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Supersingular abelian varieties and quaternion

hermitian lattices

By

Tomoyoshi Ibukiyama∗

Abstract

This note gives a survey on relations between the theory of quaternion hermitian lattices

and that of supersingular abelian varieties, including relations between polarizations, moduli

loci, automorphism groups, curves with many rational points, and class numbers, type num-

bers, lattice automorphisms, algebraic modular forms. For readers’ convenience, we give some

explicit formulas for related numbers and give a slightly big list of related references. The last

section is an announcement of new results on supersingular loci of low dimensions.

§ 1. A review on supersingular elliptic curves

First we review classical results on supersingular elliptic curves due to Deuring

and Eichler. In this article, we fix a prime number p and we always mean by k an

algebraically closed field of characteristic p. An elliptic curve E is said to be supersin-

gular, if E has no p-torsion point, or equivalently if D = End(E) ⊗Z Q is the quater-

nion algebra over Q such that D∞ = D ⊗Q R and Dp = D ⊗Q Qp are division and

Dq = D ⊗Q Qq
∼= M2(Qq) for any prime q 6= p. Here Qq is the field of q-adic num-

bers and M2(Qq) is the 2 × 2 matrix algebra over Qq. For any supersingular E, it is

known that End(E) is a maximal order of D. This fact is proved first in [3] and also

proved in [42] by other methods, but the proof is seldom given in any other popular

books on elliptic curves as far as the author knows. The algebra D has finitely many

non-isomorphic (equivalently, non-conjugate) maximal orders, but in general, maximal

orders are not unique even up to conjugation. The number of non-isomorphic maximal
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orders of D is called the type number T (p) of D. We fix a supersingular elliptic curve

E and put End(E) = O. A left O module L in D is called a left O ideal if L⊗Z Q = D

and there exists 0 6= a ∈ Q such that aL ⊂ O. Two left O ideals L1 and L2 are said to

be equivalent if L1 = L2α for some α ∈ D×. The number of inequivalent left O ideals

is finite and called the class number H(p) of D. This does not depend on a choice of O

or E. We always have T (p) ≤ H(p) ≤ 2T (p).

We say that E has a model over Fp if there exists an elliptic curve E1 defined over

Fp such that E ∼= E1 over k.

Theorem 1.1 (Deuring [3]). (1) Supersingular elliptic curves are all isogenous

over k. The number of isomorphism classes of supersingular elliptic curves over k is

equal to the class number H(p).

(2) A supersingular elliptic curve E always has a model over Fp2 . It has a model over

Fp if and only if End(E) has a two sided principal ideal (π) with π2 = −p. The number

of isomorphism classes of E that has a model over Fp is equal to 2T (p)−H(p).

By (2), when E has a model over Fp, the maximal order End(E) contains an

element π with π2 = −p. Such maximal orders are not unique in general, but can be

all explicitly written down (see [14]). The following orders exhaust all such maximal

orders.

We take a prime q such that q ≡ 3 mod 8 and that
(−q
p

)

= −1 ( or equivalently

(−p
q

)

= 1. )

We assume that α, β satisfies α2 = −p, β2 = −q, and αβ = −βα. Then by an easy

application of the class field theory, we have

D = Q+Qα+Qβ +Qαβ.

We take an integer r such that r2 + p ≡ 0 mod q. We define

O(q, r) = Z+ Z
1 + β

2
+ Z

α(1 + β)

2
+ Z

(r + α)β

q
.

If p ≡ 3 mod 4 besides, then by taking r′ such that r′2+p ≡ 0 mod 4q, we define another

module O′(q, r′) by

O′(q, r′) = Z+ Z
1 + α

2
+ Zβ + Z

(r′ + α)β

2q
.

Then O(q, r) and O′(q, r′) are maximal orders. The essential point of the proof of this

fact is to show that these are rings and the discriminant is p2. Isomorphism classes

of O(q, r) and O′(q, r′) do not depend on the choice of r, r′ but depend on q, so we
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write them by O(q) and O′(q) for fixed r and r′. Then we have O(q) ∼= O(q′) if

and only if x2 + py2 = 4qq′ for some x, y ∈ Z, and O′(q) ∼= O′(q′) if and only if

x2 + 4py2 = qq′ for some x, y ∈ Z. By the way, O(q) ∼= O′(q′) for some q and q′ if and

only if O(q)× ∼= O′(q)× = {±1,±
√
−1}. Such maximal order whose unit group is of

order 4 is known to be unique. For more ideal theoretic description, see [14].

Theorem 1.2 (Eichler [5], Deuring [4]). (1) We have

H(p) =
p− 1

12
+

1

3

(

1−
(−3

p

))

+
1

4

(

1−
(−1

p

))

.

where (−1/p) = −1 if p ≡ 3 mod 4, (−1/p) = 1 if p ≡ 1 mod 4, (−1/2) = 0, and

(−3/p) = 1 if p ≡ 1 mod 3, (−3/p) = −1 if p ≡ 2 mod 3 and (−3/3) = 0.

(2) We have

2T (p)−H(p) =
1

2
(h(−p) + h(−4p))

where h(−d) is the class number of positive definite primitive quadratic forms of dis-

criminant −d (or equivalently the class number of the quadratic order of discriminant

−d that might be non-maximal). In case −d ≡ 2 or 3 mod 4, we put h(−d) = 0.

