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Generalized LPS Ramanujan graphs

By

Hyungrok Jo∗

Abstract

We show how to construct generalized LPS Ramanujan graphs (LPS-type graphs), and
prove their Ramanujan-ness on the limited case. This work is originally based on “Ramanujan
graphs for post-quantum cryptography” in the proceedings of MQC 2019.

This article is basically a résumé of “Ramanujan graphs for post-quantum cryp-
tography” [22] by Jo, Sugiyama and Yamasaki in 2019, which proposed a generalized
version of explicit constructions of Lubotzky, Phillips and Sarnak’s Ramanujan graphs.
Most of contents are contained in [22], and the proof of the Ramanujan-ness are fully
discussed with Sugiyama and Yamasaki. This work is motivated from an analysis on
cryptographic hash functions, suggested by Charles, Goren, and Lauter [2, 3]. They pro-
posed hash functions based on Cayley-type Ramanujan graphs [25] and supersingular
isogeny-type Ramanujan graphs [37, 32, 36, 3, 8]. Especially, in a case of Cayley-type
Ramanujan graphs, Lubotzky, Phillips and Sarnak (in short, LPS) [25] suggested Cay-
ley graphs over the projective group with respect to well-chosen generating sets. In our
work, we showed how to construct LPS-type graphs and proved the Ramanujan-ness
when “P = 13”, which means the case of a definite quaternion algebra ramified precisely
at 13 and ∞.

In this article, we give a more detailed proof of the case when “P = 13”, and explore
the other possibility of Ramanujan graphs in the manner of LPS and Chiu’s construc-
tion. This article is organized as follows: The first section gives a brief overview of
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theory of expander graphs. The second section provides some preliminaries on quater-
nion algebras for describing our expecting graphs. In the third section the procedure
to construct LPS-type graphs is presented and the Ramanujan-ness when “P = 13”
is shown. In the final section we discuss difficulties to prove the other cases (when
P = 2, 3, 5, 7) and some open problems on these extensions with numerical results.

§ 1. A family of expander

An expander graph has been widely studied in many kinds of research areas. Espe-
cially, in computer science, because of its sparsity and strong connectivity, it is well used
for designing communication networks. The quality of networks on expander graphs can
be measured by their expanding ratios [43, 17].

Throughout this article, we assume that all graphs are k-regular, finite, undirected,
simple (i.e., no loops nor multi-edges) and connected. Suppose that X = (V,E) is a
k-regular graph, composed of a vertex set V = V (X) with n vertices and an edge set
E = E(X). For a subset T of V , the boundary ∂T of T is defined as

∂T = {(x, y) ∈ E | x ∈ T and y ∈ V \ T},

where V \T is the complement of T in V . The expanding constant h(X) of X, which is
defined as below, is a discrete analogue of the Cheeger constant in differential geometry
[26]:

h(X) = min
T⊂V

0<|T |≤n/2

|∂T |
|T |

.

We give the definition of expander graphs.

Definition 1.1. A family of k-regular graphs (Xj)j≥1 such that |V (Xj)| → +∞
as j → +∞ is called an expander family if there is an ϵ > 0 such that the expanding
constant h(Xj) satisfies h(Xj) ≥ ϵ for all j.

For exploring the algebraic aspects of graphs, the adjacency matrix A of a graph
X plays an important role; it is a square matrix indexed by pairs of vertices u, v
whose (u, v)-entry Au,v is the number of edges between u and v. Since we assume
that X has n vertices, A is an n-by-n symmetric (0, 1)-matrix without diagonal entries
(i.e., Au,u = 0). For such a graph X, the adjacency matrix A of X has the spectrum
k = λ0 > λ1 ≥ · · · ≥ λn−1. It is known [1, 12] that

k − λ1
2

≤ h(X) ≤
√
2k(k − λ1).

If the spectral gap k − λ1 is larger, the quality of the network of X is getting better as
well. However, it is shown by Alon-Boppana as follows that it cannot be too large.
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Theorem 1.2. Let (Xj)j≥1 be a family of k-regular graphs with |V (Xj)| → +∞
as j → +∞. Then

lim inf
j→+∞

λ1(Xj) ≥ 2
√
k − 1.

This fact motivates the definition of a Ramanujan graph.

Definition 1.3. A k-regular graph X is Ramanujan if, for every member λ of
the spectrum of the adjacency matrix of X other than ±k, one has |λ| ≤ 2

√
k − 1. We

call 2
√
k − 1 the Ramanujan bound (RB).

