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ARC SPACES AND CHIRAL SYMPLECTIC CORES

TOMOYUKI ARAKAWA1 AND ANNE MOREAU2

Dedicated to the 70th birthday of Professor Masaki Kashiwara

Abstract. We introduce the notion of chiral symplectic cores in a vertex
Poisson variety, which can be viewed as analogs of symplectic leaves in Poisson
varieties. As an application we show that any quasi-lisse vertex algebra is a
quantization of the arc space of its associated variety, in the sense that its
reduced singular support coincides with the reduced arc space of its associated
variety. We also show that the coordinate ring of the arc space of Slodowy
slices is free over its vertex Poisson center, and the latter coincides with the
vertex Poisson center of the coordinate ring of the arc space of the dual of the
corresponding simple Lie algebra.

1. Introduction

Any vertex algebra is canonically filtered [Li], and hence can be viewed as a
quantization of its associated graded vertex Poisson algebra. Since the structure
of a vertex algebra is usually quite complicated, it is often very useful to reduce a
problem of a vertex algebra to that of the geometry of the associated vertex Poisson
scheme, that is, the spectrum of the associated graded vertex Poisson algebra (see
e.g. [Fre, A3, A4]). Since a vertex Poisson scheme can be regarded as a chiral
analogue of a Poisson scheme, it is natural to try to upgrade notions in Poisson
geometry to the setting of vertex Poisson schemes. We note that the arc space
J∞X of an affine Poisson scheme X is a basic example of vertex Poisson schemes
([A1]).

In [BG] Brown and Gordon introduced the notion of symplectic cores in a Poisson
variety which is expected to be the finest possible algebraic stratification in which
the Hamiltonian vector fields are tangent, and showed that the symplectic cores in
fact coincide with the symplectic leaves if there is only finitely many numbers of
symplectic leaves. In this paper we introduce the notion of chiral symplectic cores
in a vertex Poisson scheme, which we expect to be the finest possible algebraic
stratification in which the chiral Hamiltonian vector fields are tangent.

We have two major applications of the notion of chiral symplectic cores.
First, recall that a vertex algebra V is called quasi-lisse if its associated variety

XV has finitely many symplectic leaves ([AK]). For instance, a simple affine vertex
algebra V associated with a simple Lie algebra g is quasi-lisse if and only if XV

is contained in the nilpotent cone of g. Therefore [A3], simple admissible affine
vertex algebras are quasi-lisse. We refer to [AM1, AM2, AM3] for other examples
of simple quasi-lisse vertex algebras. Furthermore, all the vertex algebras obtained
from four-dimensional N = 2 superconformal field theories ([BLL+]) are expected
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2 TOMOYUKI ARAKAWA AND ANNE MOREAU

to be quasi-lisse ([A5, BR]) see e.g. [BPRvR, LP, SXY, BKN, Cre, BMR, A6] for
examples of vertex algebras obtained from 4d N = 2 SCFTs. It is also believed in
physics that there exist Higgs branch vertex algebras and Column branch vertex
algebras in three-dimensional gauge theories that are expected to be quasi-lisse as
well ([CCG]).

We show that any quasi-lisse vertex algebra V is a quantization of the reduced
arc space of its associated variety, in the sense that its reduced singular support
Specm(grV ) coincides with J∞XV as topological spaces (Theorem 9.2). Moreover,
for a quasi-lisse vertex algebra V , we show that each irreducible component of
J∞XV (there are finitely many of them) is a symplectic core closure (Theorem 9.2).

Second, let g be a complex simple Lie algebra with adjoint group G. We identify
g with its dual g∗ through the Killing form of g. Denote by Sf the Slodowy slice
f+ge associated with an sl2-triple (e, h, f) of g. The affine variety Sf has a Poisson
structure obtained from that of g∗ by Hamiltonian reduction [GG]. Consider the
adjoint quotient morphism

ψf : Sf → g∗//G.

It is known [Pre1] that any fiber ψ−1
f (ξ) of this morphism is the closure of a sym-

plectic leave, which is irreducible and reduced. We show that any fiber of the
induced vertex Poisson algebra morphism

J∞ψf : J∞Sf → J∞(g∗//G)

is an irreducible and reduced chiral Poisson subscheme of J∞Sf . This result enables
us to show that the morphism (J∞ψf )

∗ induces an isomorphism of vertex Poisson
algebras between C[J∞g∗]J∞G and the vertex Poisson center of C[J∞Sf ], and that
C[J∞Sf ] is free over its vertex Poisson center (Theorem 11.1). As a consequence,
we obtain that the center of the affine W-algebra Wcri(g, f) associated with (g, f)
at the critical level is identified with the Feigin-Frenkel center z(ĝ), that is, the
center of the affine vertex algebra V cri(g) at the critical level (cf. Theorem 12.1).
This later fact was claimed in [A2] but the proof was incomplete. We take the
opportunity of this work to clarify this point.
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Notations. The topology is always the Zariski topology. So the term closure
always refers to the Zariski closure.

2. Vertex algebras

Let V be a vector space over C.

Definition 2.1. The vector space V is called a vertex algebra if it is equipped with
the following data:

• (the vacuum vector) a vector |0〉 ∈ V ,
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• (the vertex operators) a linear map

V → (EndV )[[z, z−1]], a 7→ a(z) =
∑

n∈Z

a(n)z
−n−1,

such that for all a, b ∈ V , a(n)b = 0 for n sufficiently large.
• (the translation operator) a linear map T : V → V .

These data are subject to the following axioms:

• |0〉(z) = idV . Furthermore, for all a ∈ V , a(z)|0〉 ∈ V [[z]] and lim
z→0

a(z)|0〉 = a.

• for any a ∈ V ,

[T, a(z)] = ∂za(z),

and T |0〉 = 0.
• for all a, b ∈ V , (z − w)Na,b [a(z), b(w)] = 0 for some Na,b ∈ Z>0.

Assume from now that V is a vertex algebra. A consequence of the definition
are the following relations, called Borcherds identities:

[a(m), b(n)] =
∑

i>0

(
m
i

)
(a(i)b)(m+n−i),(1)

(a(m)b)(n) =
∑

j>0

(−1)j
(
m
j

)
(a(m−j)b(n+j) − (−1)mb(m+n−j)a(j)),(2)

for m,n ∈ Z.
A vertex ideal I of V is a T -invariant subspace of V such that a(n)b ∈ I for all

a ∈ I, b ∈ V . By the skew-symmetry property which says that for all a, b ∈ V , the
identity

a(z)b = ezT b(−z)a
holds in V ((z)), a vertex ideal I of V is also a T -invariant subspace of V such that
b(n)a ∈ I for all a ∈ I, b ∈ V .

The vertex algebra V is called commutative if all vertex operators a(z), a ∈ V ,
commute each other, that is,

[a(m), b(n)] = 0, ∀a, b ∈ Z, m, n ∈ Z.

By (1), V is a commutative vertex algebra if and only if a(z) ∈ EndV [[z]] for all
a ∈ V .

A commutative vertex algebra has a structure of a unital commutative algebra
with the product:

a · b = a(−1)b,

where the unit is given by the vacuum vector |0〉. The translation operator T of V
acts on V as a derivation with respect to this product:

T (a · b) = (Ta) · b + a · (Tb).
Therefore a commutative vertex algebra has the structure of a differential algebra,
that is, a unital commutative algebra equipped with a derivation.

Conversely, there is a unique vertex algebra structure on a differential algebra R
with derivation ∂ such that:

a(z)b =
(
ez∂a

)
b =

∑

n>0

zn

n!
(∂na)b,
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for all a, b ∈ R. We take the unit as the vacuum vector. This correspondence gives
that the category of commutative vertex algebras is the same as that of differential
algebras [Bor].

3. Jet schemes and arc spaces

Our main references about jet schemes and arc spaces are [Mus, EM, Ish2].
Denote by Sch the category of schemes of finite type over C. Let X be an object

of this category, and n ∈ Z>0.

Definition 3.1. An n-jet of X is a morphism

SpecC[t]/(tn+1) −→ X.

The set of all n-jets of X carries the structure of a scheme JnX , called the n-th jet
scheme of X . It is a scheme of finite type over C characterized by the following
functorial property: for every scheme Z over C, we have

HomSch(Z, JnX) = HomSch(Z ×SpecC SpecC[t]/(tn+1), X).

The C-points of JnX are thus the C[t]/(tn+1)-points of X . From Definition 3.1,
we have for example that J0X ≃ X and that J1X ≃ TX , where TX denotes the
total tangent bundle of X .

The canonical projection C[t]/(tm+1) → C[t]/(tn+1), m > n, induces a trunca-
tion morphism

πX
m,n : JmX → JnX.

Define the (formal) disc as

D := SpecC[[t]].

The projections πX
m,n yield a projective system {JmX, πX

m,n}m>n of schemes.

Definition 3.2. Denote by J∞X its projective limit in the category of schemes,

J∞X = lim←−JnX.
It is called the arc space, or the infinite jet scheme, of X .