§ 2. Supersingular abelian varieties

Products of more than two supersingular elliptic curves are all isomorphic over k,

due to the results of Deligne, Ogus, Shioda. So we fix a supersingular elliptic curve E

and consider En. Then of course we have

End(En) =Mn(O)

where O = End(E). An abelian variety A of dimA = n is called superspecial if A

is isomorphic to En and supersingular if A is isogenous to En. The class number of

Mn(O) is known to be 1 when n ≥ 2 and the fact that superspecial abelian variety with

dimA ≥ 2 is unique over k is a reflection of this fact. The fact that the class number of

Mn(O) is 1 for n ≥ 2 is proved as follows. If we denote by SLn(D) the group of reduced

norm 1, then the strong approximation theorem holds for SLn(D) for n ≥ 2, that is,

we have

(2.1) SLn(DA) = SLn(D)SLn(D∞)
∏

q

SLn(Oq),

where DA is the adelization of D, Oq = O ⊗Z Zq, and the group SLn(D) is embedded

in SLn(DA) diagonally. This property (2.1) does not hold in general when n = 1. The
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group GLn(D) does not satisfy the strong approximation property even for n ≥ 2, but

since we have

N(D×
A) = Q×

+R
×
+

∏

q

Z×
q ,

where Q×
+ and R×

+ are positive rational and real numbers respectively and N denotes

the reduced norm, we also have

GLn(DA) = GLn(D)GLn(D∞)
∏

q

GLn(Oq)

for n ≥ 2. This means that the class number of Mn(O) is 1 for n ≥ 2. (Note that if we

take a smaller order than Mn(O), the similar relation does not hold in general even for

n ≥ 2 and the class number might be bigger than 1. For n = 1, the class number of O

is greater than 1 in general as the class number formula suggests.)

This class number one property for n ≥ 2 gives another important fact. Let A

be a supersingular abelian variety with dimA ≥ 2. Then by definition there exists an

isogeny δ : En → A. Let assume that δ is an isogeny with minimal degree. Assume

that n ≥ 2. Then by the fact that Mn(O) is of class number 1, we can show that

any endomorphism φ of A has a pullback to End(En). That is, for φ ∈ End(A),

there exists an endomorphism ψ ∈ End(En) such that φ ◦ δ = δ ◦ ψ. This gives an

injective homomorphism from End(A) to End(En), so the endomorphism ring of any

supersingular abelian variety A can be regarded as a subring of End(En) = Mn(O).

Indeed, when n = 2, all the possible endomorphism is known (e.g. [29], [45]) and we

can count the principal polarizations of A through this method ([27]).

For the sake of simplicity, hereafter we choose E such that E is defined over Fp.

For any effective divisor L of En, we define an isogeny φL of En to the dual (En)t by

φL(t) = Cl(Lt − L) ∈ (En)t,

where Lt is the translation of L by t and Cl means the linear equivalence class. If we

define a divisor X of En by

X = En−1 × {0}+ E × {0} × En−2 + · · ·+ {0} × En−1,

then φX is an isomorphism and defines a principal polarization. So we have (En)t ∼= En.

For any element φ ∈ End(En), denote by φt the dual map from (En)t to En. Then

φ → φ−1
X φtφX is a positive involution of Mn(D) and given for φ = g = (gij)1≤i,j≤n ∈

Mn(O) by

g∗ = t(gij) = (gji)

where x is the main involution of D. Here the main involution means the unique anti-

automorphism of D such that x+x ∈ Q, xx ∈ Q. For any polarization λ : En → (En)t,
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we have φ−1
X λ ∈ End(En). By this, we can identify the Neron-Severi group of En with

the quaternion hermitian matrices g∗ = g ∈ Mn(O). The polarizations are identified

with positive definite quaternion hermitian matrices in Mn(O). So it is natural that

quaternion hermitian matrices appear in the theory of supersingular abelian varieties.

§ 3. Quatnion hermitian matrices and lattices

For the rest of the paper, we assume that n ≥ 2. A free finite submodule L over Z

of Dn is called a lattice if L⊗Z Q = Dn. We fix a maximal order O of D that contains

π such that π2 = −p. A lattice of Dn that is a left O module is called a left O lattice.

Because of the class number 1 property of Mn(O) for n ≥ 2, for any left O lattice, there

exists h ∈ GLn(D) := Mn(D)× such that L = Onh. Here h is not unique and we can

change it by any element in GLn(O)h where GLn(O) := Mn(O)×. For L, we define a

quaternion hermitian matrix hh∗. We say that positive definite quaternion hermitian

matrices H1 and H2 ∈ Mn(D) are equivalent if H2 = ǫH1ǫ
∗ for some ǫ ∈ GLn(O). For

any positive definite quaternion hermitian matrix H, there exists h ∈ GLn(D) such

that H = hh∗ as in the usual linear algebra. This h is not unique, and if h1h
∗
1 = h2h

∗
2,

then we have (h−1
1 h2)(h

−1
1 h2)

∗ = 1n. So we define groups G1 and G by

G = {g ∈Mn(D); gg∗ = n(g)1n for some n(g) ∈ Q×
+},

G1 = {g ∈ G;n(g) = 1}.

The group G is the group of all similitudes of quaternon hermitian metric defined by

(x, y) =
n
∑

i=1

xiyi, x = (xi), y = (yi) ∈ Dn.

So for a quaternion hermitian matrix H, the right G1-orbit of h such that H = hh∗ is

unique. We say that two lattices L1 and L2 are equivalent if there exists g ∈ G such

that L2 = L1g. If we write L2 = Onh2 and L1 = Onh1 and if we put Hi = hih
∗
i , then

the above equivalence is the same as H1 = mǫH2ǫ
∗ for some positive rational number

m and ǫ ∈ GLn(O). If L2 = L1g for g ∈ G1, then we have m = 1. This also means

that the reduced norms of H1 and H2 are the same. The equivalence by G and the

equivalence by G1 are not different so much in our cases, since {n(g) : g ∈ G} = Q×
+

and N(D×) = Q×
+. Arithmetically G is often better, so we use G equivalence in most

cases, but often G1 equivalence matches geometric properties.

