction instead of the concentration,
pi = [Xi] since Σ[Xi] = 1 in this case. For the evolution rate of the
Gibbs free energy, Yoshimura and Ito studied, in the framework
of information geometry, the employment of the Kullback–Leibler
divergence between the time-evolving and equilibrium variables as
Eqs. (20), (21), and (83) of Ref. 5. We instead employ the original,
general definition of the Gibbs free energy, as given in Eqs. (8), (9),
and (93) of Ref. 5,

Ġ = ∑[Ẋi]μi. (11)

Because the chemical potential is a relative variable, setting μi
0, the

referential standard value, to be zero would not lose the generality
required in this subject of fundamental non-equilibrium statistical
mechanics. Then, we have

Ġ = RT∑ ṗi ln pi. (12)

Because G := H – TS, where H is the enthalpy,

Ġ = Ḣ − ṪS − TṠ. (13)

Therefore, for isothermal (Ṫ = 0) and adiabatic or thermally isolated
(Ḣ = 0) systems, Ġ = –TṠ, and Eq. (3) can be transformed into

∣Ġ∣/RT ≤ ΔİΔI, (14)

where we converted kB into R to fit the context of chemical
thermodynamics.

Let us take a look at the standard deviation of the surprisal ΔI,

ΔI =
√

∑ pi(Ii − ⟨I⟩)2
=

√

∑ pi(− ln pi +∑ pi ln pi)
2. (15)

Instead of ⟨⟨Δμ2
⟩⟩ defined by Yoshimura and Ito in the frame-

work of information geometry as Eq. (78) of Ref. 5, we employ the
standard deviation of the chemical potential for generality,

Δμ =
√

∑ pi(μi − ⟨μ⟩)2
=

√

∑ pi(μi −∑ piμi)
2. (16)

By setting μi
0 as zero again, we have

Δμ =
√

∑ pi(RT ln pi −∑ piRT ln pi)
2

= RT
√

∑ pi(ln pi −∑ pi ln pi)
2. (17)

From Eqs. (15) and (17), interestingly,

Δμ = RTΔI. (18)

Next, for the standard deviation of the evolution rate of the
surprisal Δİ, since

İi =
d
dt
(− ln pi) = −ṗi/pi, (19)

Δİ =
√

∑ pi(İi − ⟨İ⟩)
2
=

√

∑ pi(−ṗi/pi +∑ ṗi)
2. (20)

Because∑ px = 1,∑ ṗx =
d
dt ∑ px = 0. Therefore,

Δİ =
√

∑ ṗi
2
/pi. (21)

From Eqs. (7) and (21), it is recognized that there is a connection
√

ϕ = Δİ (22)

between Refs. 4 and 5. For the standard deviation of the evolution
rate of the chemical potential, since

μ̇i = RT
d
dt
(ln pi) = RTṗi/pi, (23)

Δμ̇ =
√

∑ pi(μ̇i − ⟨μ̇⟩)2

=

√

∑ pi(μ̇i −∑ piμ̇i)
2

= RT
√

∑ pi(ṗi/pi −∑ ṗi)
2

= RT
√

∑ ṗi
2
/pi. (24)
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We, thus, further obtain

Δμ̇ = RTΔİ = RT
√

ϕ. (25)

Therefore, Eq. (14) can be rewritten as

∣Ġ∣ ≤ ΔİΔμ =
√

ϕΔμ = Δμ̇Δμ/RT. (26)

This result provides an upper bound of the evolution rate of Gibbs
free energy, which is bounded by the spread in the chemical potential
and its rate of change. As a practical merit of the inequality, the value
of the right-hand side of Eq. (26) is relatively easily determined, for
instance, by measuring the electric potential or voltage of the chem-
ical solution and its time derivative or evolution rate, to estimate the
upper bound of the difficult Gibbs free energy rate. As discussed in
Ref. 5, this inequality can be extended to subsystems as

∣ĠS∣ ≤ ΔİSΔμS = Δμ̇SΔμS/RT, (27)

where the subscript S denotes some specific chemical species out of
Xi (i = 1, 2, . . ., N).