Thus elements of J∞X are the morphisms

γ : D → X,

and for every scheme Z over C,

HomSch(Z, J∞X) = HomSch(Z×̂SpecCD,X),

where Z×̂SpecCD means the formal completion of Z×SpecCD along the subscheme
Z×SpecC{0}. In other words, the contravariant functor

Sch→ Set, Z 7→ HomSch(Z×̂SpecCD,X)

is represented by the scheme J∞X .
We denote by πX

∞,n the morphism:

πX
∞,n : J∞X → JnX.

It is surjective if X is smooth. The canonical injection C →֒ C[[t]] induces a
morphism ιX∞ : X → J∞X , and we have πX

∞,0 ◦ ιX∞ = idX . Hence ιX∞ is injective and

πX
∞,0 is surjective (for any X). Similarly, the canonical injection C →֒ C[t]/(tn+1)
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induces a morphism ιXn : X → JnX , and we have πX
n,0 ◦ ιXn = idX . Hence ιXn is

injective and πX
n,0 is surjective (for any X).

When the varietyX is obvious, we simply write πm,n, π∞,n, ιn, ι∞, . . . for π
X
m,n, π

X
∞,n,

ιXn , ι
X
∞, . . ..

In the case where X = SpecC[x1, . . . , xN ] ∼= AN , N ∈ Z>0, is an affine space,
we have the following explicit description of J∞X . Giving a morphism γ : D → AN

is equivalent to giving a morphism γ∗ : C[x1, . . . , xN ]→ C[[t]], or to giving

γ∗(xi) =
∑

j>0

γi(−j−1)t
j , i = 1, . . . , N.

Define functions over J∞AN by setting for i = 1, . . . , N :

xi(−j−1)(γ) = j!γi(−j−1).

Then

J∞A
N = SpecC[xi(−j−1) ; i = 1, . . . , N, j > 0].

Define a derivation T of the algebra C[xi(−j−1) ; i = 1, . . . , N, j > 0] by

Txi(−j) = jxi(−j−1), j > 0.

Here we identify xi with xi(−1).

More generally, if X ⊂ AN is an affine subscheme defined by an ideal I =
(f1, . . . , fr) of C[x

1, . . . , xN ], that is, X = SpecR with

R = C[x1, x2, · · · , xN ]/(f1, f2, · · · , fr),
then its arc space J∞X is the affine scheme Spec(J∞R), where

J∞R :=
C[xi(−j−1) ; i = 1, 2, · · · , N, j > 0]

(T jfi ; i = 1, . . . , r, j > 0)
,(3)

and T is as defined above.
Similarly, we have for any n ∈ Z>0,

JnR :=
C[xi(−j−1) ; i = 1, 2, · · · , N, j = 0, . . . , n]

(T jfi ; i = 1, . . . , r, j = 0, . . . , n)
.(4)

The derivation T acts on the quotient ring J∞R given by (3). Hence for an affine
scheme X = SpecR, the coordinate ring J∞R = C[J∞X ] of its arc space J∞X is
a differential algebra, hence is a commutative vertex algebra.

Remark 3.3 ([EM]). The differential algebra (J∞R, T ) is universal in the following
sense. We have a C-algebra homomorphism j : R → J∞R such that if (A, ∂) is
another differential algebra, and if f : R → A is a C-algebra homomorphism, then
there is a unique differential algebra homomorphism h : J∞R → A making the
following diagram commutative:

R
j

//

f
!!
❉❉

❉❉
❉❉

❉❉
❉ (J∞R, T )

h
yys
s
s
s
s

(A, ∂)
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The map from a scheme to its n-th jet schemes and arc space is functorial.
If f : X → Y is a morphism of schemes, then we naturally obtain a morphism
Jnf : JnX → JnY making the following diagram commutative,

JnX
Jnf

//

πX
n,0

��

JnY

πY
n,0

��

X
f

// Y

We also have the following for every schemes X,Y ,

Jn(X × Y ) ∼= JnX × JnY.(5)

If A is a group scheme over C, then JnA is also a group scheme over C. Moreover,
by (5), if A acts on X , then JnA acts on JnX .

From now on, whenever dealing with the schemes JnX and J∞X we will restrict
to their C-valued points, unless otherwise specified. Since the ground field is C,
C-valued points corresponds to maximal ideals [Ish1, Proposition 2.10].

Denote by Xred the reduced scheme of X . Since C[[t]] is a domain, we have
Hom(SpecC[[t]], X) = Hom(SpecC[[t]], Xred). Hence, the natural morphismXred →
X induces an isomorphism J∞Xred

≃−→ J∞X of topological spaces. (Note that the
analogous assertion is false for the spaces JnX .) Similarly, if X = X1 ∪ . . . ∪ Xr,
where all Xi are closed in X , then

J∞X = J∞X1 ∪ . . . ∪ J∞Xr.

Moreover, we have the following result (which is false for the jet spaces JnX).

Theorem 3.4 (Kolchin [Kol]). The arc space J∞X is irreducible if X is irreducible.

More precisely, we have for any n ∈ Z>0,

JnX = π−1
n,0(Xsing) ∪ π−1

n,0(Xreg),(6)

and π−1
n,0(Xreg) is an irreducible component of JnX . Here, Xsing denotes the sin-

gular locus of X , and Xreg its open complement in X . Kolchin’s theorem says
that

J∞X = π−1
∞,0(Xreg).

Let n ∈ Z>0 ∪ {∞}. The natural projection πX
n,0 : JnX → X corresponds to the

embedding R →֒ JnR, x
i → xi(−1) in the case where X = SpecR is affine. If m is a

maximal ideal of JnR, note that πX
n,0(m) = m ∩R.

For I an ideal of R, we denote by JnI the smallest T -stable ideal of JnR con-
taining I, that is, JnI is generated by the elements T ja, j = 0, . . . , n, a ∈ I. Recall
that ιXn denotes the embedding X →֒ JnX , and observe that ιXn (m) = Jn(m), for
m a maximal ideal of R.

4. Vertex Poisson algebras and chiral Poisson ideals

Definition 4.1. A commutative vertex algebra V is called a vertex Poisson algebra
if it is also equipped with a linear operation,

V → Hom(V, z−1V [z−1]), a 7→ a−(z),



ARC SPACES AND CHIRAL SYMPLECTIC CORES 7

such that

(Ta)(n) = −na(n−1),(7)

a(n)b =
∑

j>0

(−1)n+j+1 1

j!
T j(b(n+j)a),(8)

[a(m), b(n)] =
∑

j>0

(
m
j

)
(a(j)b)(m+n−j),(9)

a(n)(b · c) = (a(n)b) · c+ b · (a(n)c)(10)

for a, b, c ∈ V and n,m > 0. Here, by abuse of notations, we have set

a−(z) =
∑

n>0

a(n)z
−n−1

so that the a(n), n > 0, are “new” operators, the “old” ones given by the field a(z)
being zero for n > 0 since V is commutative.

The equation (10) says that a(n), n > 0, is a derivation of the ring V . Note that
(8), (9) and (10) are equivalent to the “skewsymmetry”, the “Jacobi identity” and
the “left Leibniz rule” in [Kac, §5.1].

It follows from the definition, that we also have the “right Leibniz rule” ([Kac,
Exercise 4.2]):

(a · b)(n)c =
∑

i>0

(b(−i−1)a(n+i)c+ a(−i−1)b(n+i)c),(11)

for all a, b, c ∈ V , n ∈ Z>0.
Arc spaces over an affine Poisson scheme naturally give rise to a vertex Poisson

algebras, as shows the following result.

Theorem 4.2 ([A1, Proposition 2.3.1]). Let X be an affine Poisson scheme, that
is, X = SpecR for some Poisson algebra R. Then there is a unique vertex Poisson
algebra structure on J∞R = C[J∞X ] such that

a(n)b =

{
{a, b} if n = 0

0 if n > 0,

for a, b ∈ R.
Let V be a vertex Poisson algebra, and I an ideal of V in the associative sense.

Definition 4.3. We say that I is a chiral Poisson ideal of V if a(n)I ⊂ I for all
a ∈ V , n ∈ Z>0.

A vertex Poisson ideal of V is a chiral Poisson ideal that is stable under the
action of T . The quotient space V/I inherits a vertex Poisson algebra structure
from V if I is a vertex Poisson ideal.

Lemma 4.4 ([Dix, 3.3.2]). If I is a vertex (resp. chiral) Poisson ideal of V , then

so is its radical
√
I.

Definition 4.5. Let V be a vertex Poisson algebra. We denote by Z(V ) the vertex
Poisson center of V :

Z(V ) := {z ∈ V | z(n)a = 0, ∀ a ∈ V, n > 0}
By (8), we also have Z(V ) = {z ∈ V | a(n)z = 0, ∀ a ∈ V, n > 0}.
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The vertex Poisson center Z(V ) is a vertex Poisson ideal of V . Indeed, it is
clearly invariant by the derivations a(n), a ∈ V , n ∈ Z>0. Moreover, it is invariant
by T by the axiom (7).

We say that a scheme X is a vertex Poisson scheme if its structure sheaf OX

is a sheaf of vertex Poisson algebras. If X = SpecV is an affine vertex Poisson
scheme and I is a chiral Poisson ideal of V , we call the spectrum Spec(V/I) a chiral
Poisson subscheme of X . A chiral Poisson scheme is a chiral Poisson subscheme of
some vertex Poisson scheme.