We define the completions of G at ∞ and primes q by

G∞ = {g ∈Mn(D∞); gg∗ = n(g)1n for some n(g) ∈ R×
+},

Gq = {g ∈Mn(Dq); gg
∗ = n(g)1n for some n(g) ∈ Q×

q }.
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We denote by GA the adelization of G. By definition, an element g = (gv) ∈ GA is an

element in
∏

v Gv such that gq ∈ GLn(Oq) for almost all primes q.

For any left O lattie L in Dn and any prime q, we put Lq = L ⊗Z Zq. For any

g ∈ GA, we can define a left O lattice Lg of Dn by

Lg :=
⋂

q:prime

(Lqgq ∩Dn).

We denote by G(L) the set of GA orbits of L:

G(L) = {Lg; g ∈ GA}.

We say that G(L) is a genus. This is the set of left O lattices which are mutually

equivalent by Gq at all q. The number of G equivalence classes in G(L) is finite and

this number is called the class number of G(L). The class number is expressed by adelic

double cosets as follows. We write

U(Lq) = {gq ∈ Gq;Lqgq = Lq}.

This is a compact subgroup of Gq. We put U(L) = G∞

∏

q U(Lq). Then we obviously

have the following bijection.

G(L)/G ∼= U(L)\GA/G.

So if we write

GA =
h
⋃

i=1

U(L)giG (disjoint),

then h = h(G(L)) is the class number of the genus G(L).
Next we define G-type numbers (or just type numbers if no confusion is likely). We

fix a genus G(L) and fix a set of representatives {L1, . . . , Lh} of classes in G(L). We

define the right order of Li by

Ri = {g ∈Mn(D);Lig ∈ Li}.

When n = 1 and G consists of left O ideals, then the right orders are maximal orders and

any maximal orders of O is realized as some right order. So the number of isomorphism

classes of the right orders (i.e. D× conjucacy classes) is just the usual type number

that we have already defined. When n ≥ 2, since we can write Li = Onhi, we have

Ri = h−1
i Mn(O)hi, so they are all GLn(D) conjugate and they are all maximal orders.

Actually since the class number of Mn(O) is 1 (for n ≥ 2), maximal orders of Mn(D)

are all conjugate to Mn(O). In this sense, the type number in the classical sense is

always 1. But here we will define another nice number. We say that Ri and Rj are
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equivalent if there exists g ∈ G such that Rj = g−1Rig. The number of inequivalent

right orders in {Ri} is called the G-type number and we denote it by T (G). When

n = 1, this definition is the same as the classical one. Naturally we have T (G) ≤ H(G),
but we can show that H(G) ≤ 2T (G).

Next we explain some important genera. We define the normN(L) of a left O lattice

L by the two sided O ideal spanned by xy∗ for any x, y ∈ L. We note that for g ∈ G, we

have N(Lg) = n(g)N(L), so G-equivalence does not preserve the norms, but the norm

is determined up to Q×
+ multiplication. We say that a left O lattice L is maximal if

any left O lattice M with N(M) = N(L) and L ⊂M is equal to L. For our Dn, when

n ≥ 2, maximal lattices are divided into two genera. One is called the principal genus

and it is the genus containing On. The another one is represented by a maximal lattice

L such that N(L) = Oπ where π2 = −p. This genus has no standard name, but we

often call this non-principal genus. (When the discriminant of the quatenrion algebra

D is not a prime and given by p1 · · · pt, then there are 2t genera of maximal lattices,

so the word “non-principal” is not so nice in that case, but for geometry, we treat only

the case t = 1, so we have no problem.) We will denote these two genera by Gprinc and

Gnonp respectively. To make degree clearer, we denote by Hn(Gprinc) the class number

of Gprinc for the genus of lattices in Dn. We define Hn(Gnonp), Tn(Gprinc), Tn(Gnonp)

similarly.

The non-principal genus is a bit complicated to describe. Locally at q 6= p, it is

equivalent to On
q . At p, a representative of the corresponding hermitian matrix for On

ph

is written by
(

0 π1n/2
−π1n/2 0

)

if n is even, and by






0 0 π1n−1

2

0 p 0

−π1n−1

2

0 0







if n is odd. More abstractly, a quaternion hermitian matrix H ∈ Mn(O) corresponds

with lattices L with N(L) = πO in the non-principal genus if and only if H ∈ πMn(O)

and Hm(H) = p⌈n/2⌉, where ⌈x⌉ is the minimum integer which is not less than x

and Hm is the Haupt norm of quaternion hermitian matrices. The Haupt norm is the

notion of the norm for Jordan algebras and in this case, it is a multiplicative polynomial

function on quaternion hermitian matrices which takes value 1 for 1n and Hm(x)2 =

N(x), where N(x) is the reduced norm.

Example. When n = 2, quaternon hermitian matrices associated with Gprinc are
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represented by
(

t r

r s

)

, 0 < t, s ∈ Z, r ∈ O, ts−N(r) = 1.

Those associated with Gnonp are represented by

(

pt πr

πr ps

)

, 0 < t, s ∈ Z, r ∈ O, pts−N(r) = 1.