For a more detailed exposition of the theory, refer to [7, 26, 43]. In the literature,
there are a few explicit constructions of infinite families of Ramanujan graphs:

(1) When k−1 is a prime congruent to 1 modulo 4, Lubotzky, Phillips, and Sarnak [25]
and Margulis [28] derived explicit constructions of infinite families of Ramanujan
graphs independently.

(2) When k = 3, Chiu [4] derived explicit constructions of cubic Ramanujan graphs in
1992.

(3) When k − 1 is a prime power, Morgenstern [33] derived explicit constructions of
infinite families of Ramanujan graphs in 1994.

(4) Pizer [37] derived explicit constructions of Ramanujan graphs by using Brandt ma-
trix associated to a special order of a certain level, which can be seen as the adja-
cency matrix of an expecting graph in 1990.

From (1) to (4), the explicit construction turns out to be a consequence of the Ra-
manujan conjecture for eigenvalues of certain Hecke operators. Refer to [26, 40] for
kind explications of theory. Moreover, in 2015, Marcus, Spielman, and Srivastava [29]
showed the existence of an infinite family of bipartite k-regular Ramanujan graphs for
any k ≥ 3.

§ 2. Preliminaries

In this section, we prepare terminologies and basic facts of quaternion algebras [44]
and quadratic forms [41]. Throughout this article, we denote by P the set of all prime
numbers. Let F be a field and F× its unit group. Let A = AF be a quaternion algebra
over F , i.e., a central simple algebra of dimension 4 over F . In this article, we always
assume that F is not of characteristic 2. Then, there exist a, b ∈ F× such that it can
be written as

A = AF (a, b) = {α = x+ yi+ zj + wk |x, y, z, w ∈ F},
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where i, j, k satisfy i2 = a, j2 = b and ij = −ji = k (and hence k2 = −ab). For
α = x + yi + zj + wk ∈ A, its conjugate, the reduced trace and the reduced norm are
defined by α = x − yi − zj − wk, T (α) = α + α = 2x ∈ F and N(α) = αα = αα =

x2 − ay2 − bz2 + abw2 ∈ F , respectively.

§ 2.1. Quaternion algebras over Fq

Let us fix q ∈ P \ {2}. It is known that, for any a, b ∈ F×
q , the quaternion algebra

A = AFq (a, b) is isomorphic to the matrix algebra M2(Fq) of the 2-by-2 matrices over
Fq. Let

( ·
·
)
be the Kronecker symbol. When

(
a
q

)
=

(−b
q

)
= 1, that is,

√
a,
√
−b ∈ Fq,

one has the following isomorphism.

Lemma 2.1. Assume that
(
a
q

)
=

(−b
q

)
= 1. Then, the map ψq : A → M2(Fq)

defined by

ψq(x+ yi+ zj + wk) =

[
x+ y

√
a

√
−b(z + w

√
a)

−
√
−b(z − w

√
a) x− y

√
a

]

is an isomorphism satisfying det(ψq(α)) = N(α) and ψq (α) = ψq(α) for α ∈ A. Here,[
s t

u v

]
=

[
v −t
−u s

]
for

[
s t

u v

]
∈ M2(Fq).

For a ring R, we denote by R× the group of units of R. Let GL2(Fq) = M2(Fq)
× and

SL2(Fq) = {A ∈ GL2(Fq) | detA = 1}. Moreover, let PGL2(Fq) = GL2(Fq)/Z(GL2(Fq))

and PSL2(Fq) = SL2(Fq)/Z(SL2(Fq)). Here, for a group G, we denote by Z(G) the cen-
ter of G. We can naturally see that PSL2(Fq) is a subgroup of PGL2(Fq) of index 2

because now q is odd. Remark that |PGL2(Fq)| = q(q2 − 1) and |PSL2(Fq)| = q(q2−1)
2 .

Since A ≃ M2(Fq), we have A× ≃ GL2(Fq) via (the restriction of) ψq and hence obtain
the isomorphism βq : A×/Z(A×) → PGL2(Fq).

We need the following lemma later.

Lemma 2.2 (Davidoff et al. [7, Chapter 3]). Assume that
(
a
q

)
=

(−b
q

)
= 1. Let

α ∈ A with N(α) = p ∈ P\{q}, which implies that α ∈ A×. Then, βq(αF×
q ) ∈ PSL2(Fq)

if and only if
(
p
q

)
= 1.

