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a b s t r a c t

A major hurdle in increasing the economic feasibility of solar photovoltaic (SPV) plants is the ever-
increasing share of location-dependent costs (land, transmission, labor, etc.) in total installation costs.
Such costs are geospatial in nature, due to spatial socio-economics affecting them. Present geolocation
methods, for locating SPV installation sites, do not consider the effect of location-dependent costs
in installation. We use a spatial parameterization model for examining the factors causing spatial
variation of the installation costs of land, labor, transmission and supply chains for suburban SPV
plants, within a geographic boundary. The model is applied to Kolkata city, India, and the spatial
variation of the costs are checked in a 2500 km2 suburban boundary. The spatial variation of the
location-dependent costs is mainly caused by the distance from an economic focal point of the city.
The variations significantly optimize at minima points in the 2500 km2 boundary, where the location-
dependent costs increase by 10% with an average 2.6 km deviation and an average 6.7 km deviation
from the global minima, for small and large plants, respectively. The spatial minima is mainly caused
by variance of land and transmission costs. This minima location lies on the extrapolation of a line
that connects the city focal point with the substation. The capacity of the SPV plants at the optima
increases with increasing transmission voltage (11 kV to 66 kV), ranging from 4 MW to 257 MW in
the case-study (small to large scale), while the minima shift away from the city focal point (ranging 29
km to 48 km) with increasing capacity. This study provides a perspective on how the spatial variation
of installation costs can play a role in the geolocation of SPV plants. Furthermore, the empirical and
spatial variation of location-dependent costs can enable energy planners to evaluate the economic
feasibility of solar power and promote better land-use near cities.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

While fossil fuel-based energy has enabled the industrial rev-
lution, it has also posed the serious threat of climate change.
majority of total carbon dioxide (CO2) emissions are a direct

esult of fossil fuel (coal, oil and natural gas) usage for en-
rgy production. Even though fossil fuels are a relatively cheaper
ource of energy production, the hazards of climate change have
rought forward renewable energy (RE) sources, as low emission
nergy sources. Despite low efficiencies of RE sources, solar pho-
ovoltaic (SPV) technology has become highly cost-competitive
ith fossil fuel sources, better than other RE sources like wind
nd geothermal, in recent years. This is primarily due to techno-
ogical development and the abundance of the resource (Amjad
nd Shah, 2020).
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In order to increase the economic feasibility of SPV power
plants, most existing studies focus on optimizing technology-
related cost for solar modules. Rapid developing technology and
diversified usage, such as in net-zero emission buildings (Singh
and Das, 2020), solar collectors (Das et al., 2015), water desalina-
tion (Mostafa et al., 2020), etc., have enabled solar module prices
to decrease in every market worldwide.1 Advances in material
science (such as novel fabrication techniques, solar cell design,
semiconductor band-gap engineering, etc.) have increased the
efficiency, as well as decreased the overall manufacturing cost of
solar panels (Campbell et al., 2009; Tang et al., 2011; Asim et al.,
2012; Tillmann et al., 2019). Design modifications of SPV plants,
to maximize solar power generation, are also explored in various
studies, which develop algorithms to analyze and model solar
irradiation patterns for maximum system output (Joyce, 2012; Ali
et al., 2016; Diab et al., 2021; Meng et al., 2021). This has led to

1 SPV Module Prices drop: https://www.iene.eu/irena-forecasts-59-solar-pv-
rice-reduction-by-2025-p2740.html.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ist of abbreviations in paper.
CO2 Carbon Dioxide
RE Renewable Energy
SPV Solar Photo Voltaic
NREL National Renewable Energy Laboratory
IRR Internal Rate of Return
LCOE Levelized Cost Of Energy
MCDM Multi-Criteria Decision Making
AHP Analytical Hierarchy Process
ANP Analytical Network Process
ELECTRE ELimination Et Choice Translating REality
GIS Geographic Information Systems
MUFSP MUlti-Factor Spatial Parameterization
ACSR Aluminum Cable Steel Reinforced
CBD Central Business District
OLS Ordinary Least Squares
ANOVA Analysis of Variance
LDC Local Distribution Center

Table ii
List of variables and nomenclature.
Cloc Total Location-Dependent cost for SPV installation
Cland Land cost for SPV
Ctrans Transmission cost for SPV
Cu−labor Unskilled labor cost for SPV
Cs−labor Skilled labor cost for SPV
Csc Supply chain cost for SPV
cckt−km Cost of transmission line per-km
Lmin Line-of-sight distance to nearest substation
Ppeak Peak capacity for SPV plant
V Voltage of transmission line
R Resistance per-km of transmission line
β0 Constant term in Hedonic regression
βi Regression coefficient for social variables
βj Regression coefficient for spatial variables
Xi Social variables in Hedonic regression for land cost estimation
Xj Spatial variables in Hedonic regression for land cost estimation
ε0 Error term in Hedonic regression
A Area of an SPV plant
Iu−labor Work intensity of unskilled labor
Is−labor Work intensity of skilled labor
W Average daily wage of skilled labor
Dcbd Distance from CBD to the SPV plant center
µ Average mileage of personal vehicles
cfuel Cost of fuel in India
FL Total weight of material to be transported
Drail Distance traveled by rail for transporting material
Dldc Distance from LDC to SPV plant center, for transporting material

a tremendous decrease in hardware (module and inverter) costs
for SPV plants.

However, the viability of SPV power plants is not limited to
PV technology advances. Often, the affordability of solar power,
s a major energy source, depends on the costs that are not
ssociated with SPV modules and inverters (REI, 2016). The Na-
ional Renewable Energy Laboratory (NREL) identifies reducing
on-technology related costs (e.g.: labor, land, interconnection to
rid, supply chain and project-design costs) as the chief driver
n reducing installation costs of residential and utility-scale SPV
ystems (Fu et al., 2018). In fact, with the constant decrease
f hardware costs, the non-SPV technology costs of installation
ave gone up significantly (30%–40% of total installation costs)
n countries like United States, India, Japan, etc. (Fu et al., 2018;
ERC, 2019; Höller et al., 2019). For example, in a study for SPV
conomic feasibility in Turkey, land cost was proven to be a very
nfluential factor (Ozcan and Ersoz, 2019).

These costs involve location-dependent costs that vary across
ifferent countries, and even different places, since they are
ainly influenced by socio-economic factors that vary geospa-

ially (Charabi and Gastli, 2011). In fact, these location-dependent
osts can vary across a limited geographic area, such as within
4883
a city (variation of land prices in a city- (Ottensmann et al.,
2008). Hence, the economic feasibility of installing SPV plants is
inherently dependent on specificity of location, due to the spatial
nature of the location-dependent costs in limited areas, affected
by geospatial socio-economics.