By Lemma 4.4, the reduced scheme of a vertex Poisson scheme (resp. chiral
Poisson scheme) is also a vertex Poisson scheme (resp. chiral Poisson scheme). In
this case, we rather call it a vertex Poisson variety or a chiral Poisson variety.

Lemma 4.6. Let I be an ideal of J∞R in the associative sense. Then I is a chiral
Poisson ideal of J∞R if and only if a(n)I ⊂ I for all a ∈ R, n ∈ Z>0.

Proof. The “only if” part is obvious.
Assume that a(n)I ⊂ I for all a ∈ R, n ∈ Z>0. We wish to show that a(n)I ⊂ I

for all a ∈ J∞R, n ∈ Z>0. Let u ∈ I. First, by (7),

(T ja)(n)u =




(−1)n n!

(n− j)!a(n−j)u if 0 6 j 6 n,

0 if j > n,

for all a ∈ R, n, j ∈ Z>0. Hence (T ja)(n)u ∈ I for all a ∈ R, n, j ∈ Z>0 by our
assumption. Next, by (11) and the above, (a · b)(n)u is in I for all a, b of the form

T jv, v ∈ R. Since J∞R is generated as a commutative algebra by the elements
T jv, v ∈ R, we get the expected statement. �

5. Rank stratification

Let X = SpecR be a reduced Poisson scheme, and {x1, . . . , xr} a generating set
for R. Let n ∈ Z>0. Then {T jxi | i = 1, . . . , r, j = 0, . . . , n} is a generating set for
JnR = C[JnX ]. We have by the equality (10) of [A1] that for any x, y ∈ R,

x(k)(T
ly) =

{
l!

(l−k)!T
l−k{x, y} if l > k,

0 otherwise.
(12)

Hence, for x ∈ R, the derivations x(k) of J∞R acts on JnR if k ∈ {0, . . . , n} by the
description (4) of JnR.

Consider the (n+ 1)r-size square matrix

Mn =
(
xi(p)(T

qxj)
)
16i,j6r, 06p,q6n

∈ Mat(n+1)r(JnR).

For x ∈ JnX , set

Mn(x) =
(
xi(p)(T

qxj) +mx

)
16i,j6r, 06p,q6n

∈ Mat(n+1)r(C),

where mx is the maximal ideal of JnR corresponding to x.

Lemma 5.1. Let x ∈ JnX. We have

rankMn(x) = (n+ 1) rankM0(π
X
n,0(x)).

In particular, rankMn(x) is independent of the choice of generators {x1, . . . , xr}
and depends only on πX

n,0(x) ∈ X.
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Proof. By definition, Mn is the following matrix:



x1(0)x
1 · · · x1(0)x

r · · · · · · x1(0)(T
nx1) · · · x1(0)(T

nxr)
...

...
xr(0)x

1 · · · xr(0)x
r · · · · · · xr(0)(T

nx1) · · · xr(0)(T
nxr)

...
...

...
...

x1(n)x
1 · · · x1(n)x

r · · · · · · x1(n)(T
nx1) · · · x1(n)(T

nxr)
...

...
xr(n)x

1 · · · xr(n)x
r · · · · · · xr(n)(T

nx1) · · · xr(n)(T
nxr)




So by (12) it has the form



M0 ∗ · · · ∗
0 1!M0

. . .
...

...
. . .

. . . ∗
0 · · · 0 n!M0



,

whence the first statement. Here we identify the elements {xi, xj} = xi(0)x
j of R

with elements of JnR through the embedding R →֒ JnR. The independence of the
choice of generators follows from [Van]. �

For x ∈ JnX , let rkx to be 1/(n + 1) × rankMn(x). By Lemma 5.1, rkx is a
non-negative integer. Moreover, for x ∈ J∞X , rkπX

∞,n(x) does not depend on n.
So we can define rk x to be this number. Lemma 5.1 says that rk x is nothing but
the rank of the matrix M0 at x0 := πX

∞,0(x).
Let L be a chiral Poisson subscheme of J∞X . We define the rank stratification

of L as follows. For j ∈ Z>0, set:

L0j := {x ∈ L | rk x = j} ⊂ Lj := {x ∈ L | rkx 6 j},
Also, set L̄ = πX

∞,0(L) ⊂ X , and put

L̄0j := {x ∈ L̄ | rankM0(x) = j} ⊂ L̄j := {x ∈ L̄ | rankM0(x) 6 j}.
For L = J∞X , we have L̄ = X and

X =
⊔

j

L̄0j

is precisely the rank stratification of X defined by Brown and Gordon [BG]. Note
that Lj = (πX

∞,0)
−1(L̄j) and L0j = (πX

∞,0)
−1(L̄0j ) by definition.

Lemma 5.2. (1) Lj is a closed subset of L with L0 ⊆ L1 ⊆ · · · ⊆ Ld = L for
some d ∈ Z>0.

(2) Lj is a chiral Poisson subscheme of J∞X.

Proof. Part (1) is clear by Lemma 5.1 and [BG, Lemma 3.1 (1)].
(2) Let Ij be the defining ideal of L̄j . By [BG, Lemma 3.1 (2)], Ij is a Poisson

ideal of R. On the other hand, observe that for n > 0,

(πX
n,0)

−1(L̄j) ∼= L̄j ×X JnX.
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Hence the defining ideal of Lj = (πX
n,0)

−1(L̄j) is Ij⊗RJ∞R. So it is enough to
show that Ij⊗RJ∞R is chiral Poisson.

Let u =
∑

i bici ∈ Ij⊗RJ∞R, with bi ∈ Ij , ci ∈ J∞R, Then by (10) and
Theorem 4.2, for all a ∈ R and k > 0,

a(k)u =
∑

i

(
(a(k)bi) · ci + bi · (a(k)ci)

)
=

∑

i

(
δk,0{a, bi} · ci + bi · (a(k)ci)

)

is in Ij⊗RJ∞R since Ij is a Poisson ideal of R. So Ij⊗RJ∞R is a chiral Poisson
ideal by Lemma 4.6.

�

6. Chiral Poisson cores and chiral symplectic cores

Let X = SpecR be a reduced Poisson scheme. For I an ideal of R, the Poisson
core of I is the biggest Poisson ideal contained in I. We denote it by PR(I). The
symplectic core CR(x) of a point x ∈ X is the equivalence class of x for ∼, with

x ∼ y ⇐⇒ PR(mx) = PR(my),

where mx denotes the maximal ideal of R corresponding to x. We refer the reader
to [BG] for more details about Poisson cores and symplectic cores.

The aim of this section is to define analogue notions in the setting of vertex
Poisson algebras.

Let V be a vertex Poisson algebra. By ideal of V we mean an ideal of V in
the associative sense. We will always specify vertex Poisson ideal or chiral Poisson
ideal (see Section 4) if necessary. An ideal I of V is said to be prime if it is prime
in the associative sense.

Definition 6.1. The chiral Poisson core of an ideal I of V is the biggest chiral
Poisson ideal of V contained in I. It exists since the sum of two chiral Poisson
ideals is chiral Poisson. We denote the chiral Poisson core of I by PV (I).

Lemma 6.2. Let I be an ideal of V .

(1) PV (I) = {x ∈ I | a1(n1)
. . . ak(nk)

x ∈ I for all ai ∈ V, k > 0, ni > 0}.
(2) ([Dix, Lemma 3.3.2(ii)]) If I is prime, then PV (I) is prime.
(3) If I is radical, then PV (I) is radical.

Proof. Set J = {x ∈ I | a1(n1)
. . . ak(nk)

x ∈ I for all ai ∈ V, k > 0, ni > 0}.
(1) By construction, J ⊂ I and J is chiral Poisson. Hence J ⊂PV (I). But if K

is a chiral Poisson ideal of V contained in I, then for all x ∈ K, a ∈ V and n ≥ 0,
a(n)x ∈ K ⊂ I, whence x ∈ J . In conclusion, J = PV (I).

(3) Assume that I is radical. Since PV (I) is chiral Poisson,
√

PV (I) is chiral

Poisson as well by Lemma 4.4, and it is contained in
√
I since PV (I) is contained

in I. Hence, √
PV (I) ⊂PV (

√
I) = PV (I).

But clearly PV (I) ⊂
√

PV (I), whence the equality
√

PV (I) = PV (I) and the
statement. �

Corollary 6.3. Assume that there are finitely many minimal prime ideals p1, . . . , pr
over I, that is, I = p1 ∩ . . . ∩ pr, and the prime ideals p1, . . . , pr are minimal. If I
is chiral Poisson, then so are the prime ideals p1, . . . , pr.
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Proof. If I is chiral Poisson, then I ⊂ PV (pi) ⊂ pi for all i. But by Lemma 6.2
(2), the ideals PV (pi), i = 1, . . . , r, are all prime. By minimality of the prime
ideals pi we deduce that pi = PV (pi) for all i. In particular, the prime ideals pi,
i = 1, . . . , r, are all chiral Poisson. �

Set

L := Specm(V ).

We define a relation ∼ on L by

x ∼ y ⇐⇒ PV (mx) = PV (my),

where mx is the maximal ideal corresponding to x ∈ L.
Clearly ∼ is an equivalence relation. We denote the equivalence class in L of x

by CL(x), so that

L =
⊔

x

CL(x).

