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Supersingular abelian varieties and curves, and their

moduli spaces, with a remark on the dimension of

the moduli of supersingular curves of genus 4

By

Shushi Harashita∗

Abstract

We give a survey on fundamentals of supersingular abelian varieties and supersingular

curves and their moduli spaces. As an application of the explicit description of supersingular

locus in the low dimensional case, we obtain a new result on the dimension of some components

of the moduli space of supersingular curves of genus 4.

§ 1. Introduction

In [20], Li and Oort studied the structure of the supersingular locus Sg in the

moduli space of principally polarized abelian varieties of dimension g in characteristic

p > 0. In particular, the dimension of every irreducible component of Sg and the

number of irreducible components of Sg were determined. The proof was done by

introducing the notion of rigid polarized flag type quotients (PFTQs) and by describing

the supersingular locus Sg as a quotient of the union of the moduli space P ′

g,η of rigid

PFTQs, with an explicit description of P ′

g,η. The first aim of this paper is to explain an

overview of this theory with reviewing some basic facts on supersingular abelian varities

and on supersingular curves. The second aim is to describe the explicit structure of the

moduli space of PFTQs for g ≤ 4, and give an application to a problem of the moduli

space of supersingular curves of genus 4. The moduli space is regarded as the intersection
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of Sg and the Torelli locus Tg for g = 4, where the Torelli locus is the image of the Torelli

map

Mg → Ag

sending C to the Jacobian variety Jac(C) of C. If g ≤ 3, then it is known that Tg is

open dense in Ag, and this fact produces some general results on supersingular curves,

but for g ≥ 4, there are many open problems remaining, especially it is still an open

problem whether there exists a supersingular curve of genus g in characteristic p for

given (g, p) with g ≥ 5. Remark that quite recently this problem for g = 4 was solved

affirmatively in [18], but for example we still have few knowledge about the structure

of S4 ∩ T4. This paper will determine the dimension of some components of S4 ∩ T4

(Corollary 4.4).

The organization of this paper is as follows. In Section 2, we recall the definitions of

supersingular abelian varieties and supersingular curves and review their basic facts and

the Dieudonné theory used later on. In Section 3, we give an overview of the theory of

Li and Oort on the moduli space of principally polarized supersingular abelian varieties.

In Section 4, we review the explicit structure of the moduli space of PFTQs in the case

of genus g ≤ 4 and show our main result on the supersingular locus in the moduli space

of curves of genus 4. For our purpose, it is important to know the singularity of Sg.

For this, we need to investigate the moduli space of PFTQs rather than that of rigid

PFTQs.
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§ 2. Supersingular abelian varieties and curves

We recall the definition of supersingular abelian varieties and curves, and review

basic facts and known results on them. We also recall the Dieudonné theory on the

classification of p-divisible groups, which will be used in the latter sections.

§ 2.1. Supersingular elliptic curves

Let k be an algebraically closed field in characteristic p. Let E be an elliptic curve

over k. We say that E is supersingular if the group E[p](k) of k-rational points on the

kernel E[p] of p-multiplication p : E → E consists of only 0. This is equivalent to saying

that B := End(E) ⊗ Q is a quaternion algebra over Q, where End(E) is the ring of

endomorphisms on E. This quaternion algebra is ramified only at p and ∞. There are



Supersingular abelian varieties and curves, and their moduli spaces 3

other criterions on the supersingularity: E is supersingular if and only if the Frobenius

F ∗ on the first cohomology H1(E,OE) is zero or equivalently the Cartier operator C on

the space H0(E,ΩE) of the regular differential forms on E is zero.

For p > 2, we consider an elliptic curve of the Legendre form

E : y2 = f(x) := x(x− 1)(x− t).