In literature, various ideas have been introduced for reducing
non-hardware costs of SPV, such as Internal Rate of Return (IRR)
calculations (Darling et al., 2011; Zhang et al., 2015). With respect
to labor costs, technology for reducing labor time has also been
discussed (Morris et al., 2014). Levelized cost of energy (LCOE) re-
duction is also an idea heavily explored in studies (Padmanathan
et al., 2017; El-Shimy, 2012). Siali et al. (2016) introduced a model
for optimizing grid costs by determining optimal supply points.
However, these studies do not consider the effect of geospatially
varying socio-economic factors on location-dependent costs of
SPV plant installation.

Geolocation studies on SPV plant installation are restricted to
non-empirical methods. Guaita-Pradas et al. (2019) tried to incor-
porate macro-economic factors for location-based cost-
optimization for SPV, but lacks an empirical approach to re-
duce installation costs. Janke (2010) used Geographic Information
Systems (GIS) for locating suitable areas in Colorado based on
installation costs and environmental factors while Chakraborty
et al. (2015) used technical mapping for finding ground areas for
SPV to meet the energy demand of a University, but these models
do not explore how spatially varying socio-economic factors
affect SPV installation costs. GIS studies have also been used
to estimate the solar energy potential in different regions (Sun
et al., 2013). Multi-criteria decision making (MCDM) has been
widely used with GIS for site selection of SPV plants. Analytical
Hierarchy Process (AHP) in the MCDM domain is used to weight
various parameters in the GIS map layers, and based on ranking
of the aggregated weights, a site is selected on a map (Haaren
and Fthenakis, 2011; Charabi and Gastli, 2011; Rumbayan and Na-
gasaka, 2012; Chang, 2015; Amjad and Shah, 2020). The process
of weighting or indexing parameters was explored in depth by
Banerjee and Islam (2011). The most commonly used factors in
the AHP ranking process for solar site selection are: irradiance,
land-use, slope of land, presence of water bodies, social accep-
tance of solar energy, etc., where the algorithm for parameter
optimization is often K-means clustering (San Cristóbal, 2012; Wu
and Geng, 2014; Chang, 2015; Amjad and Shah, 2020). Although
complex decisions are made simple, the biggest drawback of
the AHP and related algorithms, like Analytical Network Process
(ANP), Elimination et Choice Translating Reality (ELECTRE), is that
the weighting of parameters is non-empirical and often arbitrary.
The factors of irradiance and social acceptance vary across wide
geographies, while the variation of socio-economic factors, that
affect location-dependent costs (like labor and land costs), occur
in much smaller geospatial boundaries. Such models are, thus, not
suitable for inspecting the effect of geospatial variance of socio-
economics on location-dependent costs, primarily because they
lack an empirical approach.

From the research gaps presented above, it can be concluded
that there is a need to analyze the socio-economic factors that
vary the location-dependent costs in limited geographies, and
empirically determine the impact of installation costs on the
location for SPV plants. This study aims to analyze the factors that
influence the total location-dependent costs, for SPV power plant
installation, to vary within a limited area. This paper focuses on
the suburban region of a city, as the limited geography where
the costs vary. We inspect how the geographical demographics
and the socio-economics of a city cause a geospatial variance
of the costs of SPV installation in the suburbs of the city. Our
motivation is to examine whether the location-dependent costs,

of the suburban SPV plant, can be geospatially minimized, and
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Fig. 1. The transmission network of Kolkata (left); 2500 km2 simulation area divided into 500 × 500 mesh (Google Earth) with city center (CBD), local distribution
enter (LDC- the railway freight unloading station), and substations marked (right).
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valuate the primary factors that lead to the said minimization.
herefore, this study contributes to the assessment of economic
easibility of SPV power plants, close to a city.

Kolkata city,2 India is used as a case-study, which makes
strong case for solar power. Kolkata, a growing metro city,

ims to be a low-carbon city, but also poses a massive hike
n power consumption from 2000 to 2025 (Figure 9 of Gould-
on et al., 2014). Simultaneously, India is a major solar energy
layer, ranking second in terms of SPV capacity added in 2018
IRENA, 2019), which logically makes SPV power, the best option
or future power generation in Kolkata. However, the share of
and, labor and transmission costs to total installation costs, in
ndia, has increased from 20% in 2010 to 40% in 2019 (CERC,
010; UERC, 2019), and can become more than hardware costs,
s module costs are becoming even cheaper (similar to that of
nited States: O’Shaughnessy et al., 2019). See Table i for the list
f abbreviations in this study.

. Methodology

The total cost function for installing a SPV plant may be
ritten as in Eq. (1) below.

tot (x) = Cloc (x) + Cnon−loc (1)

here Ctot includes the total installation costs, Cloc are the
ocation-dependent costs while Cnon−loc are the costs that are
ot spatially variable in a limited geography, and x represents
spatial influencing variable. Thus, the total costs are ultimately
patially dependent because of Cloc(x).
We use a multi-factor spatial parameterization (MUFSP) model

nvolving GIS interface and statistical socio-economics to deter-
ine the location-dependent costs Cloc(x) for a suburban SPV
lant installation, and how the costs vary across the suburban
egion of the city. Eq. (2) below represents the objective function
f the MUFSP model, with the focus on land, transmission, labor,
nd supply chain costs, which are all spatial in nature, due to
ocio-economic and technical factors.

loc (x) = Ctrans (x)+Cland (x)+Cu−labor (x)+Cs−labor (x)+Csc(x) (2)

where Ctrans is the transmission cost, Cland is the land cost, Cu−labor
s the cost of unskilled labor while Cs−labor is that for skilled labor,
and Csc represents the supply chain cost at the suburban location.

Each of the location-dependent cost functions are constructed
based on relevant geospatial socio-economic parameters (x).

2 Kolkata Latitude and Longitude: https://en.wikipedia.org/wiki/Kolkata.
 p
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These particular costs vary a lot within a limited geographical
boundary, wherein in the next section we introduce the factors
that lead to such variance. Using 3D simulation and GIS, the
MUFSP model empirically determines each of the costs at every
location, within the limited suburban boundary. The modeling
problem is defined to identify which of the prime spatial fac-
tors (x) can minimize the total location-dependent costs Cloc(x).
ee Table ii for the list of variables used in the cost functions’
onstruction.