We call the set CL(x) the chiral symplectic core of x in L.
For I an ideal of V , we denote by V (I) the corresponding zero locus in SpecmV ,

that is,

V (I) = {x ∈ L | f(x) = 0 for all f ∈ I} = {x ∈ L | mx ⊃ I},
and by Ṽ (I) the corresponding closed scheme for the Zariski topology, that is,

Ṽ (I) = {p ∈ SpecV | p ⊃ I}.

Lemma 6.4. Let x ∈ L. Then Ṽ (PV (mx)) is the smallest chiral Poisson scheme

containing CL(x). Moreover, it is reduced and irreducible.

Proof. First of all, since PV (mx) is a chiral Poisson, prime and radical ideal of V by

Lemma 6.2, Ṽ (PV (mx)) is a reduced irreducible (closed) chiral Poisson subscheme

of L. For any y ∈ CL(x), we have my ⊃ PV (my) = PV (mx). Hence CL(x) ⊂
Ṽ (PV (mx)). Next, if I is a chiral Poisson ideal of V such that CL(x) ⊂ Ṽ (I), then
in particular mx ⊃ I. Since I is chiral Poisson, we get that mx ⊃ PV (mx) ⊃ I

by maximality of PV (mx). Hence CL(x) ⊂ Ṽ (PV (mx)) ⊂ Ṽ (I). This proves the
statement. �

Lemma 6.5. Let L′ be a reduced closed vertex Poisson subscheme of L. Then for
any x ∈ L′, we have CL′(x) = CL(x).

Proof. Since L′ is a reduced closed vertex Poisson subscheme of L, L′ = Specm(V/I),
where I is a vertex Poisson ideal of V . The maximal ideals of V/I are pre-
cisely the quotients m/I, where m is a maximal ideal of V containing I, and
PV/I(m/I) = PV (m)/I.

Hence for x ∈ L′, we have

CL′(x) = {y ∈ L′ |PV/I(my/I) = PV/I(mx/I)}
= {y ∈ L′ |PV (my)/I = PV (mx)/I} = {y ∈ L′ |PV (my) = PV (mx)},

where mx is the maximal ideal of V corresponding to x. The maximal ideal mx

contains I because x ∈ L′. On the other hand,

CL(x) = {y ∈ L |PV (my) = PV (mx)}.
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But if PV (my) = PV (mx) for some y ∈ L, then my ⊃ PV (my) = PV (mx) ⊃ I
because I is a chiral Poisson ideal of V contained in mx. This shows that if y ∈
CL(x), then y ∈ L′. Therefore

CL(x) = {y ∈ L′ |PV (my) = PV (mx)} = CL′(x).

�

Proposition 6.6. Let z ∈ Z(V ) and x ∈ L. Then z is constant on V (PV (mx))

and so on CL(x).

Proof. Let y ∈ V (PV (mx)), and let χx, χy be the homomorphisms χx : V → C,
χy : V → C, corresponding to the maximal ideals mx,my. It is enough to show that
χx(z) = χy(z). Set λ := χx(z). Then z − λ ∈ kerχx = mx. In addition since z
is in the center, so is z − λ, and then a(n)(z − λ) = 0 for any a ∈ V and n > 0.
Therefore z − λ ∈PV (mx) ⊂ my, whence χy(z) = λ. By Lemma 6.4, we conclude

that z is constant on CL(x). �

Lemma 6.7. Let X = SpecmR be a reduced Poisson scheme, and let L be a closed
vertex Poisson subscheme of J∞X. Set L̄ = πX

∞,0(L). Let x ∈ L.
(1) We have πX

∞,0(CL(x)) ⊂ CL̄(π
X
∞,0(x)).

(2) If rkx = j, then CL(x) ⊂ L0j .
Proof. (1) We have L = Specm J∞R/I, with I a vertex Poisson ideal of J∞R.

Let x ∈ L. Let us first show that:

PR/(I∩R)(mx ∩R/(I ∩R)) = PJ∞R/I(mx/I) ∩R/(I ∩R).(13)

The inclusion PJ∞R/I(mx/I) ∩ R/(I ∩ R) ⊂ PR/(I∩R)(mx ∩ R/(I ∩ R)) is clear
because the left-hand side is Poisson and is contained in mx ∩ R/(I ∩R). For the
converse inclusion, let a ∈ R, k ∈ Z>0 and b ∈ PR/(I∩R)(mx ∩ R/(I ∩ R)). Then
by Theorem 4.2

a(k)(b + I ∩R) = δk,0({a, b}+ {a, I ∩R}) ∈PR/(I∩R)(mx ∩R/(I ∩R))
since PR/(I∩R)(mx ∩R/(I ∩R)) and I ∩R are Poisson. By Lemma 4.6, this shows
that PR/(I∩R)(mx ∩ R/(I ∩ R)) is a chiral Poisson ideal of J∞R/I, contained in
mx/I, whence the expected equality (13).

Let now y ∈ CL(x). Then PJ∞R/I(my/I) = PJ∞R/I(mx/I). From (13), we
deduce that

PR/(I∩R)(my ∩R/(I ∩R)) = PR/(I∩R)(mx ∩R/(I ∩R)),
and so

πX
∞,0(y) ∈ CL̄(π

X
∞,0(x))

since my∩R/(I∩R) is the maximal ideal of R/(I∩R) corresponding to πX
∞,0(y) ∈ L̄.

This proves the statement.

(2) By Lemma 5.1, L0j = (πX
∞,0)

−1(L0

j). On the other hand, by [BG, Proposition

3.6], CL̄(π
X
∞,0(x)) ⊂ L

0

j . Hence by (1),

CL(x) ⊂ (πX
∞,0)

−1(CL̄(π
X
∞,0(x))) ⊂ (πX

∞,0)
−1(L0j) = L0j .

�

By Lemma 6.7 and Lemma 5.1, note that the stratification by chiral symplectic
cores is a refinement of the rank stratification.
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7. n-chiral Poisson cores in n-th jet schemes

Let R be a Poisson algebra, n ∈ Z>0. Recall that the derivations a(k), k > 0,
of J∞R acts on JnR by (4) and (12). We say that an ideal I of JnR is n-chiral
Poisson if a(k)I ⊂ I for any a ∈ R and any k = 0, . . . , n.

Lemma 7.1. For a Poisson ideal I of R, JnI is n-chiral Poisson.

Proof. This follows from (12) since I is a Poisson ideal of R. �

If I is an ideal of JnR, we define the n-chiral Poisson core of I to be the biggest
n-chiral Poisson ideal contained in I. We denote it by PJnR(I).

Set X := SpecmR. We define a relation ∼ on JnX by:

x ∼ y ⇐⇒ PJnR(mx) = PJnR(my),

where mx denotes the maximal ideal of JnR corresponding to x.
Clearly ∼ is an equivalence relation. We denote the equivalence class in JnX of

x by CJnX(x), so that

JnX =
⊔

x

CJnX(x).

We call the set CJnX(x) the n-chiral symplectic core of x in JnX .
Similarly to the case of chiral Poisson cores in a vertex Poisson algebra, we obtain

the following facts:

Lemma 7.2. (1) Let I be an ideal of JnR. If I is prime (resp. radical) then
PJnR(I) is prime (resp. radical).

(2) Let I be an ideal of JnR. If I is n-chiral Poisson, then so are the minimal
prime ideals over I.

(3) Let x ∈ JnX. Then Ṽ (PJnR(mx)) is the smallest n-chiral Poisson sub-

scheme of JnX containing CJnX(x).
(4) Let Y be a reduced Poisson subscheme of X, and let x ∈ JnY . Then

CJnX(x) = CJnY (x) and πX
n,0(CJnX(x)) ⊂ CY (π

X
n,0(x)).

Lemma 7.3. Let Y be a reduced n-chiral Poisson subscheme of JnX, and y ∈ Y .
Let {x1, . . . , xr} be a generating set for R, and consider the matrix Mn(y) as in
Section 5. Suppose that the matrix Mn(y) has maximal rank (n + 1)r. Then the
tangent space at y of Y has dimension at least (n+1)r. Moreover, Y has dimension
at least (n+ 1)r.

Proof. Since Y is a reduced n-chiral Poisson subscheme of JnX , Y = Spec JnR/I,
where I is a reduced n-chiral Poisson of JnR. Moreover, I ⊂ my since y ∈ Y , where
my denotes the maximal ideal of JnR corresponding to y.

The hypothesis implies that the derivations xi(k), i = 1, . . . , r, k = 0, . . . , n,

are linearly independent in Der(OJnX,y,C). Indeed, if for some λi(k), i = 1, . . . , r,

k = 0, . . . , n,
r∑

i=1

n∑

k=0

λi(k)x
i
(k) = 0 in Der(OJnX,y,C),

then
r∑

i=1

n∑

k=0

λi(k)(x
i
(k)(T

lxj) +my) = 0 for all j = 1, . . . , r, l = 0, . . . , r,
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and so λi(k) = 0 for all i = 1, . . . , r and k = 0, . . . , n since the matrix Mn(y) has

rank (n+ 1)r.
Since I is n-chiral Poisson and is contained in my, we get that for all i =

1, . . . , r and k = 0, . . . , n, xi(k)(I) ⊂ I ⊂ my. Hence, the derivations xi(k), i =

1, . . . , r, k = 0, . . . , n are also linearly independent in Der(OY,y,C) since OY,y =
OJnX,y/(OJnX,y ∩ I). This shows that the tangent space at y of Y has dimension
at least (n+ 1)r.