Put m = (p− 1)/2. Then E is supersingular if and only if the xp−1-coefficient of f(x)m

is zero, in other words
m
∑

i=0

(

m

i

)2

ti = 0

cf. [29, Chap. V, Theorem 4.1 (b)]. As any solution of this equation gives a nonsingular

elliptic curve, this implies in particular that there exists a supersingular elliptic curve if

p > 2. Also for p = 2, there exists a supersingular elliptic curve y2 + y = x3. Moreover,

for example by looking at isomorphisms between Legendre forms above, one can show

that the number of isomorphism classes is equal to

p− 1

12
+

{

1−

(

−3

p

)}

/3 +

{

1−

(

−4

p

)}

/4,

cf. Deuring [3] and Igusa [11], also see [29, Chap. V, Theorem 4.1 (c)]. Remark that

this number is equal to the class number of B = Q∞,p.

§ 2.2. Supersingular abelian varieties

Let us recall the definition in the higher dimensional case. Let k be an algebraically

closed field of characteristic p > 0. We choose a supersingular elliptic curve E over k.

Definition 2.1. Let X be an abelian variety of dimension g ≥ 2 over k.

(1) We say that X is superspecial if X is isomorphic to Eg

(2) We say that X is supersingular if X is isogenous to Eg.

Remark. This definition is independent of the choice of E. In fact, due to Deligne,

Ogus and Shioda, for any supersingular elliptic curves E1, . . . , E2g, we have

E1 × · · · × Eg ≃ Eg+1 × · · · × E2g,

cf. [23, Theorem 6.2] and [28, Theorem 3.5], also see [20, 1.6].

Let X be an abelian variety over k and Xt denote its dual abelian variety. A

polarization on X is an isogeny

η : X → Xt
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obtained as η(x) = L−1 ⊗ T ∗

xL for an ample line bundle L on X, where Tx : X → X is

the translation map by x. We say that η is principal if η is an isomorphism.

Let Ag be the moduli space of principally polarized abelian varieties of dimension

g. Let Sg be the supersingular locus in Ag, which is the closed subset

{(X, η) ∈ Ag | X is supersingular}

of Ag. We consider this as a closed subscheme of Ag by giving it the induced reduced

structure.

§ 2.3. Supersingular curves

In this paper, a curve always means a nonsingular projective variety of dimension

one. For a curve C over k, let Jac(C) denote the Jacobian variety of C, equipped with

the canonical principal polarization. Here are the definitions of the supersingularity and

the superspeciality of curves.

Definition 2.2. Let C be a curve over k.

(1) C is called superspecial if Jac(C) is superspecial.

(2) C is called supersingular if Jac(C) is supersingular.

Contrary to the case of abelian varieties, the problem asking whether there exists a

superspecial curve of genus g in characteristic p for given (p, g) is still open in general.

However, for g ≤ 3, some general results on the existence have been obtained by making

use of the fact that the Torelli locus Tg is open dense in Ag for g ≤ 3. For g = 1, the

existence of a supersingular elliptic curve is due to Deuring [3] (also see Igusa [11]), as we

have already explained it in Section 2.1. The existence for g = 2 and p ≥ 5 was proved

by Serre [27] and Ibukiyama-Katsura-Oort [10, Proposition 3.1]. For the existence for

g = 3 and p ≥ 3, see Oort [24, 5.12] and Ibukiyama [8, Theorem 1], where Oort uses a

geometrical approach and Ibukiyama uses an arithmetical approach.

For g ≥ 4, there is no general answer to the existence of superspecial curve of

genus g. However, there are many results on the existence and a few results on the

non-existence. If you find a maximal curve over Fp2 for example in the table of site

[31], then it is a superspecial curve. As for the non-existence result, here is a celebrated

result:

Theorem 2.3 (Ekedahl [4, Theorem 1.1 on p. 165]).

(1) There is no superspecial curve if p2 − p < 2g.