§ 4. Some arithmetical results on supersingular ableian varieties

We denote by Sn,1 the locus of principally polarized supersingular abelian varieties

(A, λ) in the moduli An,1 of principally polarized abelian varieties.

Theorem 4.1 ([29]). The number of isomorphism classes over k of principal

polarizations on En is equal to the class number Hn(Gprinc).

For x ∈ R, we denote by ⌊x⌋ the maximum integer that does not exceed x.

Theorem 4.2 ([33], [37]).

(1) In general, the locus Sn,1 is (connected but) not irreducible. Every irreducible com-

ponent of Sn,1 has dimension ⌊n2/4⌋.
(2) The number of irreducible components of Sn,1 is equal to the class number Hn(Gprinc)

if n is odd and to Hn(Gnonp) if n is even.

When n = 2, then any principal polarization of E2 corresponds to either a sum

of supersingular elliptic curves or an irreducible curve C of genus two such that the

Jacobian J(C) is isomorphic to a principally polarized superspecial abelian surface.

The latter corresponds with an indecomposable lattice class in Gprinc. The number of

decomposable lattices is equal to h(h+ 1)/2 where h is the class number of D. So the

number of isomorphism classes of irreducible curves C of genus two such that J(C) ∼= E2

is H(Gprinc)− h(h+ 1)/2.

Next we consider the field of definition. We say that a polarized abelian variety

(A, λ) has a model over Fp if there exists another polarized abelian variety (B,µ) such

that B and µ are defined over Fp and (A, λ) ∼= (B,µ) over k.

Theorem 4.3 ([21], [25]). (1) Any principally polarized abelian varieties (En, λ)

has a model over Fp2 . The number of isomorphism classes of (En, λ) over k that have

models over Fp is equal to 2Tn(Gprinc)−Hn(Gprinc).

(2) Any irreducible components of the locus Sn,1 is defined over Fp2 . The number

of irreducible components that have models over Fp is equal to 2Tn(Gprinc)−Hn(Gprinc)

if n is odd, and to 2Tn(Gnonp)−Hn(Gnonp) if n is even.
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We note that for any genus G, we have 2T (G)−H(G) = H(G) if and only if T (G) =
H(G). By comparing the main terms of the trace formulas, we see that 2T (G)−H(G)
is much smaller than H(G) for big p for usual G, but often the difference is apt to be

small (or there are no difference) for small p.

§ 5. Examples of the Class numbers and the type numbers

We give here explicit formulas for class numbers and type numbers for n = 2.

The formula for H(Gprinc) for n = 3 is known by Hashimoto [9], but it seems that the

formula for H(Gnonp) for n ≥ 3 has never been calculated (except possibly for sporadic

small p).

Hereafter in this section, we assume that n = 2. A reference of the class number

formulas below are [10]. We write the class numbers of genera Gprinc and Gnonp of

maximal lattices by H(p, 1) = H2(Gprinc) and H(1, p) = H2(Gnonp), respectively. We

also write type numbers by T (p, 1) = T2(Gprinc) and T (1, p) = T2(Gnonp).

Theorem 5.1 ([10]). We have H(p, 1) = 1 for p = 2, 3, and for p ≥ 5, it is

given by

H(p, 1) =
(p− 1)(p2 + 1)

2880
+

7(p− 1)2

576
+

1

48
(p− 1)

(

1−
(−1

p

))

+
1

36
(p− 1)

(

1−
(−3

p

))

+
5(p− 1)

96
+

1

32

(

1−
(−1

p

))

+
1

9

(

1−
(−3

p

))2

+
1

36

(

1−
(−3

p

))

+
(p− 1)

18

+
1

12

(

1−
(−1

p

))(

1−
(−3

p

))

+











1/5 if p = 5

4/5 if p ≡ 4 mod 5

0 otherwise











+











0 if p ≡ 1 mod 8

1/4 if p ≡ 3, 5 mod 8

1/2 if p ≡ 7 mod 8











+

{

0 if p ≡ 1 mod 6

1/6 if p ≡ 5 mod 6

}

.

For p = 2, 3, we have H(1, p) = 1 and for p ≥ 5, it is given by



26 Tomoyoshi Ibukiyama

H(1, p) =
p2 − 1

2880
+

1

23 · 3

(

p−
(−1

p

))

+
1

25 · 3

(

p

(−1

p

)

− 1

)

+
1

23 · 3

(

p−
(−3

p

))

+
1

23 · 32
(

p

(−3

p

)

− 1

)

+
1

5
×











1 if p = 5

2 if p ≡ 2, 3 mod 5

0 if p ≡ ±1 mod 5











+
1

22

{

0 if p ≡ 1, 7 mod 8

1 if p ≡ 3, 5 mod 8

}

+
1

23 · 3

(

1−
(

3

p

))

+
1

23 · 3

((−1

p

)

−
(−3

p

))

.

A table is given as follows.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

H(p, 1) 1 1 2 2 5 4 8 10 16 24 26 37 50 55 72

H(1, p) 1 1 1 1 1 2 2 2 2 3 3 5 4 5 4

To explain the type number formula, we use the following definition. For any

Dirichlet character χ, we define the n-th generalized Bernoulli number by

fχ
∑

a=1

χ(a)teat

efχt − 1
=

∞
∑

n=0

Bn,χ

n!
tn.

where fχ is the conductor of χ (see [1]). For example, more explicitly we have

B2,χ =
1

fχ

fχ
∑

a=1

χ(a)a2 −
fχ
∑

a=1

χ(a)a.