§ 2.2. Quaternion algebras over Q

Let a, b ∈ Z\{0} and A = AQ(a, b) be a quaternion algebra over Q. A place v of Q
is said to be split in A if Av := A⊗Q Qv ≃ M2(Qv), where Qv is the v-adic completion
of Q and is said to be ramified if Av is a division algebra. We denote by Ram(A) the
set of all places which are ramified in A. Notice that Ram(A) is a finite set, has an even
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cardinality, and determines an isomorphism class of quaternion algebras over Q. The
product of all primes (= finite places) in Ram(A) is called the discriminant of A and
is denoted by D. From now on, we assume that A is definite, that is, the infinite place
∞ is ramified in A, whence there are an odd number of primes which are ramified in
A. Notice that A = AQ(a, b) is definite if and only if a < 0 and b < 0.

A lattice I ⊂ A is a free Z-submodule of A of rank 4. A lattice O ⊂ A is called an
order if it is a ring with unity. In particular, it is called maximal if it is not properly
contained in any other order. Notice that, if O is an order of A, then O ⊗Z Zp is an
order of Ap for p ∈ P. Here, Zp is the ring of p-adic integers. Let O be an order of A.
We call a lattice I of A a left (resp. right) O-ideal if OL(I) = O (resp. OR(I) = O),
where OL(I) = {α ∈ A |αI ⊂ I} (resp. OR(I) = {α ∈ A | Iα ⊂ I}). We say that
two left (resp. right) O-ideals I and J are equivalent if there exists α ∈ A× such that
I = Jα (resp. I = αJ ). This is an equivalence relation. We denote by H(O) the
number of equivalence classes of left (or right) O-ideals, which is shown to be finite,
independent of left or right. We call H(O) the class number of O. We remark that the
class number is finite and independent of orders O.

§ 2.3. Quadratic form

We briefly recall the notion and terminologies of quadratic forms in a special case
(see [41]). Let m be a positive integer. A symmetric matrix A = [aij ] ∈ M2m(Z) is
called even if every diagonal entry aii is even for every 1 ≤ i ≤ 2m. With such a matrix,
we associate the quadratic form

Q(v) =
1

2
tvAv =

1

2

2m∑
i=1

aiix
2
i +

∑
1≤i<j≤2m

aijxixj ,

where v = t[x1, . . . , x2m]. We call Q and A primitive when the greatest common divisor
of all entries of A is 1. We assume that the quadratic form Q is primitive. Let detA

be the determinant of A; one calls ∆ := (−1)m detA the discriminant of Q. If Aij is
the cofactor of aij in A, then A−1 =

( Aij

detA

)
. The level of Q is defined as the smallest

positive integer N such that NA−1 = N
detA (Aij) is an even matrix.

For a positive definite quadratic form Q of level N , define the theta series by

ΘQ(z) =
∑

v∈Z2m

e2πiQ(v)z =

∞∑
n=0

rQ(n)e
2πinz,

where, for n ∈ Z≥0, rQ(n) = |{v ∈ Z2m | n = Q(v)}|. From [41, Chapter IX,
Theorems 4, 5], we know that ΘQ(z) is a non-cuspidal holomorphic modular form

of weight m and of level N with nebentypus χ. Namely, for all
[
a b

c d

]
∈ Γ0(N) =
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a b

c d

]
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 (mod N)

}
, it holds that

ΘQ

(
az + b

cz + d

)
= χ(d)(cz + d)mΘQ(z),

where χ is a character modulo N defined by χ(d) = ( (−1)m detA
d ) if d > 0 and χ(d) =

(−1)mχ(−d) if d < 0. We also know that ΘQ(z) is absolutely and locally uniformly
convergent for z ∈ C with Im(z) > 0, by [41, Chapter IX, §1.1].

§ 3. The families of LPS-type graphs

We used a variation of Chiu’s approach [4]. Since the Hamilton’s quaternion algebra
AQ(−1,−1) is not split at 2, LPS construction is invalid for the prime 2. Thus, Chiu
chose the maximal order of AQ(−13,−2) which is definite and with class number 1.
Successfully, Chiu constructed a cubic Ramanujan graphs (i.e., 3-regular graphs).