(2) There is no superspecial hyperelliptic curve if p− 1 < 2g and (p, g) 6= (2, 1).
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Let us summarize known results in the case of g = 4 (apology: we do not do so

for g ≥ 5 in this note). First, there is no superspecial curve of genus 4 in characteristic

p = 2, 3 and 7, see Ekedahl’s theorem above for p = 2, 3 and Kudo-Harashita [14] for

p = 7. So far, we have no non-existence result for p > 7. There is a superspecial curve

of genus 4 in characteristic 5, which is unique (up to isomorphism over an algebraically

closed field), see [5] and also [14, Corollary 5.11]. In [4, p. 173] Ekedahl showed the

existence for

(2.1) p ≡ −1 mod 5, 6, 9, 16 or p ≡ −7 mod 16

(unfortunately there is a typo saying “genus 3” instead of “genus 4” at line 22 on [4,

p. 173]), and also the result [1, Corollary 2.16] by Brock can give (other) realizations of

superspecial curves of genus 4 in characteristic p for p satisfying (2.1). Next we recall

the existence result for superspecial Howe curves, where a Howe curve is a curve of genus

4 obtained by taking the fiber product over P1 of two genus-1 double covers of the P1

(cf. [18, Definition 2.1]. In [7] Howe studied such curves to quickly construct curves of

genus 4 with many rational points). Note that any Howe curve is nonhyperelliptic ([17,

Lemma 2.1]).

Theorem 2.4 (Kudo, Harashita and Howe [17, Theorem 1.1]). For every prime

p with 7 < p ≤ 20000 or with p ≡ 5 mod 6, there exist a superspecial Howe curve of

genus 4 in characteristic p.

There are some enumeration results on superspecial curves of genus 4, cf. [14], [15],

[16] and [17]. These results are summarized in Kudo’s article [13] of this volume.

Next, let us collect the results on the existence of supersingular curves. For g ≤ 3,

it suffices to look at the case of (p, g), for which there is no superspecial curve. The case

is only (p, g) = (3, 2). In the case we have a supersingular (but not superspecial) curve

y2 = x5 + 1. For g = 4, please see the recent result by Kudo, Harashita and Senda:

Theorem 2.5 ([18, Corollary 1.2]). There exists a supersingular curve of genus

4 in arbitrary positive characteristic.

Thus we conclude that there exist supersingular curves of genus g in characteristic

p for all (p, g) provided g ≤ 4. As far as I know, there is no non-existence result even

for g ≥ 5. In [30], van der Geer and van der Vlugt showed the existence for arbitrary g

in characteristic 2. The survey paper [26] by Pries would be helpful to find many other

known results and questions around this field.

Let Mg be the moduli space of curves of genus g. Let Tg be the Torelli locus, that

is the image of the morphism

Mg → Ag
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sending a curve C to its Jacobian variety Jac(C). We are interested in Tg ∩ Sg (the

moduli space of supersingular curves), but we know very little about the space if g ≥ 4,

especially about the dimension and about the number of irreducible compoments and

so on. In this paper, we shall give a partial result in case g = 4.

Theorem 2.6. Let W be a component of T4 ∩ S4. Assume that W contains a

superspecial nonhyperelliptic point. Then the dimension of W is three.

Remark that S4 contains a superspecial nonhyperelliptic point in many characteris-

tics, by Theorem 2.4 and the fact that any Howe curve is nonhyperelliptic ([17, Lemma

2.1]).

§ 2.4. Dieudonné theory

Let k be a perfect field in characteristic p > 0. Let X be an abelian variety over k

of dimension g. We write X[n] for the n-kernel ker(n : X → X), which is a finite group

scheme of rank n2g. Consider X[p∞] = lim
−→
n

X[pn], which is called the p-divisible group

associated to X.

Let W = W (k) be the ring of Witt vectors over k and set

A = W [F, V ]/(Fa− aσF, V aσ − aV, FV − p, V F − p; a ∈ W ),

where σ is the Frobenius on W . A Dieudonné module is an A-module which is finitely

generated as a W -module.