The set of points y ∈ Y such that matrix Mn(y) has maximal rank (n + 1)r is
a nonempty open subset of Y . Hence it meets the set of smooth points of Y . By
the first step, we deduce that for some smooth point y ∈ Y , the tangent space TyY
has dimension at least (n+ 1)r. Therefore Y has dimension at least (n+ 1)r. �

Recall that ιn (resp. ι∞) denotes the canonical embedding from X to JnX
(resp. J∞X). For x in X , we simply denote by xn (resp. x∞) the element ιn(x)
(resp. ι∞(x)).

Proposition 7.4. Let x ∈ X, and set Y := CX(x).

(1) For any n ∈ Z>0,

(πY
n,0)

−1(Yreg) = V (PJnR(mxn
)).

In particular, if JnY is irreducible, then

JnY = V (PJnR(mxn
)).

(2) We have:
J∞Y = V (PJ∞R(mx∞

))

Proof. (1) By Lemma 7.2 (4), CJnX(xn) = CJnY (xn), and

CJnX(xn) ⊂ (πY
n,0)

−1(CX(x)) ⊂ (πY
n,0)

−1(Yreg)

since by [BG, Lemma 3.3 (2)], CX(x) is smooth in its closure. Hence

CJnX(xn) ⊂ (πY
n,0)

−1(Yreg) ⊂ JnY.

Since (πY
n,0)

−1(Yreg) is an irreducible component of JnY (cf. Section 3) and since

JnY is n-chiral Poisson, (πY
n,0)

−1(Yreg) is an n-chiral Poisson subscheme of JnX .
Hence by Lemma 6.4,

CJnX(xn) ⊂ V (PJnA(mxn
)) ⊂ (πY

n,0)
−1(Yreg),

where A = C[Y ]. Let x1, . . . , xr be generators of A, where r = dimY . By [BG,
Proposition 3.6] (proof of (2)), the matrix M0 has maximal rank r at mx. Hence, by
Lemma 5.1, Mn has rank (n+1)r at mxn

. Since PJnA(mxn
) is an n-chiral Poisson

ideal of JnA, it results from Lemma 7.3 that V (PJnA(mxn
))) has dimension at

least (n+ 1)r. But

dim (πY
n,0)

−1(Yreg) = (n+ 1)r.

Both V (PJnA(mxn
))) and (πY

n,0)
−1(Yreg) are closed and irreducible, whence the

first assertion of (1). Indeed note that V (PJnA(mxn
))) = V (PJnR(mxn

))) since
CJnX(xn) = CJnY (xn).

The second assertion follows from the fact that (πY
n,0)

−1(Yreg) is an irreducible
component of JnY .

Part (2) follows from part (1) and Kolchin’s Theorem 3.4. �
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8. Partial stratification by chiral symplectic leaves

Recall that there is a well-defined stratification of X by symplectic leaves [BG].
We assume in this section that the Poisson bracket on X = SpecmR is algebraic,

that is, the symplectic leaves in X are all locally closed. Then [BG, Proposition
3.6] the symplectic leaves coincide with the symplectic cores of X , and the defining
ideal of the symplectic core closure of a point x ∈ X is PR(mx).

Let x0 ∈ X , and LX(x0) the symplectic leaf through x0 in X . Set

Y = LX(x0) and A = C[Y ].

Note that (πY
n,0)

−1(LX(x0)) is open in JnY since LX(x0) is open in its closure Y .

Moreover, (πY
n,0)

−1(LX(x0)) = JnLX(x0) by [EM, Lemma 2.3]. In particular, one

can equip (πY
n,0)

−1(LX(x0)) with the structure of a smooth analytic variety.
Let x ∈ JnLX(x0). We denote by LJnX(x) the set of all y ∈ JnLX(x0) which

can be reach from x by traveling along the integral flows of vector fields a(k), a ∈ A,
k = 0, . . . , n.

We call LJnX(x) the n-chiral symplectic leaf of x in JnX . Note that we defined
n-chiral symplectic leaves only for elements in

⋃
x′∈X JnLX(x′) which is a priori

different from JnX .

Lemma 8.1. Let x ∈ JnLX(x0). Then the defining ideal of the Zariski closure of
LJnX(x) is PJnR(mx).

Proof. First of all, by construction of LJnX(x), we have LJnX(x) ⊂ JnY . So by
Lemma 7.2 (4), PJnR(mx) = PJnA(mx).

We now follow the ideas of the proof of [BG, Lemma 3.5]. Let Kx be the defining

ideal of LJnX(x).
We first show that PJnA(mx) ⊂Kx. Let

J̃nY := Specm J̃nA, with J̃nA = JnA/PJnA(mx),

and denote by ã the image of a ∈ JnA in J̃nA. For r > 0, B(r) denotes the
open complex analytic disc of radius r. Let a ∈ A and k ∈ {0, . . . , n}. Since

a(k)PJnA(mx) ⊂PJnA(mx), a(k) defines a derivation on J̃nA, which we denote by

ã(k). Consider σx : B(r) → JnY and σ̃x : B(r) → J̃nY be integral curves of the
vector fields a(k) and ã(k) respectively, with σx(0) = x, σ̃x(0) = x̃.

Viewing J̃nY as a subset of JnY , let us show that σ̃x = σx in a neighborhood
of 0. Let f ∈ JnA. By definition of an integral curve,

d

dz
(f ◦ σx) = a(k)(f) ◦ σx,(14)

d

dz
(f̃ ◦ σ̃x) = ã(k)(f̃) ◦ σ̃x.(15)

But the left hand side of (15) is
d

dz
(f ◦ σ̃x), and the right hand side is a(k)(f) ◦ σ̃x

because PJnA(mx) is a chiral Poisson ideal of JnA. Hence by (14), we conclude
by the uniqueness of flows that σ̃x = σx in a neighborhood of 0. Since the n-chiral
symplectic leaf LJnX(x) is by definition obtained by traveling along integral curves
to fields a(k), the chiral symplectic leaf LJnX(x), and so its closure, is contained in
V (PJnA(mx)), whence

PJnA(mx) ⊂ Kx ⊂ mx.
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To show the equality PJnA(mx) = Kx, it remains to prove that Kx is an n-chiral
Poisson ideal of JnA.

Let f ∈ Kx, a ∈ A and k ∈ {0, . . . , n}. Let σx : B(r) → JnY be an integral
curve to a(k), with σx(0) = x. Then, by definition of an integral curve, (14) holds.
On a complex analytic neighborhood of x, f ◦ σx = 0 since the image of σx is in
LJnX(x). Hence

0 =
d

dz
(f ◦ σx)(0) = (a(k)(f) ◦ σx)(0) = a(k)(f)(x).

As a consequence, a(k)(Kx) ⊂ mxn
for all a ∈ A and all k ∈ {0, . . . , n}. Repeating

this argument with x replaced by each of the members of LJnX(x), we conclude
that a(k)(Kx) ⊂ Kx for all a ∈ A and all k ∈ {0, . . . , n}, that is, that Kx is n-chiral
Poisson. �

Corollary 8.2. Let x ∈ JnLX(x0). Then the defining ideal of the closure of
CJnX(x) is PJnR(mx).

Proof. By Lemma 8.1, LJnX(x) ⊂ CJnX(x). Indeed, if y ∈ LJnX(x), then LJnX(y) =
LJnX(x) and so V (PJnR(my)) = V (PJnR(mx)) by Lemma 8.1, that is, PJnR(my) =
PJnR(mx), whence y ∈ CJnX(x). So by Lemma 6.4,

V (PJnR(mx)) = LJnX(x) ⊂ CJnX(x) ⊂ V (PJnR(mx)),

whence the statement. �

Corollary 8.3. Let x ∈ X, and set Y := CX(x). Then

J∞Y = CJ∞X(x∞).

Moreover, for n ∈ Z>0, if JnY is irreducible, then JnY = CJnX(xn).

Here, recall that xn (resp. x∞) stands for ιn(x) (resp. ι∞(x)) as explained before
Proposition 7.4.

Proof. Recall that LX(x) = CX(x) is contained in the smooth locus of Y , and that

π−1
n,0(CX(x)) has dimension (n+ 1) dimY .

Since PR(mx) is the defining ideal of CX(x), it results from Proposition 7.4 that

for all n ∈ Z>0∪{∞}, V (PJnR(mxn
)) = (πY

n,0)
−1(Yreg), and we have V (PJnR(mxn

)) =

JnY if JnY is irreducible. In particular, J∞Y = V (PJ∞R(mx∞
)).

So by Corollary 8.2, for all n ∈ Z>0,

CJnX(xn) = V (PJnR(mxn
)) = (πY

n,0)
−1(Yreg) ⊂ JnY.

Taking the limit when n goes to +∞, we obtain:

CJ∞X(x∞) = V (PJ∞R(mx∞
)) = J∞Y.