First, since our graph is also constructed as a Cayley graph, we give the definition
of Cayley graphs. Let G be a group and S a generating set, which is symmetric (i.e.
S = S−1) and does not contain the identity of G. A Cayley graph over G with respect
to S is a |S|-regular graph with a vertex set V and an edge set E, where V = G and E
consists of (g1, g2) ∈ G×G such that g1 = g2s for some s ∈ S.

Theorem 3.1 (Eichler [14]). Let A be a quaternion algebra over Q and h the
class number of A. Then, we have

h =
1

12

∏
P∈P
P |D

(P − 1) +
1

4

∏
P∈P
P |D

(
1−

(−4

P

))
+

1

3

∏
P∈P
P |D

(
1−

(−3

P

))
,

where D is the discriminant of A.

From Theorem 3.1, we know the fact that h = 1 ⇐⇒ D = 2, 3, 5, 7, 13. Now we
recall a useful tool to refine the p-norm set.

Theorem 3.2 (Eichler [15]). Let A be a definite quaternion algebra over Q of
class number 1 and p ∈ P such that A is unramified at p. Then, for any maximal order
O of A and k ∈ N, we have

|{α ∈ O | N(α) = pk}/O×| = pk + pk−1 + · · ·+ p+ 1.

By Ibukiyama’s construction [19], it gives an explicit way to construct maximal
orders of definite quaternion algebras over Q ramified at given primes.
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Proposition 3.3 (Ibukiyama [19]). Let r be an odd positive integer and P1, P2,

. . . , Pr distinct prime numbers. Set M = P1P2 · · ·Pr. Take a prime number Q such that
Q ≡ 3 (mod 8) and (−Q

Pi
) = −1 for all i except for i with Pi = 2. Moreover, take an

integer T such that T 2 ≡ −M (mod Q). Then, AQ(−M,−Q) is a definite quaternion
algebra which is ramified only at ∞, P1, P2, . . . , Pr. Moreover, let

ω1 =
1 + j

2
, ω2 =

i+ k

2
and ω3 =

Tj + k

Q
.

Then, O−M,−Q = Z+ Zω1 + Zω2 + Zω3 is a maximal order of AQ(−M,−Q).

From Theorem 3.2 and Proposition 3.3, we find a refined p-norm set in a
maximal order in a definite quaternion algebra of class number 1. The main procedure
will be shown as described in [22, Section 3].

1. We fix a p ∈ P and take P ∈ {2, 3, 5, 7, 13} such that P is not equal to p.

2. Using Proposition 3.3, we take a prime Q satisfying

Q ≡ 3 (mod 8),
(−Q
P

)
= −1 unless P = 2

and an integer T satisfying T 2 ≡ −P (mod Q). Then we have a definite quaternion
algebra AQ(−P,−Q) (i.e., i2 = −P, j2 = −Q, ij = −ji = k) and its maximal order
O = O−P,−Q = Z+ Zω1 + Zω2 + Zω3 with class number 1, where

ω1 =
1 + j

2
, ω2 =

i+ k

2
and ω3 =

Tj + k

Q
.

3. Using Theorem 3.2, we find a suitable complete representative of {α ∈ O | N(α) =

p}/O× where O× = {α ∈ O | N(α) = 1}.

4. Define S by the suitable complete representative. Then |S| is exactly equal to p+1,
which follows by the class number 1 condition [4, Proposition 3.4].

5. Take a q ∈ P \ {2} satisfying q is not equal to p and
(−P

q

)
=

(
Q
q

)
=

(
p
q

)
= 1.

6. Via the isomorphism ψq in Lemma 2.1 and using Lemma 2.2, we realize S as a
subset of PSL2(Fq). Write S for the subset.

7. We construct a Cayley graph X(p,q)
P,Q = Cay(PSL2(Fq), S).

§ 3.1. The Ramanujan-ness of graphs X(p,q)
P,Q when P = 13

In this subsection, we recall that our constructed graph, say X(p,q)
P,Q , is Ramanujan

when P = 13 in [22, Section 3.1]. Let O = Z+ Zω1 + Zω2 + Zω3 be the maximal order
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we constructed as our recipe for a fixed p, P , Q, T . Then, O has the class number 1.
We take a complete representative

S = {α1, . . . , αs} ∪ {ᾱ1, . . . , ᾱs} ∪ {β1, . . . , βt}

of {α ∈ O | N(α) = p}/O× so that β̄j = ϵjβj for some ϵj ∈ O× for every j. In this
case, p+1 = 2s+ t. In the same way as [5, Theorem 4.8] and [25, Lemma 3.1], we have
the following:

Lemma 3.4. Any α ∈ O with N(α) = pk for some k ∈ N is uniquely decomposed
into the product

α = ϵprR(α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt),

where ϵ ∈ O×, r ∈ N and R(α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt) is a reduced word of
α1, . . . , αs, ᾱ1, . . . , ᾱs, β1, . . . , βt with length m = k − 2r.