In the following theorem, we assume that χ is the Dirichlet character associated with

the real quadratic field Q(
√
p), so we have χ(−1) = 1 and hence

∑fχ
a=1 χ(a)a = 0, so we

can omit this part from the above formula for B2,χ. For any squarefree positive integer,

we denote by h(
√
−d) the class number of the imaginary quadratic field Q(

√
−d).

Theorem 5.2 ([21], [25], [26]). (1) For p = 2, 3, 5, we have T (p, 1) = 1, 1, 2

and 2T (p, 1)−H(p, 1) = 1, 1, 2. When p ≡ 1 mod 4 and p ≥ 11, we have

2T (p, 1)−H(p, 1) =
1

25 · 3(9− 2χ(2))B2,χ +
4p− 1

48
h(
√−p) + 1

8
h(
√

−2p)

+
1

12

(

3 +

(−2

p

))

h(
√

−3p) +
1

12

(

1−
(p

3

))

h(
√−p).
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For p ≡ 3 mod 4 and p ≥ 7, we have

2T (p, 1)−H(p, 1) =

1

25 · 3B2,χ +
1

8
h(
√

−2p) +
1

12
h(
√

−3p)

+

{

1

48
(p− 1)

(

9− 4

(

2

p

))

+
1

16

(

p−
(

2

p

))

+
1

12

(

1−
(p

3

))

(

3−
(

2

p

))}

h(
√−p)

(2) For p = 2, 3, 5, we have T (1, p) = 2T (1, p) −H(1, p) = 1. When p ≡ 1 mod 4

and p ≥ 11, we have

2T (1, p)−H(1, p) =
1

25 · 3

(

9− 2

(

2

p

))

B2,χ +
1

24
h(
√−p)

+
1

23
h(
√

−2p) +
1

22 · 3

(

3 +

(

2

p

))

h(
√

−3p).

When p ≡ 3 mod 4 and p ≥ 7, we have

2T (1, p)−H(1, p) =

1

25 · 3B2,χ +
1

24

(

1−
(

2

p

))

h(
√−p) + 1

23
h(
√

−2p) +
1

22 · 3h(
√

−3p).

A numerical table are given as follows.

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

2T (p, 1)−H(p, 1) 1 1 2 2 5 4 8 8 14 18 18 11 32 19 44

2T (1, p)−H(1, p) 1 1 1 1 1 2 2 2 2 3 3 5 4 5 4

Comparing the numerical table of 2T (1, p) − H(1, p) with the table of H(1, p), it

is surprising that T (1, p) = H(1, p) for so many p. Actually the minimum p such that

these are different is p = 167, where H(1, p) = 20 and T (1, p) = 19. We have the

following easy corollary of the above table on geometry.

Corollary 5.3 ([27], [48]). For any n, there exists a component of Sn,1 defined

over Fp. When n = 2 and p < 167, all the irreducible components of S2,1 are defined

over Fp.

I was informed by Cris Poor that this prime 167 appears also as the smallest

prime such that there exists non-lift paramodular cusp form of weight 3 with plus sign

of Atkin-Lehner ([6]). Such correspondence is naturally expected by the conjecture

between paramodular forms of weight k and the algebraic modular forms of weight

k − 3 associated with non-principal genus (see [18], [22], [31]).

The calculation above of T (p, 1) or T (1, p) is based on an equality between the type

numbers and class numbers of quinary quadratic forms ([26]). The latter class numbers
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have been calculated in [2], so we can use this. In general, 2T (G) −H(G) is also given

by the trace formula for the Hecke operator UπU (see [25]), though actual calculation

would be very hard.

§ 6. Remark on algebraic modular forms

Our class numbers can be regarded as dimensions of certain algebraic automorphic

forms of some weight. So we explain algebraic modular forms and some related things in

this section. Let (ρ, V ) be an irreducible representation of G1
∞ := {g ∈ G∞;n(g) = 1}.

We assume here that ρ(±1n) = 1 for the sake of simplicity. Here G1
∞ is a compact group

and a theory of representations are classical. The irreducible rational representations

correspond with certain Young diagrams and character formulas are also known. We

define a representation of GA associated with ρ by

GA → G∞ → G∞/R
×
+
∼= G1

∞/{±1n} ρ→ GL(V ).

We define the space Mρ(U) of algebraic modular forms of weight ρ with respect to an

open subgroup U of GA by

Mρ(U) := {f : GA → V ; f(uga) = ρ(u)f(g) for any u ∈ U, g ∈ GA, a ∈ G}.

If we write GA =
⋃h

i=1 UgiG, then it is clear that f ∈ Mρ(U) is determined by the

vector (f(g1), . . . , f(gh)). For example, if ρ is the trivial representation (denoted by 0

for simplicity), then f is nothing but a function which takes a constant on each double

coset. So in this case, we have

M0(U) ∼= Ch.

This is often called algebraic modular forms of weight 0. So the class number of U (the

number of double cosets) is nothing but the dimension of algebraic modular forms of

weight 0. More generally, we have the following isomorphism (see [8], [10]).

(6.1) Mρ(U) ∼= ⊕h
i=1V

Γi

where we define Γi = G ∩ g−1
i Ugi (which is a finite group) and

(6.2) V Γi = {v ∈ V ; ρ(γ)v = v for all γ ∈ Γi}.

The isomorphism of (6.1) is given by f → (ρ(g−1
1 )f(g1), . . . , ρ(g

−1
h )f(gh)).