. Data and cost function construction

.1. Simulation area

Fig. 1 represents the simulation boundary for the MUFSP
odel, for our case study of Kolkata. The simulation area is
squared 2500 km2 area, south of the city of Kolkata. The

orthern and western suburban areas are heavily populated,
hile the eastern side is a marshy wetland, making these areas
nsuitable for SPV plant development. In addition, Fig. 1 also
hows the transmission network3 around Kolkata, from which
hree representative substations (SS1, SS2 and SS3) are selected
or the MUFSP model construction. The outer boundary of the
imulation area (50 km from the edge of metropolitan Kolkata)
s terminated at half the distance from the nearest city (100 km
way from Kolkata- Mondal et al., 2018), as it is assumed that
he spatial properties of socio-economic parameters beyond this
istance will be affected by the factors of the other city, which
s not considered in the model. The 2500 km2 simulation area,
rogrammed into MATLAB and SIMULINK R2016a environment,
s divided into a 500 × 500 mesh (each element having a 100 m2

esolution). Each of the 250,000-mesh elements is programmed
o contain the objective function of Eq. (2), and the values are
tored in the form of a 500 × 500 matrix [Cloc]. The existence of
inimized cost locations is examined in this simulation area, for

he location-dependent costs Cloc(x).

.2. Transmission cost function (Ctrans)

The transmission cost function is composed of the various
osts that are needed for joining a power supply source to the
ubstation, which includes conductor, labor, grid upgradation and
and-use costs as well as taxes associated with the costs. Table 1

3 West Bengal Power Transmission Map: W.B: http://www.wbsetcl.in/docs/
ower%20map.pdf.

https://en.wikipedia.org/wiki/Kolkata
http://www.wbsetcl.in/docs/power%20map.pdf
http://www.wbsetcl.in/docs/power%20map.pdf
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able 1
etails of the costs involved in per-km transmission line construction
extrapolated).
Cost Parameter Costs (thousand INRa)

11 kV 22 kV 33 kV 66 kV

Double Circuit ACSR Conductor 370 740 1450 2900
Bay Extension Land Cost at Substation 240 550 1060 2120
Control Panel and Feeder 390 620 1050 2100
Metering and Breaker 450 830 1300 2600
Total Cost per Circuit-km (cckt−km) 1450 2740 4860 9720

a1 INR = 0.013 USD (as of June 25, 2021).

Table 2
Details of the cross-sectional area and resistance of each transmission line.
Transmission voltage (kV) Cross-section area (mm2) Resistance (�/km)

11 30 0.98
22 44 0.62
33 70 0.41
66 150 0.262

gives the benchmark costs for the Indian transmission network
extension on a per-km basis (missing data is extrapolated from
TSERC (2018)). Only 11 kV to 66 kV transmission lines are con-
sidered, because higher voltage lines are not feasible to support
the intermittency of renewable energy sources like solar power.

Eq. (3) is the transmission line cost function for each element
f the matrix [Cloc].

trans = cckt−km · Lmin (3)

where cckt−km is the cost of transmission per km of a circuit
(INR/km) (from Table 1), and Lmin is the line-of-sight distance to
he nearest substation from the mesh element (km).

Additionally, the peak-capacity of the SPV installation, cen-
ered at each point of simulation area, will be influenced by the
oltage rating and properties of the transmission line. Aluminum
able Steel Reinforced (ACSR) conductors are considered for the
ransmission lines at the voltage levels of 11 kV to 66 kV in
able 1 (Helioscart, 2020). The cross-sectional area of the trans-
ission lines4 influences the resistance of the line at each voltage

evel (Helioscart, 2020; Reta-Hernandez, 2006; UPPTCL, 2020).
he details used in the modeling are shown in Table 2.
The resistances and the length of transmission line are used

o calculate the peak-capacity at each mesh element for a given
ransmission line voltage (equation (4) below). The N-1 criterion
s also considered, where a transmission line must be operated at
ess than 50% capacity, to support maintenance and as a fail-safe
gainst one transmission line breakdown.

peak =
V 2

2(R ∗ Lmin)
(4)

where Ppeak is peak capacity of SPV plant at each element of
the mesh (MW), V is the maximum continuous operable voltage
of transmission line (kV), and R is the resistance/km of the line
(�/km). Thus, the capacity of the SPV plant is determined by the
parameters and limitations of the transmission line, making the
capacity endogenous in the model.

3.3. Land cost function (Cland)

The land cost of the MUFSP model is guided by the principle of
edonic pricing, which is an Ordinary Least Squares (OLS) regres-
ion model for determining property/land prices. Several studies

4 Transmission Cables in Japan: http://www.hst-cable.co.jp/products/pdf/
ableg3_2.pdf. (Accessed on Dec 10, 2020).
4885
Fig. 2. Kolkata Municipal Ward map, with CBD marked (as dot).5 Data pertaining
to each variable of Table 3, from each of the 141 wards, is input into the hedonic
model.

have established the hedonic method as a means to estimate the
land costs in urban and suburban areas, as a function of distance
from the Central Business District (CBD) of a city along with other
socio-economic predictors of land costs (Kain and Quigley, 1970;
McDonald and McMillen, 1990; Ottensmann et al., 2008; Mondal
et al., 2018). This is the first instance where the hedonic pricing
model is used for a spatial optimization analysis that involves
optimizing the installation costs of an SPV plant. Eq. (5) below
represents the basic structure of the hedonic land cost function.

ln (Cland) =

⎛⎝β0 +

n∑
i=1

βiXi +

m∑
j=1

βjXj + ε0

⎞⎠ (5)

where Cland is a vector consisting of 141 samples of land prices,
corresponding to municipal wards marked in Fig. 26, where the
1200 property price samples7 from 141 wards are integrated into
GIS interface (Google Earth Pro 7.3.3). Approximately 40% of the
value of a property represents land price (Bourassa et al., 2011;
Davis and Heathcote, 2007; Davis and Palumbo, 2008). The Xi is
the n social variables interpreted from Indian census,8 and Xj is
the m spatial variables (distance and travel times) (Franklin and
Waddell, 2003; Katz and Rosen, 1987) obtained using GIS tools.
The β0 is the intercept, the βi and βj correspond to regression
coefficients for Xi and Xj, respectively, and ε0 is the standard error
for regression. All the socio-economic variables, for modeling the
hedonic land cost function, are shown in Table 3, along with their
mean and standard deviation.