Proof. The proof is given by induction on k, following [5, Theorem 4.8]. The cases
k = 0, 1 are clear. For any k ≥ 2, we assume the assertion for any k′ such that k′ ≤ k−1.
Let α be an element of O with N(α) = pk. By the class number 1 condition, we have
β ∈ O such that Oα+Op = Oβ. As there is q ∈ O such that p = qβ, N(β) divides p2,
which leads us N(β) = 1, p, p2.

When N(β) = 1, β is a unit. Then, take x, y ∈ O satisfying xα+yp = β. By taking
the reduced norm and mod p reduction, N(x)N(α) ≡ 1 (mod p), which contradicts to
the fact that p divides N(α).

When N(β) = p, there are j ∈ {1, . . . , s} and ϵ ∈ O× such that β = ϵαj . Since we
can take γ ∈ O such that α = γβ and N(γϵ) = pk−1, we have a factorization of α.

When N(β) = p2, q must be a unit because of p2 = N(q)p2. As we see Oα+Op =
Oβ, α is divisible by p. By N(p−1α) = pk−2, we have a factorization. From the
consideration above, we are done.

We assume O is maximal. Then, the number of representations of decompositions
of α is given by

#O×{
∑

0≤r<k/2

(p+ 1)pk−2r−1 + δ(k)} = #O× × pk+1 − 1

p− 1
,

where δ(k) = 1 if k is even, and 0 otherwise. It is exactly equal to the number of
solutions α ∈ O of N(α) = pk.

The unit group O× is {±1} only when P = 13. In that case, we can prove the
Ramanujan property of our graph X

(p,q)
P,Q in the same way as [25]. For the variable
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v = (x, y, z, w), we set

Qq(v) =x2 + qxy + q2
(
1 +Q

4

)
y2 + q2Tyz

+ q2P

(
1 +Q

4

)
z2 + q2Pzw + q2

(
P + T 2

Q

)
w2.

It is a positive definite quadratic form of order 4 corresponding to the reduced norm on
O. Let Aq be the symmetric matrix such that Qq(v) =

1
2
tvAqv, i.e.,

Aq =


2 q 0 0

q q2(1+Q)
2 0 q2T

0 0 q2P (1+Q)
2 q2P

0 q2T q2P 2q2 P+T 2

Q

 .
Hence, Aq is an even matrix, i.e., Aq ∈ M4(Z) and every diagonal component is con-
tained in 2Z.

Lemma 3.5. The level N of Qq is equal to Pq2.

Proof. For the sake of simplicity, write A for Aq. A direct computation yields
D(A) = P 2q6 and

gcd(Aij ,
1

2
Aii)1≤i,j≤4 = Pq4,

where Aij is the (i, j)-cofactor of A. Hence we have the assertion by [41, Chapter IX,
Theorem 1]. We give the expression of A−1:

A−1 =
1

P 2q6


q6 1+Q

2 P (P+T 2

Q ) −q5P
(

P+T 2

Q + T 2
)
−q5PT q5PT 1+Q

2

−q5P
(

P+T 2

Q + T 2
)

2q4P (P+T 2

Q + T 2) 2q4PT −q4PT (1 +Q)

−q5PT 2q4PT 2q4P −PQq4

q5PT 1+Q
2 −q4PT (1 +Q) −PQq4 q4PQ (1+Q)

2

 .

Set rQq (n) := |{α ∈ O | N(α) = n}/O×| for n ∈ N. Then, the theta series is given
by

ΘQq
(z) :=

∞∑
n=0

rQq
(n)e2πinz =

∑
v∈Z4

e2πiQq(v)z

for z ∈ C with Im(z) > 0.