Theorem 2.7 (Dieudonné theory). There exists a categorical (anti-)equivalence

D from the category of p-divisible groups over k and that of Dieudonné modules which

are free as W -module.

A polarization η on an abelian variety X over k defines an alternating form on

M = D(X[p∞])

〈 , 〉 : M ×M → W

with 〈Fx, y〉 = 〈x, V y〉σ, where σ is the Frobenius map on W , cf. [21, p. 101] and [20,

5.9]. In general, for a Dieudonné module M , a quasi-polarization on M is an alternating

form 〈 , 〉 : M × M → fracW satisfying the above relation. For a quasi-polarized

Dieudonné module (M, 〈 , 〉), we have

M t = HomW (M,W ) ≃ {x ∈ M ⊗ fracW | 〈x,M〉 ⊂ W}.

If the polarization η on X is principal, the induced quasi-polarization on M = D(X[p∞])

is perfect (also called principal), i.e., it induces an isomorphism M t ≃ M .
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For an abelian variety X, its a-number is defined to be

a(X) = dimk Hom(αp, X),

where αp is the kernel of the Frobenius map F on the additive group Ga. Let M be the

Dieudonné module of X[p∞]. Then we have

a(X) = dimk M/(F, V )M

(cf. [20, 5.2]). As a(X) depends only on M , we often write a(M) for it. Via a canonical

isomorphism M/VM ≃ H1(X,OX) (cf. [21, Section 5]), we get

a(X) = dim coker(F : M/VM → M/VM)

= g − rank(F : H1(X,OX) → H1(X,OX)).

Thus, the a-number is nothing but g subtracted by the Hasse-Witt rank.

The Dieudonné module of a supersingular (resp. superspecial) abelian variety is

called supersingular (resp. superspecial). It is known (cf. [25, Theorem 2]) that a

Dieudonné module M is superspecial if and only if a(M) = g (equivalently the Hasse-

Witt rank is zero).

§ 3. The moduli space of supersingular abelian varieties

In [20], Li and Oort gave a description of the moduli space of principally polarized

supersingular abelian varities. Here we recall their theory. They introduced the notion

of (rigid) polarized flag type quotionts in order to describe the supersingular locus.

Hence we start with recalling it.

§ 3.1. Polarized flag type quotients

Let k be a perfect field in characteristic p > 0. Let M be a supersingular Dieudonné

module over k. It is known that there exist superspecial Dieudonné modules (in M ⊗W

frac(W )) containing M , and moreover there exists a smallest one, say N , among them

([19, Lemma 1.3]). Note that N/M is of finite length. Consider the operator

ϕ(M) := M + p−1V 2M

in M ⊗W frac(W ). As N is superspecial, we have ϕ(N) = N . Since ϕi(M) ⊂ N for

all i ≥ 0, the ascending filtration M ⊂ ϕ(M) ⊂ ϕ2(M) ⊂ · · · is stable. Moreover,

ϕg−1(M) = N holds (cf. [19, Corollary 1.7], also see [32, Lemma 9] for a general result).

By F g−1N ⊂ M , putting Mi = M + F g−1−iN we have a filtration

M = M0 ⊂ M1 ⊂ · · · ⊂ Mg−1 = N.
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For M with a(M) = 1, we have dimk Mi/Mi−1 = i (cf. [22, Theorem 2.2]). With this

observation, taking account of quasi-polarization and so on, Li and Oort introduced the

following notion.

Definition 3.1. A polarized flag type quotient (PFTQ) of Dieudonné modules

consists of quasi-polarized Dieudonné modules (Mi, 〈 , 〉) of rank 2g for i = 0, . . . , g− 1

with isogenies

M0 ⊂ M1 ⊂ · · · ⊂ Mg−2 ⊂ Mg−1

such that

(i) Mg−1 ≃ Ag
1,1 where A1,1 is the Dieudonné module of supersingular elliptic curve.