The results of the hedonic regression model are tested with the
Analysis of Variance (ANOVA) regression interface, and displayed

5 Directorate of Census Operations, West Bengal: https://censusindia.gov.in/
011census/dchb/1916_PART_B_DCHB_KOLKATA.pdf.
6 Kolkata Municipal Corporation Ward Data: https://www.kmcgov.in/
MCPortal/jsp/KMCWard.jsp.
7 West Bengal Market Value of Land: W.B. Directorate of Registration
nd Stamp Revenue (Accessed on Dec 10, 2020): https://wbregistration.gov.in/
S(qxuw3khld42pbmhgt50xhpyz))/MV/MV_Land.aspx?type=L.
8 Census of India 2011: https://censusindia.gov.in/DigitalLibrary/
FTableseries.aspx Historical census data of 2001: https://censusindia.gov.

n/pca/pcadata/pca.html. (Accessed on Dec 10, 2020).

http://www.hst-cable.co.jp/products/pdf/cableg3_2.pdf
http://www.hst-cable.co.jp/products/pdf/cableg3_2.pdf
https://censusindia.gov.in/2011census/dchb/1916_PART_B_DCHB_KOLKATA.pdf
https://censusindia.gov.in/2011census/dchb/1916_PART_B_DCHB_KOLKATA.pdf
https://www.kmcgov.in/KMCPortal/jsp/KMCWard.jsp
https://www.kmcgov.in/KMCPortal/jsp/KMCWard.jsp
https://wbregistration.gov.in/(S(qxuw3khld42pbmhgt50xhpyz))/MV/MV_Land.aspx?type=L
https://wbregistration.gov.in/(S(qxuw3khld42pbmhgt50xhpyz))/MV/MV_Land.aspx?type=L
https://censusindia.gov.in/DigitalLibrary/MFTableSeries.aspx
https://censusindia.gov.in/DigitalLibrary/MFTableSeries.aspx
https://censusindia.gov.in/pca/pcadata/pca.html
https://censusindia.gov.in/pca/pcadata/pca.html
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able 3
he Hedonic Variables and their Means and Standard Deviations (Please note that
he equations for calculating the values of each variable is shown in Appendix A).
Social variables (Xi) Mean Standard deviation

LN Land Cost (Dependent Variable) 7.664 0.612
Population Density (PD) 0.039 0.023
Sex Ratio (SR) 0.962 0.123
Literacy Rate (LR) 0.862 0.076
Female Literacy Rate (FLR) 0.866 0.077
Female to Male Lit Ratio (F-MLR) 0.954 0.108
Employment Rate (ER) 0.443 0.065
Female Employment Rate (FER) 0.25 0.095
Female to Male Emp Ratio (F-MER) 0.385 0.139
Youth Population Ratio (YPR) 0.063 0.022
Household Density (HD) 0.009 0.004
People per Household (PPH) 4.093 0.665

Spatial variables (Xj) Mean Standard deviation

Distance to CBD (Dcbd) 5.415 2.587
Travel Time to CBD (TT) 27.87 11.22
Bus Time to CBD (BT) 55.62 25.79
Train Time to CBD (TRT) 40.87 21.25

Table 4
The Hedonic Land cost function result (all the variables are significant at 1% level)
Variables Reg. coefficient Standard error P-Value

Intercept 10.018 0.227 0.000
Population Density (PD) −4.082 1.328 0.003
Youth Population Ratio (YPR) −4.725 1.331 0.001
People per Household (PPH) −0.164 0.054 0.003
Radial Distance to CBD (D) −0.08 0.029 0.007
Bus Time to CBD (BT) −0.014 0.003 0.000

Pearson R: 0.88
R-Square: 0.77

Significant F: 0.00

in Table 4 (Please note that only the significant variables are shown,
while the other hedonic models, that filter the insignificant variables,
are in Appendix B).

The land area, required by per unit peak-capacity of an SPV
plant, is shown in Eq. (6) below (IRENA, 2014, Page 12- the
standard area required by SPV plants according to latitude).

A = 0.0125Ppeak (6)

where A (km2) is the total SPV plant land-area with peak-capacity
Ppeak(MW) (from Eq. (4)).

The results of the hedonic pricing and the land area equation
are then used to estimate the land cost, according to the peak-
capacity of the SPV plant, at each point in the simulation area,
which is shown in Eq. (7) below.

Cland = 134600Ppeak · exp(10.018 − 4.082PD − 4.725YPR

− 0.164PPH − 0.08Dcbd − 0.014BT ) (7)

here the other variables have their pre-established meanings.
lease note that km2 is converted to ft2, since the data of the
ependent variable is in ft2.

.4. Labor cost functions (Cu−labor and Cs−labor )

The cost functions pertaining to labor costs are divided into:
killed labor and unskilled labor. The unskilled labor refers to the
hysical labor that is required in preparing the land, digging and
rilling for the mounting structures, and the physical placement
f the solar modules in the SPV plant. The skilled labor in SPV
lant installation comprises the financial, legal, electrical, logistic
nd design experts who are involved during the actual project
evelopment and pre- and post-operations of installation. It is
ssumed that unskilled labor is hired locally at the suburban area
4886
Table 5
The OLS (ANOVA) Regression results for daily Unskilled labor wage
determination.
Variables Reg. coefficient Standard error P-Value

Intercept 120.05 19.34 0.000
Male Literacy Rate (MLR) 229.60 18.82 0.000
Female Literacy Rate (FLR) 287.02 19.79 0.000
Male Employment Rate (MER) 319.13 22.27 0.000
Female Employment Rate (FER) 271.94 12.70 0.000

Pearson R: 0.97
R-Square: 0.94

Significant F: 0.00

where the SPV plant will be installed by the contractor in charge
of SPV plant development. On the other hand, the skilled labor
is assumed to be available in the metropolitan urban areas, and
have to be transported to the site of the SPV plant development
from the city by the contractor.

A study by Lillydahl and Singell (1985) examined how spatial
variation of socio-economic factors (like employment and literacy
rates) affect labor force participation. Rocha and Ponczek (2011)
established that literacy and employment rates of an area, are key
determinants for labor wages. The unskilled labor cost function
is formed by an OLS regression model in Kolkata city, where the
dependent variable is the daily wage of unskilled labor workforce,
averaged for the 141 wards of Fig. 2 (data from Kolkata Municipal
Corporation9). The independent variables are the corresponding
literacy and employment rates of the 141 wards (data from Indian
census 8). The regression results are shown in Table 5. The Indian
census data, for every village and town in the simulation area, is
fed into the GIS interface based on the latitude and longitudes.
A geographical moving average function establishes the literacy
rate and the employment rate for each element of the simulation
area, for estimation according to Eq. (8) below.

According to a study by Chandel et al. (2014), a total duration
of 12 man-hours (1.5 to 2 man-days) of unskilled labor is required
for installing 1 kW SPV plant peak-capacity.

Cu−labor = Ppeak · Iu−labor (120.05 + 229.60MLR

+ 287.02FLR + 319.13MER + 217.94FER) (8)

where Iu−labor represents the work intensity (days/MW) of un-
skilled labor required for installing a 1 MW peak-capacity SPV
plant, and the other variables have their pre-established mean-
ings.