Proposition 3.6. The theta series ΘQq
(z) is a holomorphic modular form of

weight 2 on Γ0(Pq
2) with trivial nebentypus.
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Proof. By [41, Chapter IX, Theorem 4], ΘQq
is a holomorphic modular form of

weight 2 on Γ(Pq2). Furthermore, by [41, Chapter IX, Theorem 5] for h = 0, the
function ΘQq

satisfies the relation

ΘQq
(γz) = χ(d)(cz + d)2ΘQq

(z), ∀γ = [ a b
c d ] ∈ Γ0(Pq

2),

where χ is the even Dirichlet character modulo N determined by the Jacobi symbol:
χ(d) = (P

2q6

d ). As our χ is the trivial character, we are done.

Recall P = 13. Let Λ′ be the set of all α ∈ O such that N(α) = pk for some k ∈ N.
We define an equivalence relation on Λ so that α ∼ β means α = ϵpnβ for some ϵ ∈ O×

and n ∈ Z. Since O× = {±1} holds, the quotient set

(3.1) Λ := Λ′/ ∼ = {[α] | α ∈ Λ′}

has a natural group structure by [α][β] = [αβ]. By Lemma 3.4, it is generated by S, a
complete representative of {α ∈ O | N(α) = p}/O×, and Cay(Λ, S) is a (p+ 1)-regular
tree. The homomorphism Λ → PSL2(Fq) as a restriction of ψq of Lemma 2.1 induces
Λ/Λ(q) → PSL2(Fq) with Λ(q) = ker(ψq|Λ). This homomorphism Λ/Λ(q) → PSL2(Fq)

is surjective as in theory of quadratic diophantine equations applied to the quadratic
formQq (cf. [25, p.267], [27]). ThenX(p,q)

13,Q = Cay(PSL2(Fq), S) is identified with Λ/Λ(q)

as a graph.
Let λ0 = p + 1 > λ1 ≥ · · · ≥ λn−1 be the spectrum of the adjacency matrix of

X
(p,q)
13,Q . Here, n = |X(p,q)

13,Q | = |PSL2(Fq)| = q(q2−1)
2 . Then, for proving Ramanujan-ness,

we have only to show θj ∈ R for all j ∈ {1, . . . , n − 1}, where θj ∈ C is taken so that
λj = 2

√
p cos θj for each j ∈ {0, . . . , n− 1}. By the trace formula for a regular graph as

in [25, p.270–272 and p.274, Remark 2], we have the expression

rQq
(pk) =

2pk/2

n

n−1∑
j=0

sin(k + 1)θj
sin θj

.

Recall that this is the pkth Fourier coefficient of the modular form ΘQq
. Since the

theta series is a sum of a linear combination of cuspidal Hecke eigenforms and that of
Eisenstein series of weight 2 and level Γ0(Pq

2), We may take the cuspidal modular form
f1 and the non-cuspidal modular form f2 so that ΘQq

= f1 + f2. Let a(m) and C(m)

be the mth Fourier coefficients of f1 and of f2 at the cusp ∞ for m ∈ N, respectively.
Then, rQq

(pk) has the following expression:

C(pk) + a(pk) = rQq
(pk) =

2pk/2

n

n−1∑
j=0

sin(k + 1)θj
sin θj

.

By Deligne’s bound as a resolution of the Ramanujan-Petersson conjecture ([9, 10]), we
have |a(pk)| = Oϵ(p

k(1/2+ϵ)). By properties of Fourier coefficients of Eisenstein series,
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C(m) can be described as C(m) =
∑

d|m F (d) for a periodic function F : N → C (cf.
[25, p.272]). By (pq ) = 1 and θ0 = i log

√
p, we have

C(pk) =
2

n

pk+1 − 1

p− 1
− a(pk) + o(pk) =

2

n

pk+1 − 1

p− 1
+ o(pk).

By the Deligne bound of a(pk) and [25, Lemma 4.4], we have C(pk) = 2
n

pk+1−1
p−1 because

of (pq ) = 1. As a consequence, for any ϵ > 0,

2

n

n−1∑
j=1

sin(k + 1)θj
sin θj

=
1

pk/2
Oϵ(p

k(1/2+ϵ)) = Oϵ(p
kϵ),

which leads us that every θj for j = 1, . . . , n−1 is real. Therefore, we obtain |λj | ≤ 2
√
p

for all j = 1, . . . , n− 1, which proves the Ramanujan-ness of X(p,q)
13,Q .