The quasi-polarization 〈 , 〉 on Mg−1 induces M t
g−1 = F g−1Mg−1.

(ii) (F, V )Mi ⊂ Mi−1 and dimMi/Mi−1 = i.

(iii) F i−jV jMi ⊂ M t
i for 0 ≤ j ≤ i/2.

The PFTQ of Dieudonné modules is called rigid if in addition it satisfies

(iv) Mi = M0 + F g−1−iMg−1.

For simplicity, assume that k is algebraically closed. In order to consider families

of PFTQs, we introduce PFTQs of abelian varieties, because they work well over any

k-scheme S. Let E be a supersingular elliptic curve over k and set

Λg := {polarizations η on Eg | ker η = Eg[F g−1]}/isom.

Definition 3.2 ([20, 3.6]). Let η ∈ Λg. A polarized flag type quotient (PFTQ)

over S with respect to η consists of polarized abelian schemes (Yi, ηi) (i = 0, . . . , g − 1)

of relative dimension g over S with isogenies

Yg−1

ρg−1

−→ Yg−2

ρg−2

−→ · · ·
ρ2

−→ Y1

ρ1

−→ Y0

such that

(i) Yg−1 = Eg × S and ηg−1 = η × idS ;

(ii) ker ρi is Zariski-locally isomorphic to αi
p and ker ηi ⊂ Yi[F

i−jV j ] for all 0 ≤ j ≤ i/2;

(iii) ηi = ρti ◦ ηi−1 ◦ ρi.

The PFTQ is called rigid if in addition it satisfies

(iv) ker(Yg−1 → Yi) = Ker(Yg−1 → Y0) ∩ Yg−1[F
g−1−i].

PFTQs (resp. rigid PFTQs) has a fine moduli space:
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Lemma 3.3 (Li and Oort [20, 3.7]).

(1) There exists a fine moduli space Pg,η of PFTQs, which is a projective scheme. Up

to isomorphism Pg,η is independent of the choice of η ∈ Λg.

(2) There exists a fine moduli space P ′

g,η of rigid PFTQs, which is a quasi-projective

scheme. Up to isomorphism P ′

g,η is independent of the choice of η ∈ Λg.

§ 3.2. The result by Li and Oort

Now we review the description of the supersingular locus Sg, obtained by Li and

Oort:

Theorem 3.4 (Li and Oort [20, 4.2 and 4.4]).

(1) P ′

g,η is nonsingular and geometrically integral of dimension
[

g2

4

]

. Any generic point

of P ′

g,η has a(Y0) = 1.

(2) The canonical morphism

Ψ :
∐

η∈Λg

P ′

g,η → Sg

sending {(Yi, ηi)} to (Y0, η0) is surjective and quasi-finite.

The next corollary follows immediately from this theorem.

Corollary 3.5 (Li and Oort [20, 4.9]).

(1) Sg is equi-dimensional and is of dimension
[

g2

4

]

.

(2) The number of irreducible components of Sg is #Λg.

Moreover it is known that

#Λg =







Hg(p, 1) if g is odd,

Hg(1, p) if g is even,

where Hg(p, 1) (resp. Hg(1, p)) is the class number of principal (resp. non-principal)

genus of the quaternion unitary group

G = {h ∈ Mg(B) | hh
t
= rI for some r ∈ Q×}

with B = End(E)⊗Q, see [20, 4.6, 4.7 and 4.8] and also [10, Section 2] for the detail.
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§ 4. Explicit descriptions in the low dimensional cases

In this section, we review a description of the moduli space of (rigid) PFTQs

for g ≤ 4 and explain a detailed structure of the supersingular locus Sg in the lower

dimensional case.

§ 4.1. Genus 2

The references for the structure of S2 are Katsura-Oort [12] and Li-Oort [20, 9.2].