The skilled labor cost function comprises: a. the daily wage of
consultants (surveyed based on the popular employers in Kolkata,
India10), since all the legal, financial, design and electrical experts
are hired as consultants to solar construction projects; and b.
the cost of fuel for transporting the skilled labor from the CBD
to the site of SPV plant construction (since CBD is almost the
geographical center of Kolkata – Fig. 2). The man-days of skilled
labor are taken as 2120 days/50 MW, according to the Institute
of Solar Technology,11 India. It is also assumed that an expert
would travel on a personal vehicle to the suburban site, and
thus, fuel cost is calculated for twice the distance from CBD to
the geolocated SPV plant site for each man-day of labor (data
collected from GIS). Eq. (9) below, shows the skilled labor cost
function for each point.

Cs−labor = Ppeak · Is−labor (W + 2Dcbd · µ · cfuel) (9)

9 KMC Ward Income Data: https://www.kmcgov.in/KMCPortal/jsp/
MCPortalHome1.jsp .
10 Average Salary of Kolkata: https://www.payscale.com/research/IN/Location=
olkata-West-Bengal/Salary. (Accessed on Jun 10, 2021).
11 Skilled Labor: https://institute-of-solar-technology.blogspot.com/2018/03/
anpower-requirements-for-solar-pv.html.

https://www.kmcgov.in/KMCPortal/jsp/KMCPortalHome1.jsp
https://www.kmcgov.in/KMCPortal/jsp/KMCPortalHome1.jsp
https://www.payscale.com/research/IN/Location=Kolkata-West-Bengal/Salary
https://www.payscale.com/research/IN/Location=Kolkata-West-Bengal/Salary
https://institute-of-solar-technology.blogspot.com/2018/03/manpower-requirements-for-solar-pv.html
https://institute-of-solar-technology.blogspot.com/2018/03/manpower-requirements-for-solar-pv.html
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here W represents the average daily wage (INR/day) for a skilled
aborer, Is−labor is the work intensity (days/MW) of skilled labor
or installing a 1 MW peak-capacity SPV plant, Dcbd is the distance
km) from CBD to a simulation area point (Table 3), µ is the
verage mileage12/fuel efficiency (km/liter) of personal vehicles
n India and cfuel is the cost of fuel13 (INR/liter) in India.

.5. Supply chain cost function (Csc)

For the purposes of modeling, it is firstly assumed that the
olar modules, inverters and mounting structures are produced
omestically in India and transported from Indian manufacturing
lants. The first part of the supply chain cost is the cost involved
n transporting the material, by railway network, from the man-
facturing plant to the local distribution center. The second part
f the supply chain is where the material is transported by road
reight from the local distribution center (LDC) to the simulation
rea point where the SPV plant might be installed. Fig. 1 shows
he location of the LDC. Table 6 shows the transportation distance
nd the total freight load of the material (obtained from Oguz and
entürk, 2019), along with the assumed freight rates for both road
nd rail. Eq. (10) below, represents the supply chain cost function
t each point of the simulation area.

sc = Ppeak · FL(1.66Drail + 12Dldc) (10)

here Csc is the total supply chain cost (INR) at each point of
imulation area according to peak-capacity Ppeak, FL is the load of
aterial to be transported (ton/MW), Drail is the distance by rail

km) according to Table 6, and Dldc is the distance by road from
the LDC to a simulation area point, where the SPV plant site will
be centered.

4. Results and discussion

4.1. Existence of the optima

The variation of the location-dependent costs Cloc(x), across
the simulation area of 2500 km2, is shown in Figs. 3 and 4. Fig. 3
shows the details of the costs when only substations SS1 and SS2
are considered. Fig. 4 shows the details of the costs considering all
the three substations of SS1 to SS3. The direction of observation
of the 3D visualization is from northeast of Fig. 1. It is found that,
there exist optimized locations, in the suburban region, where
the spatial variation of the total location-based SPV installation
costs is minimum, for each level of transmission voltage. Table 7
corresponds to Fig. 3, where SS2 influences the optima. Table 8
corresponds to Fig. 4, where SS3 influences the optima.

The land cost exponentially decreases as the socio-economic
determinants of PD, PPH, YPR and BT (Table 3) vary with distance
from CBD (Dcbd). The cost of unskilled labor linearly decreases
from the edge of the city due to decreasing employment and
literacy rates as we move away from the city. The substations
being located close to the city, transmission cost linearly increases
with distance from the substation. Transportation cost of skilled
labor and supply chain cost also increase with distances Dcbd
and Dldc, respectively. Thus, spatial socio-economic variances are
primarily caused by distance from the city, which spatially varies
the location-dependent costs in the suburban region.

It is observed, from Tables 7 and 8, that the total location-
based costs, at the minima points, are lesser when SS3 is con-
sidered, for every level of transmission voltage. Thus, it can be

12 Average Mileage of Cars: https://www.olx.in/en/cars_c84/q-mileage. (Ac-
essed on Jun 10, 2021)
13 Fuel Price in India: https://economictimes.indiatimes.com/wealth/fuel-price/
etrol. (Accessed on Jun 10, 2021).
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inferenced that a substation farther away from CBD will always
influence the global optimal cost location. However, the optimal
locations associated with SS2 form a second, localized minima,
which can be a second appropriate location for installing the
suburban SPV plant.

4.2. Significance of the minima positions

Figs. 3 and 4 show a significant spatial variation of the costs
in the 2500 km2 suburban area. However, in order to test the
significance of the minima Cloc(x) locations, the cost variation in
the immediate vicinity of the global minima (Table 8 and Fig. 4) is
studied from the contour patterns. From Fig. 4, it is observed that
the contour lines are more densely packed towards the substation
and CBD, while the packing is less dense perpendicular to the
substation and CBD. Therefore, Table 9 shows the minimum and
maximum spatial deviations (in km) that are incurred, for Cloc(x)
to increase by 5% and 10% from the value at the global minima.

It can be ascertained that the minima are very sharply defined
in the case of smaller SPV plants (11 kV case), which are closer
to the CBD. As the transmission voltage (and SPV plant capacity)
increase, the gradient of cost around the minima is less steep
than that of smaller SPV plants, but the cost is still significantly
optimized at the global minima. Thus, it can be said that ge-
olocation is very sensitive for optimizing the location-dependent
costs for a smaller SPV plant, and the sensitivity slightly decreases
with increasing capacity. Any deviation beyond 4.6 km, 3.4 km,
2.5 km, and 1.6 km (average of the 5% cost increases in Table 9),
in the 66 kV, 33 kV, 22 kV and 11 kV cases, respectively, will
significantly raise the Cloc(x) of the installation costs. This proves
that the MUFSP model is important in the consideration for cost
reduction/optimization of suburban SPV plants.