When n = 1, algebraic modular forms are disguised forms of the classical “Brandt

matrices”. Since G1
∞ is compact, we can realize V as a certain space of polynomials, and

algebraic modular forms are vectors of polynomials invariant by the actions of certain

finite groups. It is not difficult to give concrete examples for such polynomials. This is
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often much easier to give holomorphic modular forms, so by using the correspondence

between algebraic modular forms of U(2) and holomorphic modular forms of GL(2) or

its product known by Eichler, Shimuzu, Jacquet-Langlands, some people use algebraic

modular forms instead of holomorphic modular forms to give examples. The spaces

beyond classical Brandt matrices were first introduced by Y. Ihara [32]. Some abstract

general theory for Hecke algebra etc on algebraic modular forms for our case was well

explained in Hashimoto [8]. Later B. H. Gross defined algebraic modular forms for

general reductive group such that G∞ is compact, so we are using his naming here.

The dimension formula for Mρ is an easy corollary for the class number formula

and the classical character formula, which we omit here(see [10], [18], [11], [22], [31],

[24]). For any double coset UzU , the Hecke operator action on Mρ(U) is defined by

((UzU)f)(g) =
d
∑

i=1

ρ(z−1
j )f(z−1

i g)

where UzU = ∪d
i=1ziU . Through the isomorphism (6.2), the Hecke operator is identified

with certain h × h matrices(see [8]). This has some application to the geometry. For

example if L = On and T (m) =
⋃

g∈GA∩Mn(OA);n(g)=m UgU , then T (m) describes

isogenies of degree n between principally polaraized superspecial abelian varieties. A

general theory of such Hecke operators for big U is in Satake [38], and explicit shape of

Euler factors are known in [32] and [12].

The proof of the class number formulas in the previous section is based on a calcu-

lation of the trace of some Hecke operators on algebraic modular forms. It is essentially

a summation of some type of masses associated with conjugacy classes in G with some

complicated local correction data.

We have a similar mass formula for elements in any ℓ-fold self-product Gℓ of G

(see [19]). We can apply this to vectors of generators of any subgroup in G and hence

to generators of Γi. Then this formula enables us to calculate Γi in principle. More

precisely, let Γ be some abstract group. Then this new mass formula can be in principle

used to count the number of Γi such that Γ ∼= Γi. Of course in most cases, the actual

calculations are hard, but a precise result for n = 2 of Gnonp is given in [19]. Such

groups Γi for Gnonp is the automorphism group of the irreducible components of S2,1.

In this case, the possible groups for Γi/{±12} are

{1} Z/2Z Z/3Z (Z/2Z)2 S3 A4 S4 D12 A5

where Sn and An are the symmetric group and the alternating group, respectively and

D12 is the dihedral group of order 12. On the other hand, the list of automorphism

groups for the principal genus Gprinc for n = 2 is in [29] for indecomposable lattices.

Automorphism groups of decomposable lattices are easily given. If the lattice corre-

sponds with E1 + E2 for non-isomorphic supersingular elliptic curves E1 and E2, then
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the automorphism group is Aut(E1)×Aut(E2). The automorphism group of the lattice

corresponding to E +E is generated by Aut(E)×Aut(E) and the interchange of both

components.

Another interesting thing for algebraic modular form is that by Langlands functo-

riality and the isomorphism G1(C) ∼= Sp(n,C) (where Sp(n,C) is the symplectic group

of rank n, i.e. a subgroup of GL2n(C)), we can expect that algebraic modular forms

are isomorphic to Siegel modular forms Hecke equivariantly. This was the motivation

of Ihara [32]. Although he did not formulate any precise conjecture and said nothing

about which kind of discrete subgroups are suitable for the comparison, he developped

some lifting theory to algebraic modular forms of Saito-Kurokawa type for n = 2.

A precise formulation of this sort of conjectures for parahoric subgroups as discrete

subgroups are given in [15], [18], [11], [22], [31], [24]. A proof for some of them is given

in [13].

§ 7. Curves with many rational points

Let C be a smooth projective curve of genus g defined over the finite field Fq of q

elements. Then the number of Fq rational points C(Fq) is evaluated by A. Weil as

1 + q − 2g
√
q ≤ |C(Fq)| ≤ 1 + q + 2g

√
q.

If q is not a square, the equality never holds, but when q is a square, it is an interesting

problem to ask if there exists a curve C which attains the maximum or the minimum of

the above bound. The case g = 1 is classical. The problem for g ≥ 2 is started by J. P.

Serre and he proved the existence for any square q 6= 4, 9 for g = 2. For the existence

theorem for such curves for p 6= 2, 3, his point is to show that there exists a curve of

genus 2 such that J(C) ∼= E2 for a supersingular elliptic curve E, since the Frobenius

of E2 is suitable to show the maximality of the number of rational points. He also used

the fact that a curve of genus 2 is always a hyperelliptic curve.

When the genus is 3, all the abelian varieties of dimension 3 are Jacobian varieties

if we include reduced curves ([35]), so principally polarized superspecial abelian variety

(E3, λ) with indecomposable λ is a Jacobian J(C) of a smooth irreducible curve C. We

can easily count the number of indecomposable lattices in the principal genus by using

class number formulas for n = 1, 2, 3 and when p ≥ 3, there exists an irreducible curve

C over k of genus 3 such that J(C) ∼= E3. But this is far from showing the existence

of maximum or minimum curve. Here we have the following problem. For general g,

if C is not hyperelliptic, the Torelli theorem has some problem. In case when C is

non-hyperelliptic, even if there exists an isomorphism J(C) ∼= E3 over an algebraically

closed field, we cannot descend this to an isomorphism over the field of definition of
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both sides. The obstruction is that for non-hyperelliptic curve C, there is a difference

between Aut(C) and Aut(J(C)), and we only have

Aut(C) ∼= Aut(J(C))/{±1}.