This concludes the proof. �

Now assume further that X has only finitely many symplectic leaves. (Note that
the poisson bracket onX is algebraic under this condition by [BG, Proposition 3.6].)
If X1, . . . , Xr are the irreducible components of X , then for some x1, . . . , xr ∈ X ,
we have

Xi = V (PR(mi)) = CX(xi), i = 1, . . . , r,

where m1, . . . ,mr are the maximal ideals of R corresponding to x1, . . . , xr, respec-
tively, see [Gin1].
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From the decomposition X = X1 ∪ . . . ∪Xr, we get that

J∞X = J∞X1 ∪ . . . ∪ J∞Xr

since the Xi are closed (see Section 3). Moreover, J∞X1, . . . , J∞Xr are precisely
the irreducible components of J∞X . Indeed, for i = 1, . . . , r, J∞Xi is closed in
J∞X since Xi is closed in X , and for any i 6= j, we have J∞Xi 6⊂ J∞Xj , otherwise,
taking the image by the canonical projection π∞,0 : J∞X → X , we would get
Xi ⊂ Xj.

Hence, as a consequence of Corollary 8.3, we obtain the following result.

Theorem 8.4. Let X be a Poisson scheme. Assume that X has only finitely many
symplectic leaves. Then each irreducible components of J∞X is the closure of some
chiral symplectic core.

More precisely, if X1, . . . , Xr are the irreducible components of X, then for i =

1, . . . , r, Xi = CX(xi) for some xi ∈ Xi, and we have:

J∞Xi = J∞CX(xi) = CJ∞X(xi,∞).

9. Applications to quasi-lisse vertex algebras

In this section we assume that V is a vertex algebra (not necessarily commutative
or Poisson).

Recall that V is naturally filtered by the Li filtration ([Li], see also [A1]),

V = F 0V ⊃ F 1V ⊃ · · · ⊃ F pV ⊃ · · · ,
where F pV is the subspace of V spanned by the vectors

a1(−n1−1) . . . a
r
(−nr−1)b,

with ai ∈ V , b ∈ V , ni ∈ Z>0, n1 + · · · + nr > p. The associated graded vector
space grV = ⊕pF

pV/F p+1V is naturally a vertex Poisson algebra [Li]. We have

F 1V = C2(V ) := spanC{a(−2)b | a, b,∈ V }.
Let

RV = V/C2(V ) = F 0V/F 1V ⊂ grV

be the Zhu C2-algebra of V . It is a Poisson algebra [Zhu], and the Poisson algebra
structure can be obtained by restriction to RV of the vertex Poisson algebra on
grV . Namely,

1 = |0〉, ā · b̄ = a(−1)b and {ā, b̄} = a(0)b,

for a, b ∈ V , where ā = a+ C2(V ).
Let

X̃V := Spec(RV ) and XV := Specm(RV )

be the associated scheme and the associated variety of V , respectively ([A1]).

We assume that the filtration (F pV )p is separated, that is,
⋂
F pV = {0} and

that V is strongly finitely generated, that is, RV is finitely generated. Note that the
first condition is satisfied if V is positively graded.

Theorem 9.1 ([Li, Lemma 4.2], [A1, Proposition 2.5.1]). The identity map RV →
RV induces a surjective vertex Poisson algebra homomorphism

J∞RV = C[J∞(X̃V )] ։ grV.
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The singular support of a vertex algebra V is

S̃S(V ) := Spec grV ⊂ J∞(X̃V ).

We set

SS(V ) := SpecmgrV ⊂ J∞XV .

In the above inclusion, J∞XV is viewed as a topological space.
Recall from the introduction that the vertex algebra V is called quasi-lisse if the

Poisson variety XV has finitely many symplectic leaves ([AK]).

Theorem 9.2. Assume that V is quasi-lisse. Then SS(V ) is a finite union of
chiral symplectic cores closures in grV . Moreover, SS(V ) = J∞XV as topological
spaces.

Proof. Set
L = SpecmgrV = SS(V ),

and let X1, . . . , Xr be the irreducible components of XV . By Theorem 8.4, we have

J∞XV = CJ∞XV
(x1,∞) ∪ . . . ∪ CJ∞XV

(xr,∞),(16)

where xi ∈ (Xi)reg for i = 1, . . . , r. By Theorem 9.1, grV is a vertex Poisson
algebra quotient of J∞RV , that is, gr(V ) = J∞RV /I with I a vertex Poisson ideal
of J∞(RV ). Furthermore, the surjective morphisms,

J∞RV ։ grV ։ RV ,

induce injective morphisms of varieties,

XV →֒ L →֒ J∞XV ,

and the composition map is ι∞. Hence for x ∈ XV , we get that m∞ ⊃ I, where
m∞ denotes the maximal ideal of J∞RV corresponding to x∞, and so x∞ is a point
of L.

Therefore, by Lemma 6.5, CJ∞(XV )(xi,∞) = CL(xi,∞) for any i = 1, . . . , r. Then
from (16) and Theorem 9.1, we obtain that

L ⊂ J∞XV = CL(x1,∞) ∪ . . . ∪ CL(xr,∞) ⊂ L,
since L is closed, whence the first statement and the required equality L = J∞XV .

�

Corollary 9.3. Suppose that X̃V is smooth, reduced and symplectic. Then grV is
simple as a vertex Poisson algebra, and hence, V is simple.

Proof. If XV is a smooth symplectic variety then J∞XV consists of a single chiral
symplectic core. So J∞XV = CJ∞XV

(x) for any x ∈ J∞XV . It follows that there is
no nonzero proper chiral Poisson subscheme in J∞XV . So by Theorem 9.2, there is
no nonzero proper chiral Poisson subscheme in Spec grV , too. Hence grV is simple
as a vertex Poisson algebra. And so V is simple since any vertex ideal I ⊂ V defined
a vertex Poisson, and so chiral Poisson, ideal gr I in grV . �

For example, if X is a smooth affine variety, then the global section of the chiral
differential operators Dch

X ([MSV, GMS2, BD2]) is simple, because its associated
scheme is canonically isomorphic to T ∗X . In particular, the global section of the
chiral differential operators Dch

G,k on a reductive group G ([GMS1, AG]) is simple
at any level k.
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10. Adjoint quotient and arc space of Slodowy slice

Recall that g is a complex simple Lie algebra. Identify g with g∗ through the
Killing form ( | ) of g. Let (e, h, f) be an sl2-triple, and Sf = f + ge the corre-
sponding Slodowy slice, with ge the centralizer of e in g. Recall that g∗ ∼= g is a
Poisson variety and that the symplectic leaves of g∗ ∼= g are the (co)adjoint orbits.
The algebra Rf := C[Sf ] inherits a Poisson structure from C[g] by Hamiltonian
reduction [GG]. The Hamiltonian reduction can also be described in terms of the
BRST cohomology, essentially following Kostant and Sternberg [KS]. The sym-
plectic leaves of Sf are precisely the intersections of the adjoint orbits of g with
Sf .

Let p1, . . . , pℓ be homogeneous generators of C[g∗]G ∼= C[g]G ∼= C[g]g.
Consider the adjoint quotient map

ψ : g→ g//G ∼= C
ℓ, x 7→ (p1(x), . . . , pℓ(x)),

and its restriction ψf to Sf ,

ψf : Sf → g//G ∼= C
ℓ.

We first recall some facts about ψf and its fibers ([Pre1]).
The morphism ψf is faithfully flat. As a consequence, ψf is surjective and all

fibers have the dimension r − ℓ, where r = dim ge. Furthermore the fibers of ψf

are generically smooth, that is, contain a smooth open dense subset of dimension
r − ℓ, and they are irreducible.

Lemma 10.1. Let ξ ∈ g//G. Then ψ−1
f (ξ) is a finite union of symplectic leaves.

Hence it is the closure of some symplectic leaf closure.

Proof. The proof is standard, we recall it for the convenience of the reader.
We first prove the statement for the morphism ψ. Let x ∈ ψ−1(ξ), and write

x = xs + xn its Jordan decomposition. Let g = n− ⊕ h + n+ be a triangular
decomposition of g. One can assume that xs ∈ h, and that xn ∈ n+ since xn ∈ gxs .
Let now y ∈ ψ−1(ξ). Then pi(y) = pi(x) for i = 1, . . . , ℓ, and so ys is conjugate to xs
by an element s of the Weyl groupW (g, h) of (g, h). Let s̃ be a Tits lifting of s in G,
so that y = s̃(xs + s̃−1yn). Since W (g, h) is finite, it is sufficient to show that there
are only finitely many possible choices of yn up to conjugation by the centralizer
Gys of ys in G. However, since yn ∈ gys ∩N and the set gys ∩N consists of a finite
union of (Gys)◦-orbits, where (Gys)◦ is the identity connected component subgroup
of Gys , the assertion follows. In conclusion, ψ−1(ξ) is a finite union of G-orbits of
g, that is, a finite union of symplectic leaves of g. Since ψ−1(ξ) is irreducible and
G-invariant, we deduce that ψ−1(ξ) is the closure of some symplectic leaf.

Next, ψ−1
f (ξ) = ψ−1(ξ)∩Sf and the symplectic leaves of Sf are the intersections

of adjoint orbits of g with Sf . So ψ
−1
f (ξ) is a finite union of symplectic leaves, too.