4.3. Variance of location-based costs at optima

Figs. 5 and 6 show the trend of the cost function variations at
the minima for each voltage.

Land Cost: The 11 kV optimal locations, corresponding to
small-scale Ppeak of SPV plant and being closer to the city, are
not economical due to higher land cost. The per unit land cost
decreases by a factor of 6, from small- to large-scale SPV plant
(4MW to 188MW), when serviced by SS2, and by a factor of 4
(6MW to 257MW), when connected to SS3. When the 11 kV line is
considered, the position of the optimal location is much closer to
the CBD for SS2, leading to a much higher per unit land cost than
SS3. Interestingly, the difference of distance of the minima from
CBD, between SS2 and SS3, reduce at higher voltages, resulting in
comparable per unit land cost at 66 kV.

Transmission cost: The transmission cost reduces by a factor of
nearly 2 in both cases, from 11 kV to 66 kV. At each voltage level,
the transmission cost difference, between similar voltage levels
for SS2 and SS3, is essentially double. This is particularly inter-
esting when we realize SS3 is twice the distance from the CBD
than SS2. We can conclude that the per unit costs of installation,
for a suburban SPV plant, will be higher when connecting to a
substation, closer to the city, due to a longer line of transmission.
Even though the optima, associated with SS2 and SS3, lie almost
at the same distance from the CBD for 22 kV to 66 kV, the peak-
capacity of the plant at the optima is lesser with SS2, due to a
longer transmission line offering greater resistance.

Labor costs: The ratio of land cost to total labor cost, at small-
scale Ppeak (4MW) is 5:1 for SS2 and 7:2 for SS3 (6MW). However,
with larger capacity SPV plants (connected by 33 kV and 66 kV),
the ratio of land cost to total labor costs become almost 1:1, with
a higher share of labor costs. It is observed that with the increase

in capacity, the per unit cost of unskilled labor decreases, while

https://www.olx.in/en/cars_c84/q-mileage
https://economictimes.indiatimes.com/wealth/fuel-price/petrol
https://economictimes.indiatimes.com/wealth/fuel-price/petrol
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Fig. 3. The total cost variation in the 500 × 500 simulation area, considering SS1 and SS2 for (a) 11 kV, (b) 22 kV, (c) 33 kV, (d) 66 kV lines. Minima is mostly on
extrapolated line from CBD to SS2.
Table 6
Assumptions for the supply chain cost function (per 1 MW of capacity).
Material Freight load FL (ton) per MW Rail supply chain Road supply chain

Distance Drail (km) Unit cost (INR/ton-km) Distance Dldc (km) Unit cost (INR/ton-km)

Panels 77.85 1859a
1.66b Variable 12c

Mounting Structure 9.48 1274d

Inverter 18.5 1903e

Total (Avg. Distance) 105.8 1814.3

aPanel Manufacturer: https://www.adanisolar.com/.
bIndia Railway Freight Rates: https://www.statista.com/statistics/741428/india-railway-freight-rate-per-metric-ton.
cTruck Freight Rates: https://nationalfreightindex.co.in/. (Scaled up, as per short distance service).
dMounting Structure Manufacturer: https://www.loomsolar.com/
eInverter Manufacturer: https://thesunexchange.com/project.
Table 7
Characteristics of the Optimized Location, when substations SS1 and SS2 are considered. SS2 influences the Optimal Cost Location.
Trans Volt
(kV)

Minima
Dist. from
CBD (km)

Minima
Dist. from
Substation
(km)

Capacity
(Ppeak- MW)

SPV Land
Area (A-
km2)

Land Cost
(Cland-
INR/MW)

Transmis-
sion Cost
(Ctrans-
INR/MW)

Skilled
Labor Cost
(Cs−labor-
INR/MW)

Unskilled
Labor Cost
(Cu−labor-
INR/MW)

Supply
Chain Cost
(Csc-
INR/MW)

Total
Minima Cost
(Cloc-
INR/MW)

11 29.05 15.57 3.97 0.049 13.22 × 106 9.42 × 106 1.19 × 106 1.46 × 106 0.31 × 106 25.61 × 106

22 38.29 24.47 15.95 0.199 5.46 × 106 7.66 × 106 1.25 × 106 1.34 × 106 0.35 × 106 16.08 × 106

33 42.49 28.63 46.38 0.580 3.22 × 106 6.17 × 106 1.31 × 106 1.29 × 106 0.38 × 106 12.38 × 106

66 45.58 31.77 188.35 2.35 2.27 × 106 4.04 × 106 1.35 × 106 1.24 × 106 0.39 × 106 9.30 × 106
4888

https://www.adanisolar.com/
https://www.statista.com/statistics/741428/india-railway-freight-rate-per-metric-ton
https://nationalfreightindex.co.in/
https://www.loomsolar.com/
https://thesunexchange.com/project
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Fig. 4. The total cost variation in the 500 × 500 simulation area, considering SS1, SS2 and SS3 for (a) 11 kV, (b) 22 kV, (c) 33 kV, (d) 66 kV lines. Minima is mostly
n extrapolated line from CBD to SS3.
able 8
haracteristics of the Optimized Location, when substations SS1, SS2 and SS3 are considered. SS3 influences the Optimal Cost Location.
Trans Volt
(kV)

Minima
Dist. from
CBD (km)

Minima
Dist. from
Substation
(km)

Capacity
(Ppeak- MW)

SPV Land
Area (A-
km2)

Land Cost
(Cland-
INR/MW)

Transmis-
sion Cost
(Ctrans-
INR/MW)

Skilled
Labor Cost
(Cs−labor-
INR/MW)

Unskilled
Labor Cost
(Cu−labor-
INR/MW)

Supply
Chain Cost
(Csc-
INR/MW)

Total
Minima Cost
(Cloc-
INR/MW)

11 34.07 11.14 5.54 0.069 8.22 × 106 4.83 × 106 1.22 × 106 1.33 × 106 0.32 × 106 15.91 × 106

22 40.56 17.14 22.76 0.285 4.07 × 106 3.77 × 106 1.28 × 106 1.27 × 106 0.35 × 106 10.76 × 106

33 45.56 22.24 59.70 0.746 2.25 × 106 3.72 × 106 1.32 × 106 1.21 × 106 0.38 × 106 8.88 × 106

66 47.57 24.36 257.3 3.22 1.78 × 106 2.53 × 106 1.35 × 106 1.20 × 106 0.41 × 106 7.29 × 106
Table 9
Distance from Global Minima where the cost increases by 5% and 10% (Fig. 4).
Transmission
voltage (kV)

Spatial deviation from the global minima for cost increase from minima (km)

Cost increase by 5% Cost increase by 10%

Minimum Dev. Maximum Dev. Minimum Dev. Maximum Dev.