§ 4. Numerical results and open problems

In Table 1, we present some numerical results which show the Ramanujan-ness of
our graphs. Indeed, we showed in the previous section that our LPS-type graphs are
Ramanujan when P = 13, which is the only choice of P ∈ {2, 3, 5, 7, 13} such that
O× is equal to {±1}. Unfortunately, for the cases of P ∈ {2, 3, 5, 7}, we are unable to
prove or disprove the Ramanujan-ness of our graphs. The main reason why the existing
procedure is not applied happens in (3.1). For the cases of P ∈ {2, 3, 5, 7}, elements of
the unit group does not commute with other elements of O.

Table 1: Numerical results on the Ramanujan-ness of LPS-type graphs X = X
(p,q)
P,Q

p Parameters (P,Q, q, T ) λ1(X) 2
√
p (RB) |V (X)|

2 (13, 11, 7, 3) 2.7253 2.8284 168

3 (2, 3, 11, 1) 3.3322 3.4641 660

5 (2, 3, 11, 1) 4.4718 4.4721 660

7 (5, 67, 3, 14) 3 5.2915 12

11 (13, 11, 7, 3) 6 6.6332 660

* It is implemented by Magma and MATLAB.

As depicted in the Table 2, we know the group corresponding to each case. For
the case p = 2, the unit group O×

−2,−Q is the binary tetrahedral group, which can be
written as the semidirect product Q ⋊ C3 where Q is the quaternion group consisting
of the 8 Lipschitz units and C3 is the cyclic group of order 3. They used a Lipschitz
quaternion order with the unit group Q instead of a Hurwitz quaternion order with
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Table 2: The unit group of maximal order O−P,−Q when P ∈ {2, 3, 5, 7}

O×
−2,−Q E24 Binary tetrahedral group ([double cover of A4] ≃ Q⋊ C3)

O×
−3,−Q C3 ⋊ C4 Binary dihedral group

O×
−5,−Q C6 Cyclic group

O×
−7,−Q C4 Cyclic group

Here, Q is the quaternion group of 8 Lipschitz units, i.e., {1,±i,±j,±k}.

the unit group E24 when they constructed a natural group as in (3.1). It guarantees
the unique factorization as in Lemma 3.4. However, we still do not know how to
circumvent the non-commutativity of units and other elements and define the quotient
set as in (3.1) which forms a natural group structure.

(a) (3, 2, 3, 11, 1), 660 (b) (5, 2, 3, 11, 1), 660

(c) (7, 5, 67, 3, 14), 12 (d) (13, 5, 67, 3, 14), 168

Figure 1: Parameters (p, P,Q, q, T ) and |V (X)|

Figure 1 presents the visualizations of toy-examples in Table 1. Figures (a), (b),
(c), (d) represent the cases when p = 3, 5, 7, 13, respectively. The blue line stands for
the spanning tree of the graph and the red line stands for the links between vertices
within the same tier. (These figures are provided from Vladimir Pelekhaty (Ciera Co.) by
MATLAB.)

One of potential way to circumvent is to consider theory of elliptic curves. For
example, it is known that every supersingular elliptic curve over an algebraically closed
field of characteristic p has a model defined over Fp2 under the Deuring correspondence
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Table 3: The order of Aut(E)

# Aut(E) j(E) char(F )
2 j(E) ̸= 0, 1728 -
4 j(E) = 1728 char(F ) ̸= 2, 3

6 j(E) = 0 char(F ) ̸= 2, 3

12 j(E) = 0 = 1728 char(F ) = 3

24 j(E) = 0 = 1728 char(F ) = 2

Here, j(E) is the j-invariant of an elliptic curve E over a field F .

[11]. The set of isomorphism classes of supersingular elliptic curves is one-to-one cor-
respondence with the set of ideal classes of a maximal order of the definite quaternion
algebra which is ramified precisely at p and ∞. In §10, Chapter 3 [42], the automor-
phism group of an elliptic curve is a finite group of order dividing 24. More precisely, we
describe it in Table 3. From this, we can check that the cardinality of the automorphism
group of an elliptic curve and that of the unit group of a maximal order is identical. It
seems better to check the relationships and backgrounds between the unit group of our
maximal order and the automorphism group of a certain elliptic curve.

Besides, as argued in §26, Chapter 6 [38], for an order of class number 1, we can
obtain a factorization theorem for elements, rather than ideals. It gives us to prove
that every positive rational integer is expressible as a sum of four squares with some
coefficients. In a sense of it, it is necessary to consider the integral solutions of norm
equations of maximal orders as a sum of four squares with some coefficients.
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