Let η ∈ Λ2. Any PFTQ with respect to η

ρ1 : E2 = Y1 → Y0

has ker ρ ≃ αp and any quotient of E2 by αp automatically defines a PFTQ, i.e., by

this quotient, η descents to a principal polarization on Y0. Let us look at this in terms

of Dieudonné modules. Put Mi = D(Yi). Thanks to the classification [20, 6.1] of

quasi-polarizations on superspecial Dieudonné modules, there are elements x, y of M1

such that M1 = Ax ⊕ Ay with (F − V )∗ = 0 for ∗ ∈ {x, y}, and 〈x, F 2y〉 = 1 and

〈∗1, F∗2〉 = 0 for ∗1, ∗2 ∈ {x, y}. Then M0 is described as A-span〈ãx+ b̃y, Fx, Fy〉 for

(ã, b̃) ∈ W 2 r (pW )2, and for any such (ã, b̃), the quasi-polarization on M0 induced by

〈 , 〉 on M1 is principal (indeed one can check 〈v, w〉 ∈ W for v, w ∈ M0 and this is a

perfect pairing). Thus, since to give a PFTQ M0 ⊂ M1 is equivalent to giving a line

in M1/M
t
1 ≃ k2, we have P2,η = P ′

2,η ≃ P1. The supersingular locus Sg is the union of

irreducible varieties Wη (η ∈ Λ3)

S2 =
⋃

η∈Λ2

Wη,

and the normalization W̃η of Wη is isomorphic to P2,η/Gη, where

Gη = Aut(E2, η)/{±1}.

It is known that Gη is isomorphic to one of the following groups

{1}, Z/2Z, Z/3Z, Z/2Z× Z/2Z, S3, A4, D12, S4, A5.

Moreover, an explict formula of #Λ2 = H2(1, p) is obtained by Hashimoto and Ibukiyama

[6]. For the formula, see Ibukiyama’s article [9, Theorem 5.1] of this volume.

§ 4.2. Genus 3

The references of the supersingular locus S3 and the moduli space of (rigid) PFTQs

for g = 3 are Oort [24, Section 2] and Li-Oort [20, 9.4], also see Katsura-Oort [12,

Sections 5 and 6].
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Here is a short review of the structure of the moduli space of PFTQs for g = 3.

Let η ∈ Λ3 and let

(E3, η) = (Y2, η2) → (Y1, η1) → (Y0, η0)

be a PFTQ. Put Mi := D(Yi). By [20, 6.1], there are elements x, y of M2 such that

M2 = Ax⊕Ay⊕Az with (F−V )∗ = 0 for ∗ ∈ {x, y, z} and 〈∗, F 3∗〉 = ε for ∗ ∈ {x, y, z}

with εσ = −ε ∈ W (Fp2)×. Then M1 is written as A-span〈w := ãx+ b̃y+ c̃z, FM2〉 with

ã, b̃, c̃ ∈ W . Since w has to satisfy 〈w,Fw〉 ∈ W , to obtain M2 is equivalent to giving a

point on

V := V (ap+1 + bp+1 + cp+1) ⊂ P2,

where a = (ã mod p). To give M0 is equivalent to giving a line on M1/M
t
1 ≃ k2. The

moduli space P3,η is a P1-bundle over V :

P3,η
π

−→ V

There exists a section t of π

t : V
∼
−→ T ⊂ P3,η

with t(Y2 → Y1) = (Y2 → Y1 → Y2/Y2[F ] = Y0). We have

P ′

3,η = P3,η \ T.

In Theorem 3.4, we consider a morphism from P ′

3,η to S3, but it can be extended

to P3,η:
∐

η∈Λ3

P3,η → S3,

which sends (Y2, η2) → (Y1, η1) → (Y0, η0) to (Y0, η0). Note that this morphisn is not

quasi-finite. In fact, this contracts T to a point (superspecial point).