What we can say is that we have an isomorphism over a quadratic extension of the base

field of definition but may not have it over the base field itself. (I learned this from J.

P. Serre by a private letter.) So we must have a special care for this point.

Here we have the following theorem.

Theorem 7.1 ([20]). For any odd prime, there exists a smooth irreducible curve

of genus 3 defined over Fp such that J(C) ∼= E3 for a supersingular elliptic curve E

defined over Fp, where the isomorphism is defined over Fp2 and we have

|C(Fp2)| = 1 + p2 + 6p,

which is the maximum possible number.

By seeing the Frobenius of E3 over Fp2e , this theorem obviously means that for odd

e, we have |C(Fp2e)| = 1 + p2e + 6pe and for even e, we have |C(Fp2e)| = 1 + p2e − 6pe.

This is an existence theorem and not a theorem to give C concretely. If we write

any concrete relatively simple C over Z and consider the condition such that C mod p is

superspecial, then it usually happens that for some p in certain arithmetic progressions,

this is superspecial, but not for the rest of progressions. (Of course we can give many

such examples, e. g. x4 + y4 = z4.) If so, this means that there is no hope to prove

the existence of maximal curves for all big p by giving examples, since finite numbers

of such arithmetic progressions do not cover all the primes.

The ingredient of the proof of Theorem 7.1 is as follows. We consider a condition

that (E3, λ) has a model (A,µ) over Fp and at the same time an isomorphism (E3, λ) ∼=
(A,µ) can be taken over Fp2 . By the Weil criterion of descent of the field of definition,

this condition is interpreted as the existence of quaternion hermitian lattices L in Gprinc

such that there is some nice element g ∈ G satisfying Lg ⊂ L. Then we prove this

existence of such L by showing the positivity of certain mass of such g in the trace

formula.

When the genus is more than 3, abelian varieties are not necessarily Jacobians and

it seems there is no easy way to reduce the problem to the theory of lattices.

§ 8. Moduli and parahoric subgroups

We will explain that the arithmetic of GA is also powerful for the study of moduli.

First we consider the case n = dimA = 2. We have already explained the following
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things.

(1) Each irreducible component V of S1,2 corresponds to a (class of) quaternion hermi-

tian lattice in the non-principal genus Gnonp.

(2) Each principally polarized superspecial abelian surface (E2, λ) corresponds to a

(class of) quaternion hermitan lattice in the principal genus Gprinc.

Since superspecial is also supersingular, the above (E2, λ) should correspond to some

point in S2,1. To which component does this belong? In particular, since such points

and irreducible components are both described by quaternion hermitian lattices, how

can we describe the condition that a point is on a component by the lattice theoretic

terminology? We will answer this question below.

First we review some theory on directions from Oort [36] and [34]. We denote by

αp the finite group scheme of order p given by

αp = Spec(k[x]/(xp)),

where the multiplication is given by x→ 1⊗x+x⊗1. We have an embedding αp → E.

Any supersingular abelian surface A can be written as

A ∼= E2/ι(αp)

where ι is an embedding (i, j) : αp → E2. We put FE = {Ker(F : E → E(p))} for the

Frobenius map F and define t ∈ k ∪ {∞} as

{αp

i
∼−→ FE

j−1

−→ αp} =
i

j
= t ∈ k = End(αp),

where we regard t = ∞ when j = 0. We call t a direction of the embedding. Oort proved

in [36] that A is isomorphic to E2 if and only if t ∈ Fp2 ∪ {∞}. In this case, t is called

a good direction. So there are p2 + 1 good directions. Let φ be the natural projection

of E2 to E2/ι(αp) for a good direction. Although E2 and E2/ι(αp) are isomorphic, we

are taking φ as an isogeny of degree p. Since E2/ι(αp) ∼= E2, we can identify φ with an

element in the Hecke algebra

T (1, π) := GL2(O)

(

1 0

0 π

)

GL2(O).

(Because of the strong approximation theorem, the local Hecke algebra and the global

Hecke algebra do not differ essentially.) So we can show that the directions can be

regarded as cosets GL2(O)\T (1, π) by seeing concrete coset representatives.

For any polarization λ of E2, we say that λ belongs to a genus G if the quatenion

hermitian matrix φ−1
X λ is associated with a lattice in G. Assume that a polarization λ

of E2 belongs to Gnonp. Then it is clear that for any g ∈ T (1, π), there exists H = H∗ ∈
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GL2(O) (a quaternion hermitian matrix belonging to Gprinc) such that φ−1
X λ = gHg∗,

and any such λ descends to a principal polarization of E2. On the other hand, let

λ0 be a principal polarization of E2 and consider the situation that pλ0 descends to a

polarization λ1 of E2 which belong to Gnonp by an element g ∈ T (1, π). (The condition

that λ1 belongs to Gnonp is equivalent to the condition that Ker(λ1) ∼= α2
p.) Then by

a direct calculation of cosets, we can show that there are p + 1 cosets of g ∈ T (1, π)

such that pλ0 = g∗(λ1) for some λ1. This direction, i.e. a coset in GL2(O)\T (1, π), is
called a very good direction. We will see that these two notions are related to parahoric

subgroups. To explain parahoric subgroups, we introduce another expression of Gp.

Locally at p, we have an element ξ ∈ GL2(Op) such that

ξξ∗ =

(

0 1

1 0

)

.