As ψ−1
f (ξ) is irreducible [Gin1], ψ−1

f (ξ) is a symplectic leaf closure. �

By Kostant [Kos],
ψ−1
f (0) = Sf ∩N ,

with N the nilpotent cone of g.

Proposition 10.2. Let n ∈ Z>0. Then (Jnψf )
−1(0) = Jn(ψ

−1
f (0)) is a reduced

complete intersection, and it is irreducible. Moreover, (J∞ψf )
−1(0) = J∞(ψ−1

f (0))
is irreducible and reduced.
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Proof. The variety Sf ∩N is normal, reduced and is a complete intersection [Gin2],

with rational singularities [AKM, Lemma 3.1.2.1]. As ψ−1
f (0) = Sf ∩ N , it fol-

lows from the main results of [Mus] and its consequences that Jn(ψ
−1
f (0)) is also

reduced, irreducible and a complete intersection for any n > 0. Now observe that
(Jnψf )

−1(0) = Jn(ψ
−1
f (0)) by the properties of jet schemes (cf. Section 3). This

proves the first part of the statement.
Since ψ−1

f (0) is irreducible, J∞(ψ−1
f (0)) is irreducible by Theorem 3.4 and, from

the above, we get that (J∞ψf )
−1(0) = J∞(ψ−1

f (0)) is irreducible. Because all

Jn(ψ
−1
f (0)) are reduced, J∞(ψ−1

f (0)) is reduced, too. �

Next, we wish to prove that the other fibers of J∞ψf are also reduced and
irreducible. To this end, we use ideas of [Pre1, §§5.3 and 5.4].

The Slodowy slice has a contracting C∗-action. Recall briefly the construc-
tion. The embedding spanC{e, h, f} ∼= sl2 →֒ g exponentiates to a homomorphism
SL2 → G. By restriction to the one-dimensional torus consisting of diagonal ma-
trices, we obtain a one-parameter subgroup ρ̃ : C∗ → G. Thus ρ̃(t)x = t2jx for any
x ∈ gj = {y ∈ g | [h, y] = 2jy}. For t ∈ C∗ and x ∈ g, set

ρ(t)x := t2ρ̃(t)x.(17)

So, for any x ∈ gj, ρ(t)x = t2+2jx. In particular, ρ(t)f = f and the C
∗-action of ρ

stabilizes Sf . Moreover, it is contracting to f on Sf , that is,

lim
t→0

ρ(t)(f + x) = f

for any x ∈ ge. The C∗-action ρ induces a positive grading on Sf , and so on
Rf = C[Sf ] ∼= C[ge].

Let n ∈ Z>0 ∪ {∞}. Similarly, we define a contracting C∗-action on JnSf and
a positive grading on JnRf as follows.

Let x1, . . . , xr be a basis of ge so that

JnRf
∼= JnC[g

e] ∼= SpecC[xi(−j−1) ; i = 1, . . . , r, j = 0, . . . , n].

One can assume that the xi’s are Slodowy homogeneous. One defines a grading on
JnRf by setting

deg xi(−j−1) = deg xi + j.

Since the grading is positive, it gives a contracting C∗-action on JnSf . Indeed,
consider the morphism C[JnSf ] → C[JnSf ] ⊗ C[t, t−1], f 7→ f ⊗ tdeg f , for homo-
geneous f . Its comomorphism induces a C

∗-action

µn : C
∗ × JnSf → JnSf

which is contracting since deg f > 0 for any homogeneous f .
The above grading gives an increasing filtration on JnRf in an obvious way:

Fp(JnRf ) := ⊕j6p(JnRf )j , p > 0.

Given a quotient M of JnRf , we define a filtration (FpM)p of M by setting

FpM := τn(Fp(JnRf )),

where τn is the canonical quotient morphism τn : JnRf → M . We denote by grM
the corresponding graded space.

For M a subspace of JnRf denote by grM the homogeneous subspace of JnRf

with the property that g ∈ grM ∩ (JnRf )p if and only if there is g̃ ∈ M such that
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g̃ − g ∈ Fp−1(JnRf ). Obviously the subspace grM is invariant for the C∗-action
µn. If M is an ideal of JnRf then grM is an ideal of grJnRf .

For f ∈ C[Jng] we denote by f its restriction to JnSf . Then for ξ = (ξ
(j)
i | i =

1, . . . , ℓ, j = 0, . . . , n) ∈ JnCℓ, (Jnψf )
−1(ξ) is the set of common zeroes of the ideal

In,ξ :=
(
T jpi − ξ(j)i | i = 1, . . . , ℓ, j = 0, . . . , n

)
.

Here, note that Jnψf is the morphism:

Jnψf : J∞Sf → JnC
ℓ, x 7→ (T jpi(x), i = 1, . . . , ℓ, j = 0, . . . , n).

Lemma 10.3. Let n ∈ Z>0 ∪ {∞} and ξ ∈ JnCℓ. Then the fiber (Jnψf )
−1(ξ) is

reduced and irreducible.

Proof. Clearly grIn,ξ = In,0.
Let a ∈ JnRf/In,ξ and suppose that ak = 0 for some k ∈ Z>0. Then σn(a)

k = 0,
where σn is the symbol of a in gr(JnRf/In,ξ) = JnRf/In,0. As In,0 is radical,
σn(a) = 0, and hence a = 0. This proves that In,ξ is radical.

Similarly, JnRf/In,ξ is a domain since gr(JnRf/In,ξ) = JnRf/In,0 is. Hence
In,ξ is prime. �

The Poisson bracket on g is algebraic since all adjoint orbits are open in their
closure. From the inclusion G.x ∩Sf ⊂ G.x ∩ Sf , for x ∈ Sf , we deduce that
the symplectic leaf G.x∩Sf of Sf is locally closed, and hence the Poisson bracket

on Sf is algebraic. Indeed, G.x ∩Sf is a finite union of symplectic leaves of Sf

and so [BG, Proposition 3.7] applies. As a result, the hypothesis of Section 8 are
satisfied.

Proposition 10.4. For any n ∈ Z>0, the fiber (Jnψf )
−1(0) is the closure of some

n-chiral Poisson core in JnSf , and (J∞ψf )
−1(0) is the closure of some chiral

Poisson core in J∞Sf .

Proof. By Proposition 10.2, Jn(ψ
−1
f (0)) ∼= (Jnψf )

−1(0) is irreducible for any n ∈
Z>0. The statement follows from Corollary 8.3 because ψ−1

f (0) is the closure of
some symplectic leaf. �

Theorem 10.5. Let z be in the vertex Poisson center of J∞Rf , and ξ ∈ J∞(g//G).
Then z is constant on (J∞ψf )

−1(ξ).

Proof. By Proposition 6.6 and Proposition 10.4, any element z in the vertex Pois-
son center of J∞Rf is constant on (J∞ψf )

−1(0). Let now ξ ∈ J∞(g//G). Then
the symbol σ∞(z) ∈ gr(J∞Rf/I∞,ξ) belongs to the center Z(J∞Rf/I∞,0) of
gr(J∞Rf/I∞,0). However, Z(J∞Rf/I∞,0) ∼= C by the ξ = 0 case. Therefore
σ∞(z) is constant, and this happens only if z itself is constant in J∞Rf/I∞,ξ, that
is, z is constant on (J∞ψf )

−1(ξ). �

11. Vertex Poisson center and arc space of Slodowy slices

The vertex Poisson algebra structure on C[J∞Rf ] can be described using coho-
mology of some dg-vertex Poisson algebras, which is a tensor product of functions
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over J∞g with fermionic-ghost vertex Poisson super-algebra ∧∞

2 (m), where m is a
certain nilpotent algebra m ([A3, Theorem 4.6]):

C[J∞Rf ] ∼= H0(C[J∞g]⊗ ∧∞

2 (m), Q(0)).

The canonical embedding

C[J∞g] −→ C[J∞g]⊗ ∧∞

2 (m), f 7−→ f ⊗ 1,

induces morphisms of vertex Poisson algebras,

Z(C[J∞g]) −→ Z(C[J∞g]⊗ ∧∞

2 (m)) −→ Z(H0(C[J∞g]⊗ ∧∞

2 (m), Q(0))).

Hence we get a morphism of vertex Poisson algebras,

Z(C[J∞g]) −→ Z(C[J∞Rf ]) ⊂ C[J∞Rf ].

Note that this morphism corresponds to the restriction map.
On the other hand, we have an isomorphism [RsT, BD1, EF]: J∞(g//G) ∼=

J∞g//J∞G, where J∞g//J∞G = SpecC[J∞g]J∞G. In other words, the infinite jet
scheme J∞G acts on J∞g and C[J∞g]J∞G is the polynomial ring C[J∞(g//G)] =
C[T jpi, i = 1, . . . , ℓ, j > 0]. Therefore, we get the following isomorphisms:

Z(C[J∞g]) = C[J∞g//J∞G] ∼= C[J∞(g//G)].