Assume n ≥ 3 with (n, p) = 1. Let S3,n be the supersingular locus in the moduli

space A3,n of principally polarized abelian threefolds with level n-structure. Even with

level n-structure, we have a similar description

∐

η∈Λg,n

P3,η → S3,n.

As an application of this description, in [24] Oort studied the singularity of S3,n at a

superspecial point (considered as the image of T ):

Theorem 4.1 ([24, 2.9]). For any irreducible component Z of S3,n and for any

superspecial point x ∈ Z, the tangent space at x of Z is of dimension 6 (= dimA3,n).
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Let Bg,n be the locus in Ag,n consisting of Jacobians of hyperelliptic good curves,

where “good” means “stable and its Jacobian variety is an abelian variety”. Note

dimBg,n = 2g − 1. Oort showed a discrepancy between the dimension of the tangent

space of Z at a superspecial point and that of components of the formal completion of

Bg,n at a superspecial point and conclude

Theorem 4.2 ([24, 1.10]). Any component of S3,n is not contained in B3,n. In

particular, there exists a nonhyperelliptic supersingular curve of genus 3.

In the next section, we use this idea in the case of genus 4 and obtain a result on

the dimension of some components of the moduli space of supersingular curves of genus

4.

§ 4.3. Genus 4

In this subsection, we review the structure of the moduli space of PFTQs for g = 4

(cf. [20, 9.6]), and as an application of it we shall show the next theorem, which enables

us to determine the dimension of some components of the moduli space of supersingular

curves of genus 4 (Corollary 4.4).

Theorem 4.3. Assume p > 2 and n ≥ 3. For any irreducible component Z of

S4,n and for any superspecial point s ∈ Z, the tangent space at s of Z is of dimension

10 (= dimA4,n).

Let η ∈ Λ4 and let

(E4, η) = (Y3, η3) → (Y2, η2) → (Y1, η1) → (Y0, η0)

be a PFTQ with respect to η. Put Mi := D(Yi). By [20, 6.1], there are elements x, y, z, u

of M3 such that

M3 = Ax⊕Ay ⊕Az ⊕Au

with (F − V )∗ = 0 for ∗ = x, y, z, u, and 〈x, F 4y〉 = 1, 〈z, F 4u〉 = 1 and 〈∗1, F
4∗2〉 = 0

for ∗1 = x, y and ∗2 = z, u. We call such x, y, z, u a standard basis of M3.

To obtain Y2 is equivalent to getting a submodule

M2 = A-span〈v := ãx+ b̃y + c̃z + d̃u, Fx, Fy, Fz, Fu〉

of M3 for ã, b̃, c̃, d̃ ∈ W such that 〈v, F 2v〉 ∈ W . In other words, if we put a = (ã mod p)

and so on, then (a, b, c, d) satisfies

abp
2

− ap
2

b+ cdp
2

− cp
2

d = 0.
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Consider the generic part where (a : c) 6∈ P1(Fp2). Then M1 is generated by an elemenet

w of the form r̃v + s̃Fy + t̃Fu and (F, V )M2:

M1 = A-span〈w = r̃v + s̃Fy + t̃Fu, Fv, V v, F 2x, F 2y, F 2z, F 2u〉.

If this comes from a PFTQ, we require 〈w,Fw〉 ∈ W , explicitly

r(asp − ctp − srp−1ap − trp−1cp) = 0.

This equation says that P4,η has two components. The component defined by r = 0

does not contain P ′

4,η and therefore is called a garbage component. We consider only

the other component (non-garbage component). Finally to get M0 is equivalent to get

a line in M1/M
t
1. Let Zη be this P1-bundle over the non-garbage component. We have

a (surjective and generically quasi-finite) morphism

∐

η∈Λ4

Zη → S4,

defined by sending (Y3, η3) → (Y2, η2) → (Y1, η1) → (Y0, η0) to (Y0, η0).