11 1.5 1.6 2.6 2.6
22 2.2 2.9 3.2 4.2
33 2.7 4.1 4.2 6.0
66 3.8 5.4 5.8 7.5
that of skilled labor increases, because of the relation of the cost

functions to distance from the city.
4889
The per unit labor costs do not vary as much with distance

from the city, or with scale, as land and transmission costs (Figs. 5
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Fig. 5. Variation of the Location-Dependent Costs at the minima, when
connected to SS2.

Fig. 6. Variation of the Location-Dependent Costs at the minima, when
connected to SS3.

and 6). Also, the impact of the spatial variation of supply chain
costs is negligible, on the optimal locations, compared to that of
the other location-dependent costs. Moreover, the share of land
and transmission costs vary from 60% (66 kV case in Table 8) to
88% (11 kV case in Table 7) of the total location dependent costs
(Cloc(x)). Thus, the spatial nature of the land and transmission
costs are the most sensitive factors for determining the position
of the minima. In the cases of 11 kV to 33 kV transmission lines,
land and transmission cost effect is magnified, creating a very
sharp minima (Figs. 3 and 4). The minima are little less defined in
the case of 66 kV lines, but still significantly caused by land and
transmission costs.

4.4. Comparison of results with literature

The latest benchmark costs of India (UERC, 2019), estimates
land cost at INR 5 million/MW, labor cost at INR 3.28 million/MW
and transmission cost at INR 1.87 million/MW (total: INR 10.15
million/MW). In comparison with the results at the optima, it can
be seen that transmission costs are higher than the benchmark
estimates in suburban cases. However, the model provides an
opportunity for an immense reduction in land cost and unskilled
labor cost, as the results in the 33 kV and 66 kV are 1.5 to 2 times
lesser than that of the benchmark estimates. We can infer, that
overall installation costs are optimized with the spatial optimiza-
tion model to be below the benchmark estimates, for suburban
SPV plants between 50MW and 250MW. Chandel et al. (2014) de-
signed an on-site SPV plant for Jaipur city, India; when comparing
the land cost, it is seen that the estimates in Chandel et al. (2014)
were much larger compared to the spatially optimized results,
and thus, the importance of this model can be established. Our
4890
Fig. 7. The optimized cost positions with respect to Figs. 3 and 4, represented
with the geolocation of the SPV plants marked. The minima points lie almost on
the line extrapolated from the CBD to the substation. The minima move away
from the CBD with increasing voltage and SPV capacity. (Legend: 11 kV- A; 22 kV-
B; 33 kV- C; 66 kV- D).

results of the labor costs, however, agree with the estimates of
Chandel et al. (2014). In comparison with geolocation algorithms
of MCDM methods (Amjad and Shah, 2020; Chang, 2015; Wu and
Geng, 2014), our results provide a definitive outcome, where the
installation costs are shown to vary geospatially, and are even
optimized at a specific location within the limited geographic
boundary of the suburban region of Kolkata city. The biggest
difference between the MCDM geolocation and the spatial opti-
mization model discussed here, is that the MCDMmethods do not
provide the effect of scale of the power plant on the geolocation,
because MCDM algorithms do not empirically optimize location,
based on costs.

5. Simplification of spatial optimization

The position of the optima shifts away from the CBD as the SPV
peak-capacity increases. The shifting away of the optima from
the CBD is more noticeable during changes at lower capacities
(Tables 7 and 8) than at higher capacities. The optima also shift
away by a greater margin with change in capacity, if the SPV
plant, at the optima, is connected to a substation closer to the city.
Fig. 7 shows that in all the cases, the optimum geolocations (for
the cases in Tables 7 and 8) approximately lie on a straight line
that connects the CBD and the substation, to which the optima
are connected.

From the above paragraphs, it has been concluded that:

a. the distance from the city is the main cause for the spatial
variation of location-dependent costs,

b. land and transmission costs mainly determine the position
of the cost-optimized location, and

c. the optima lie on a straight line that connect the CBD and
the substation.

Thus, the findings of this study can be simplified, as shown in
Fig. 8 and Eqs. (11)–(13) below, for geolocating an SPV plant with
minimum location-dependent costs, within a limited geography.

Ignoring the labor costs, supply chain cost, and PD-PPH-YPR-
BT of land cost, the cost function Cloc(x) for location-dependent
cost optimization can be reduced to (from Eqs. (3) and (7)),

C (D) = Ae−α1D + α L (11)
loc 2 min
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Fig. 8. (Representative figure) land cost f1 decreases with distance from
ity CBD (D0). With substation located at city boundary (D1 km from CBD),
ransmission cost f2 increases linearly. At location with distance Dmin km from
BD, the total cost function f3 will have minimum cost Cmin .

here α1 is the per ft2 land cost, α2 is same as cckt−km, A is taken
from Eq. (6) (area of Ppeak SPV plant), and Cloc(D) is total cost as
a function of distance from CBD (Dcbd). Taking distance between
CBD and substation to be a constant k,

Cloc(D) = Ae−α1D + α2(D − k) (12)

Taking the first derivative of Cloc(D), the distance of the cost-
optimized location from CBD is,

Dmin =
1
α1

ln
Aα1

α2
(13)

The cumulative cost at the optima, according to the simplified
odel, can be found by substituting the value of Dmin in Eq. (12).
A solar plant designer only needs to consider the extrapolation

f a straight line for geolocating an optimized installation cost-
ocation for a suburban SPV plant, wherein the line connects
n economic focal point of a city (associated with land and
abor costs) to the connecting substation. The position can be
etermined simply by the consideration of land and transmis-
ion costs (Eq. (13)). In essence, a three-dimensional problem
two spatial dimensions and one cost dimension) is reduced to
two-dimension problem (one linear and one cost dimensions)

n optimization.
While the CBD is the focal point for both the land and the

abor cost functions in this paper, the CBD may be modified to
e any focal point of economic rationality, with respect to the
ocio-economics of a city. This case-study represents the outcome
ased on Kolkata city, India. In the case of suburban areas of
ountries with much higher land cost than India (such as U.S.
nd Japan), the optima will lie much farther away than the Indian
ase (Dmin is directly proportional to product of unit land cost and
PV plant area- Eq. (13)). In such a situation, the initial simulation
rea needs to be larger for seeking the optima. With an increased
istance from the focal point, the spatial variation of labor costs,
ay in such cases, become much more significant than the Indian
ase. However, with labor costs modeled from the same economic
ocal point as land costs, the optima will still lie on the extrap-
lation of the line connecting the focal point to the substation.
he only change to Eq. (13) for adding labor costs, will be to add
he per unit labor cost term to the natural logarithm denominator.
ith increasing per-km transmission costs, the optima will move

loser to the focal point, according to Eq. (13) (Dmin is inversely
roportional to the per circuit-km transmission cost).