So the above morphism from Z(C[J∞g]) to C[J∞Rf ] is nothing but the comor-
phism,

(J∞ψf )
∗ : J∞(g//G)→ J∞Rf ,

of J∞ψf .
The map (J∞ψf )

∗ is an embedding. Indeed, let greg be the set of regular elements
of g, that is, those elements whose centralizer has minimal dimension ℓ. Since the
restriction of the morphism ψf to Sf ∩ greg is smooth and surjective (see [Kos],
[Pre1, Section 5]), the restriction of Jnψf to Jn(Sf ∩greg) is smooth and surjective
for any n as well ([EM, Remark 2.10] or [Fre, §3.4.3]). Therefore the morphism
(Jnψf )

∗ : C[Jng]
JnG → JnRf is an embedding for any n. Moreover, the restriction

of J∞ψf to J∞(Sf∩greg) is (formally) smooth and surjective, whence the morphism
(J∞ψf )

∗ : C[J∞g]J∞G → J∞Rf is an embedding of vertex Poisson algebras.
The aim of this section is to proof the following result.

Theorem 11.1. The morphism (J∞ψf )
∗ induces an isomorphism of vertex Poisson

algebras between C[J∞g]J∞G and the vertex Poisson center of C[J∞Sf ]. Moreover,
C[J∞Sf ] is free over its vertex Poisson center.

Note that C[J∞g]J∞G∩C[g] = C[g]G and Z(C[J∞Sf ])∩C[Sf ] = Z(C[Sf ]), the
Poisson center of C[Sf ]. Hence from the above theorem we recover the well-known
result of Ginzburg-Premet [Pre2, Question 5.1] which states that

Z(C[Sf ]) ∼= C[g]G.(18)

To prove Theorem 11.1 we first state some preliminary results.

Lemma 11.2 ([GW, Theorem A.2.9]). Let X,Y, Z be irreducible affine varieties.
Assume that f : X → Y and h : X → Z are dominant morphisms such that h is
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constant on the fibers of f . Then there exists a rational map g : Y → Z making the

following diagram commutative: X
f

//

h
��

Y

g
~~⑦
⑦
⑦
⑦

Z

Lemma 11.3. Let X and Y be two normal irreducible affine varieties, and f : X →
Y a flat morphism. Then C(Y )∩C[X ] = C[Y ]. Here, we view C[Y ] as a subalgebra
of C[X ] using f∗ : C[Y ]→ C[X ].

Proof. Since X is normal and the fibers of f are all of dimension dimX − dim Y ,
the image of the set X ′ of smooth points of X is an open subset Y ′ of Y such that
Y \ Y ′ has codimension at least 2.

Let y in Y ′ and x ∈ f−1(y) ⊂ X ′. Then we have a flat extension of the local rings
OY,y → OX,x. Since OY,y and OX,x are regular local rings, they are factorial. For
a ∈ C(Y ) ∩C[X ], write a = p/q with p, q relatively prime elements of C[Y ] . Since
p, q are relatively prime, the multiplication by p induces an injective homomorphism

OY,y/qOY,y → OY,y/qOY,y.

Since OX,x is flat over OY,y, the base change OX,x ⊗OY,y
− yields an injective

homomorphism

OX,x/qOX,x → OX,x/qOX,x.

Hence p and q are relatively prime in OX,x. In addition, the image of 1 is 0 because
a = p/q is regular in X . As a result, q is invertible in OX,x.

Since the maximal ideal of OY,y is the intersection of OY,y with the maximal
ideal of OX,x, q is invertible in OY,y, and so a is in OY,y. As a result, a is regular
on Y ′ and then extends to a regular function on Y since Y is normal. �

Proof of Theorem 11.1. Let us prove the first assertion of the theorem. We view
the algebra Jn(C[g]

G) as a subalgebra of JnRf for any n. We have already noticed
that the inclusion J∞(C[g]G) ⊂ Z(J∞Rf ) holds, with Z(J∞Rf ) the vertex Poisson
center of J∞Rf . Conversely, we have to prove that any element z in the vertex
Poisson center Z(J∞Rf ) can be lifted to a an element of J∞(C[g]G).

Since J∞Sf is the projective limit of the projective system (JnSf , πm,n), the
algebra J∞Rf is the inductive limit of the algebras JnRf . The injection jn from
JnRf to J∞Rf is defined by

jn(µn)(γ) := µn(π∞,n(γ)), µn ∈ JnRf , γ ∈ J∞Sf .

Let z ∈ Z(J∞Rf ) ⊂ J∞Rf . As z ∈ J∞Rf , z = zn ∈ JnRf for n big enough,
where zn is such that

zn(γn) = z(jn(γn)), z(γ) = zn(π∞,n(γ)), γn ∈ JnSf , γ ∈ J∞Sf .

By Theorem 10.5, z is constant on each fibers of J∞ψf . As a consequence, zn is

constant on each fibers of Jnψf . Indeed, let ξn ∈ JnY , and γn, γ
′
n ∈ Jnψ−1

f (ξn).

Then jn(γn), jn(γ
′
n) are in J∞ψ

−1
f (jn(ξn)) since

J∞ψf (jn(γn)) = jn(Jnψf (γn)) = jn(ξn) = jn(Jnψf (γ
′
n)) = J∞ψf (jn(γ

′
n)).

Hence,

zn(γn) = z(jn(γn)) = z(jn(γ
′
n)) = zn(γ

′
n)
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since z is constant on J∞ψ
−1
f (jn(ξn)).

If z is a constant function, that is, z ∈ C, then clearly z lies in the vertex Poisson
center of J∞C[g∗]. Hence, one can assume that z is not constant. Furthermore,
there is no loss of generality in assuming that z is homogeneous for the Slodowy
grading on J∞Rf because Z(J∞Rf ) is Slodowy invariant. Thus for any t ∈ C∗,
t.z = tkz for some k ∈ Z>0. So one can assume that the morphisms z : J∞Sf → C

and zn : JnSf → C are dominant.
Hence by Lemma 11.2, zn ∈ C[JnSf ] induces a rational morphism z̃n on Jn(g//G)

since zn is constant on the fibers of the dominant morphism Jnψf .
As Sf and g//G are affine spaces, JnSf and Jn(g//G) are affine spaces for any n.

In particular, JnSf and Jn(g//G) are normal and irreducible for any n. Therefore
Lemma 11.3 can be applied because the morphism Jnψf : JnSf → Jn(g//G) is
flat for any n. So, z̃n ∈ C[Jn(g//G)]. This holds for any n such that z = zn.
Since z = zn for n big enough, we deduce that z can be lifted to an element of
C[J∞(g//G)] = C[J∞g]J∞G, whence the first part of the theorem.

It remains to prove the freeness. Since Sf ∩ N enjoys the same geometrical
properties asN , that is, Sf∩N is reduced, irreducible and is a complete intersection
with rational singularities, the arguments of [EF, Theorem A.4] can be applied in
order to get that C[J∞Sf ] is free over its vertex Poisson center (see also [CM,
Proposition 2.5 (ii)]). This concludes the proof of the theorem. �

12. Center of W-algebras

Let V k(g) be the universal affine vertex algebra associated with g at level k, and
letWk(g, f) be the (affine) W-algebraassociated with (g, f) at level k ∈ C. The W-
algebraWk(g, f) is defined by the quantized Drinfeld-Sokolov reduction associated
with f ([FF1, KRW]).

The embedding Z(V k(g)) →֒ V k(g) induces a vertex algebra homomorphism

Z(V k(g)) −→ Z(Wk(g, f))

for any k ∈ C. Here, for V a vertex algebra V , Z(V ) denotes the vertex center of
V , that is,

Z(V ) = {z ∈ V | a(n)z = 0 for all a ∈ V, n > 0}.
Both Z(V k(g)) and Z(Wk(g, f)) are trivial unless k = cri is the critical level
cri = −h∨ with h∨ the dual Coxeter number of g. For k = cri, z(ĝ) := Z(V cri(g))
is known as the Feigin-Frenkel center [FF2].

Theorem 12.1. The embedding z(ĝ) →֒ V cri(g) induces an isomorphism

z(ĝ)
∼−→ Z(Wcri(g, f))

and we have grZ(Wcri(g, f)) ∼= Z(C[J∞Sf ]).

Proof. Recall that there is an obvious vertex algebra homomorphism z(ĝ)→ Z(Wcri(g, f)),
see [A2]. Hence it is sufficient to show that the induced homomorphism gr z(ĝ) →
grZ(Wcri(g, f)) is an isomorphism.

First, we have ([FF2])

gr z(ĝ) ∼= C[J∞g]J∞G.

On the other hand, we have ([A3, Theorem 4.17])

grWcri(g, f) ∼= C[J∞Sf ],
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and so

Z(grWcri(g, f)) ∼= Z(C[J∞Sf ]).

By Theorem 11.1, Z(C[J∞Sf ]) ∼= C[J∞g]J∞G, which forces the compound map

Z(C[J∞Sf ]) ∼= gr z(ĝ) −→ grZ(Wcri(g, f)) →֒ Z(grWcri(g, f)) ∼= Z(C[J∞Sf ])

to be an isomorphism. This completes the proof. �

Theorem 12.1 was stated in [A2], but the proof of the surjectivity was incomplete.
Note that the similar argument as above using (18) recovers Premet’s result

[Pre2] stating that the center of the finite W-algebra U(g, f) associated with (g, f)
is isomorphic to the center of the enveloping algebra U(g) of g.
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