Let us prove Theorem 4.3. We choose η ∈ Λ4 and fix it throughout the following

argument. We look at only the single component Zη. On the non-garbage component,

consider the part defined by (a, b, c, d) = (1, 0, c, 0), and take the limits c → 0 and

(r, s, t) → (1, ζ, 0) with ζp = ζ. Then we have a PFTQ belonging to Zη with

M1 =A-span〈x+ ζFy, Fx, F 2y, Fz, F 2u〉,

M0 =M0α := A-span〈Fx+ α(ζx+ ζ2Fy), F 2y + α(−x− ζFy), Fz, F 2u〉,

M t
1 =A-span〈Fx+ ζF 2y, F 2x, F 3y, Fz, F 2u〉.

Consider the deformation space around α = 0, where M00 (that is, M0α at the point

α = 0) is AFx+AF 2y+AFz+AF 2u. If p > 2, then the lines made by moving α for all

ζ generate three dimensional subspace of the tangent space. This is proved in the samy

way as in [24, 2.8] (the basis here is different from that of [24, 2.8]): the Hasse-Witt

matrix of the deformation, obtained by moving α, of M00 with respect to the basis

Fx, F 2y, Fz, F 2u is a scalar multiple of the 4 × 4 matrix

(

Q 02

02 02

)

with Q =

(

ζ −1

ζ2 −ζ

)

for each ζ ∈ Fp. If p > 2, the Q’s for all ζ ∈ Fp generate the 3-dimensional space

generated by Q1 =

(

1 0

0−1

)

, Q2 =

(

0 1

0 0

)

and Q3 =

(

0 0

1 0

)

.

Instead of decomposition M00 = (AFx + AF 2y) ⊕ (AFz + AF 2u), we have other

orthogonal decompositions with principaly quasi-polarized direct summands of genus



14 Shushi Harashita

two, for example

(AFz +AF 2u)⊕ (AFx+AF 2y),

(AF (x+ z) +AF 2y)⊕ (AFz +AF 2(u− y)),

(AFx+AF 2(y + u))⊕ (AF (z − x) +AF 2u).

In the above argument, instead of AFx+AF 2y we use the first direct summand for each

decomposition above, we have a 3-dimensional subspace of the tangent space. A tedious

computation shows that the twelve 4 × 4-matrices: Pj

(

Qi 02

02 02

)

P−1
j for i = 1, 2, 3 and

for j = 0, 1, 2, 3, 4 with P0 = 14 (the identity matrix) and

P1 =











0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0











, P2 =











1 0 0 0

0 1 0−1

1 0 1 0

0 0 0 1











, P3 =











1 0−1 0

0 1 0 0

0 0 1 0

0 1 0 1











span a 10-dimensional space. Thus, Theorem 4.3 was proven.

Although we should struggle for the case of p = 2, the next corollary is vacant in

the case, because there is no superspecial curve of genus 4 in p = 2 (cf. Theorem 2.3).

Corollary 4.4. Assume n ≥ 3. Let W be an irreducible component of T4,n∩S4,n,

where T4,n is the Torelli locus. If W contains a superspecial nonhyperelliptic point, then

dimW = 3.

Proof. By the purity result [2, 4.1] of de Jong and Oort, we have dimW ≥ 3,

since it is not empty. If dimW > 3, then a component Z of S4,n is contained in W ,

since dimS4,n = [g2/4] = 4. Let s be a superspecial nonhyperelliptic point on W. Then

TsZ ⊂ TsW must hold. Since the Torelli map M4,n → T4,n ⊂ A4,n is an immersion

at nonhyperelliptic point, we have dimTsW ≤ 3g − 3 = 9. This contradicts with the

theorem above: dimTsZ = 10.

Remark. By Theorem 2.4, there exists a superspecial nonhyperelliptic curve C

of genus 4 if 7 < p < 20000 or p ≡ 5 (mod 6).
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