By using this element, if we put G∗
p = ξGpξ

−1, then we have

G∗
p =

{

g ∈M2(Dp); g

(

0 1

1 0

)

g∗ = n(g)

(

0 1

1 0

)

for some n(g) ∈ Q×
p

}

.

For i = 0, 1, 2, we define

U∗
2,p = GL2(Op) ∩G∗

p,

U∗
1,p =

(

Op π−1Op

πOp Op

)×

∩G∗
p,

U∗
0,p = U∗

1,p ∩ U∗
2,p,

and put Ui,p = ξ−1U∗
i,pξ. Then these three groups are representatives of conjugacy

classes of parahoric subgroups of Gp. (Roughly speaking, a parahoric subgroup is a

group whose reduction modulo π contains a upper triangular subgroup.) We also define

open subgroups of GA by

Ui = G∞Ui,p

∏

q 6=p

(GL2(Oq) ∩Gq).

Then we have [U2 : U0] = [U2,p : U0,p] = p2 + 1 and [U1 : U0] = [U1,p : U0,p] = p+ 1. So

it is natural to expect that good directions and very good directions have some connec-

tion to these subgroups. First we explain this only by using the quaternion hermitian

matrices. Let H0 and K0 be quaternion hermitian matrices in GL2(O) (corresponding

to the principal genus) and put H2 = pK0. We assume that H1 is a quatenion hermitian

matrix corresponding to the non-principal genus. Let L be a maximal lattice in Gnonp

defined by

L = ((πOp, Op)ξ ∩D2)
⋂

q 6=p

(O2
q ∩D2).
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For hi ∈ GL2(D) such that Hi = hih
∗
i for i = 0, 1, 2, we may write

(8.1) O2h2 = O2πg2, O2h0 = O2g0, O2h1 = Lg1

for some gi ∈ GA. For quatenion hermitian matrices H and K, we say that H is

descendable to K if H = gKg∗ for some g ∈ GL2(D) ∩M2(O).

Proposition 8.1. Notation being as above, we have

(1) H2 is descendable to H1 if and only if U1g1G ∩ U2g2G 6= ∅.
(2) H1 is descendable to H0 if and only if U1g1G ∩ U2g0G 6= ∅.

Note that here we are considering two possibly different double cosets U2g2G and

U2g0G for the same U2. Some more description between some orbit of directions and

Ui ∩ giGg−1
i -orbit of U0\Ui is possible but we omit it here. Please see another paper

[28].

We write one geometric application of the above proposition. Any irreducible

component of S2,1 corresponds with some polarization λ of E2 that belongs to Gnonp

(due to Katsura and Oort). Let’s fix such polarization µ1 and denote by V (µ1) the

irreducible component of S2,1 corresponding to µ1. Let µ0 be a principal polarization

of E2. Denote by H1, H0 the quatenion hermitian matrices corresponding to µ1, µ0,

respectively and define gi as in (8.1). Then we have

Theorem 8.2. A principally polarized superspecial abelian surface (E2, µ0) is

on V (µ1) if and only if U2g0G ∩ U1g1G 6= ∅. (Note that the mismatch of the subscripts

of U2 and g0 are not typos.)

For a supersingular abelian varietyA, we define a-number by a = dimHom(αp, A)(e.g.

see [37]). For example, A ∼= En if and only if a = n. For a generic A, we have a = 1.

Irreducible components in Sn,1 is controlled by a polarization λ of En in Gprinc or in

Gnonp as we have already explained. More precisely for n = 3 this is described as follows

(see [35], [33], [37]). Let (A, λ) be a principally polarized supersingular abelian variety

of dimension 3. Then there exists a principal polarization λ0 of E3 and a sequence

(E3, pλ0)
φ2→ (A1, µ1)

φ1→ (A, λ)

such that Ker(φi) ∼= (αp)
i and pλ0 = φ∗2(µ1), µ1 = φ∗1(λ), and Ker(µ1) ⊂ A1[F ], where

F is the absolute Frobenius. Such sequence is called a polarized flag type quotient.

When a(A) = 1, then this sequence is unique and (A, λ) belongs to the irreducible

component of S3,1 defined by λ0.

Then we may ask the similar thing for n = 3 as in n = 2. Since we have no space

to state theorems for this, we give a very short sketch. When dimA = 3, the a-number

of A is 1, 2, 3. For a = 3, for a principal polarization µ0, (E
3, µ0) is a point in S3,1. For
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a = 2, we can consider the family of principally polarized abelian varieties (A, λ) below

(E3, pλ0) for a fixed λ0. So we have three families, i.e. irreducible components, a = 2

families, and points (E3, µ0). These three families correspond to adelic double cosets

for certain explicitly described open subgroups of GA, and all the inclusion relations

of these three objects are described by non-emptyness of corresponding double cosets.

Details will be published in [28].

Acknowledgment: We would like to thank the referee for the very careful reading

and suggestions.
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(1969), 521–560.

[43] W. C. Waterhouse and J. S. Milne, Abelian varieties over finite fields, Proc. Sympos. Pure

Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., (1971), 53–64, Amer. Math.

Soc., Providence, R.I.

[44] Chia-Fu Yu, The supersingular loci and mass formulas on Siegel modular varieties, Doc.

Math. 11 (2006), 449–468.

[45] Chia-Fu Yu and Jeng-Daw Yu, Mass formula for supersingular abelian surfaces, J. Algebra

322(2009), 3733-3743.

[46] Chia-Fu Yu, Superspecial abelian varieties over finite prime fields. J. Pure Appl. Algebra

216 (2012), no. 6, 1418–1427.
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