. Conclusion

Among installation costs of SPV power plant, the location-

ependent costs are increasing in share to total installation costs, i

4891
ince the hardware costs are decreasing tremendously. The eco-
omic feasibility of SPV power plants depends on the reduc-
ion of location-dependent SPV installation costs. Geolocation
echniques that exist, for locating SPV installation sites, cannot
onsider the geospatial socio-economic factors that affect the
ocation-dependent costs spatially. Using a MUFSP model, the
actors that cause the spatial nature of location-dependent costs
or SPV were studied in a 2500 km2 suburban region of Kolkata
city, India, as a case-study. The main factors that could spatially
optimize these costs, were also analyzed and deduced.

The location-dependent costs were indeed minimized at spe-
cific locations, with the variation around the minima being sig-
nificantly sharp for defining the global minima (the location-
dependent costs increase by 10% with an average 2.6 km devi-
ation and an average 6.7 km deviation from the global minima,
in the 11 kV and 66 kV cases, respectively.). Based on selection
of substations at the edge of the city and consideration of 11 kV
to 66 kV transmission lines, the peak-capacity of SPV plants,
at the optima, varied from 4 MW to 257 MW, with larger SPV
plants being more economical than smaller ones. But the minima
were sharper for smaller capacities. As transmission voltage and
distance of substation from city increased, the capacity of SPV
plants at the minima also increased. The distance of the minima
also varied from 29 km to 48 km from the city center. The
important findings were:

a. The primary factor that causes the spatial variation of in-
stallation costs in a suburban boundary is the distance from
an economic focal point (position of maximum ft2 land
cost) of the city.

b. The variation of the land and transmission costs, in the
suburban region, were significantly more than that of labor
and supply chain costs.

c. The optima always lie on the extrapolation of a straight line
from the focal point to substation.

d. With increasing transmission line voltage and increasing
SPV capacity, the optima shift away from the focal point
along the line connecting the focal point to substation.

e. The distance of the optima from the economic focal point
is mainly influenced by the per unit land cost and the per
circuit-km transmission cost.

The biggest advantage this model provides is a spatial, empiri-
cal view of cost optimization for SPV planning. An energy planner
may utilize this model for geolocating a cost optimized loca-
tion for SPV plants, while simultaneously balancing the various
parameters affecting the various location-dependent costs. This
model can also allow large project developers to plan the land-
use around a city, even before an SPV plant is constructed. Also,
benchmarking policies of SPV costs towards location-dependent
costs can be modified according to the optimization idea pre-
sented in this paper. This model shows how spatial social char-
acteristics are important in renewable energy planning for a
city.

While this study has been tested on the Indian scenario for
Kolkata city, future studies can focus on other cities/countries
with different socio-economics, and validate whether the opti-
mized location for a suburban SPV plant lies on the line connect-
ing an economic focal point and a substation. A major limitation
of this model may be the restriction to suburban cases, which
future studies can expand upon to other geographical areas.
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Dcbd −0.213 0.014 −15.23 0.000

Pearson R 0.856
R – Square 0.733
Significant - F 0.000

Okumura: Visualization, Writing – review & editing, Investiga-
tion, Methodology. Keiichi N. Ishihara: Supervision, Conceptual-
zation, Methodology, Validation, Investigation, Writing – review
editing, Visualization, Project Administration.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

The corresponding author, Soumya Basu, would humbly like to
hank the Konosuke Matsushita Memorial Foundation Scholarship
f the Panasonic Corporation for funding his research at Kyoto
niversity, Japan. We all are, further, grateful for the insightful
omments offered by the anonymous peer reviewers at Energy Re-
orts. The generosity and expertise of one and all have improved
his study in innumerable ways and saved us from many errors;
hose that inevitably remain are entirely our own responsibility.

ppendix A. Hedonic function variables

The equations that were used to calculate the social variables
rom the raw census data in Table 3 are given as follows:
4892
Table B.4
Model 4 Hedonic test.
Variables Reg. coefficient Standard error T -Statistic P-Value

Intercept 10.41 0.246 42.16 0.000
PD −4.579 1.424 −3.215 0.002
YPR −5.291 1.449 −3.650 0.000
PPH −0.228 0.058 −3.943 0.000
Dcbd −0.147 0.033 −4.441 0.000
TT −0.0181 0.007 −2.352 0.020

Pearson R 0.859079532
R – Square 0.738017643
Significant - F 1.48286E−37

Table B.5
Model 5 Hedonic test.
Variables Reg. coefficient Standard error T -Statistic P-Value

Intercept 9.945 0.255 38.97 0.000
PD −3.980 1.331 −2.990 0.003
YPR −4.112 1.410 −2.917 0.0041
PPH −0.152 0.057 −2.689 0.008
Dcbd −0.069 0.035 −1.970 0.051
TT −0.003 0.008 −0.435 0.664
BT −0.011 0.004 −3.161 0.002
TRT −0.004 0.003 −1.334 0.184

Pearson R 0.881
R – Square 0.776
Significant - F 0.000

a. Population Density (PD) = Population in Ward / Area of
Ward in km2

b. Sex Ratio (SR) = Population (female) / Population (male)
c. Literacy Rate (LR) = Population (literate) / Population in

Ward
d. Female Literacy Rate (FLR) = Population (female literate) /

Population (female)
e. Female to Male Literacy Ratio (F-MLR) = Population (liter-

ate female) / Population (literate male)
f. Employment Rate (ER) = Population (total workers) / Pop-

ulation in Ward
g. Female Employment Rate (FER) = Population (female work-

ers) / Population (female)
h. Female to Male Employment Ratio (F-MER) = Population

(female workers) / Population (male workers)
i. Youth Population Ratio (YPR) = Population (0-6) / Popula-

tion in Ward
j. Household Density (HD) = Total Households in Ward/Area

of Ward in km2

k. People per Household (PPH) = Population in Ward/Total
Households in Ward

Appendix B. Hedonic regression test models

Below is an account of all the models that were tested in order
to approach the Final resultant Hedonic Land Function. (Note that
a P-value higher than 0.01 rejects the variable) (see Tables B.1–B.5).

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.egyr.2021.07.068.
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