III. EXAMPLE
To numerically demonstrate these inequalities, we employ the

oscillatory chemical reaction system model presented in Ref. 5. For
our calculations, we use exactly the same reaction rate equations and
parameter values of Ref. 5, with R and T set as unity. The Brusselator
is a model of oscillatory reactions, such as the Belousov–Zhabotinsky
reaction,16–18 comprising the following chemical reactions:

A⇌X, (28)

2X + Y⇌3X, (29)

X + B⇌Y +A, (30)

where A, B, X, and Y are chemical species. The reaction rates [J1,
J2, and J3 for Eqs. (28)–(30), respectively] in the forward direc-
tion from the left-hand side to right-hand side of each equation are
formulated as

J1 = k+1 [A] − k−1 [X], (31)

J2 = k+2 [X]
2
[Y] − k−2 [X]

3, (32)

J3 = k+3 [X][B] − k−3 [Y][A], (33)

where [A], [B], [X], and [Y] are the concentrations of the chemical
species, and ki

+ and ki
– (i = 1, 2, 3) are the reaction rate constants in

the forward and backward reactions, respectively, of the ith chem-
ical equation. Then, the time derivatives of the chemical species’
concentrations are

[Ẋ] = J1 + J2 − J3, (34)

[Ẏ] = −J2 + J3, (35)

FIG. 1. Time evolution of [X], [Y], pX, and pY calculated for the Brusselator reaction
model.

[Ȧ] = −J1 + J3, (36)

[Ḃ] = −J3. (37)

Note that the first equation of Eq. (124) in Ref. 5, corresponding to
Eq. (34) of this paper, contains an apparent typo: J2 is supposed to
be added to the right-hand side. The calculations in Ref. 5 are still
conducted in the correct manner. Figure 1 presents the calculated
time evolution of the concentrations [X], [Y] and the probabilities
pX, pY of the chemical species X and Y involved in the oscillating
reaction system. The values of the reaction rate constants in Ref. 5,
i.e., k1

+
= 1 × 10−3, k1

−
= 1, k2

+
= 1, k2

−
= 1, k3

+
= 1 × 10−2, and

FIG. 2. Time evolution of ∣Ġ∣ and Δμ̇Δμ calculated for the Brusselator reaction
model to demonstrate Eq. (26).
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FIG. 3. Time evolution of ∣ ĠS∣ and Δμ̇SΔμS for a subset S = {X, Y} calculated for
the Brusselator reaction model to demonstrate Eq. (27).

k3
−
= 1 × 10−4, were employed. The initial values of the chemical

species’ concentrations, [A]0 = 1 × 103, [B]0 = 1 × 103, [X]0 = 1,
and [Y]0 = 6, also followed Ref. 5. R and T were set to unity. The
curves of [X] and [Y] are identical to those plotted in Ref. 5. Figure 2
presents the calculated time evolution of ∣Ġ∣ and Δμ̇Δμ. In the case of
a subsystem consisting of a subset S = {X, Y}, Fig. 3 presents the cal-
culated time evolution of ∣Ġs∣ and Δμ̇SΔμs. As shown in Figs. 2 and 3,
each of ∣Ġ∣ and ∣Ġs∣ does not exceed its own upper bound, Δμ̇Δμ and
Δμ̇SΔμs, according to Eqs. (26) and (27), respectively.

IV. CONCLUSION
In this paper, we discussed an analogy between the thermody-

namic inequalities presented by Nicholson et al.4 and Yoshimura
and Ito.5 As a result, we derived a time–energy uncertainty relation,

∣Ġ∣ ≤ Δμ̇Δμ/RT, for isothermal and adiabatic or thermally isolated
systems. We numerically demonstrated that the uncertainly relation
holds in a model system of oscillatory Brusselator reactions. Our
result bridges the thermodynamic time–information uncertainty
relation and free energy evolution in chemical reactions.
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