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Counting superspecial Richelot isogenies

by reduced automorphism groups

By

Katsuyuki Takashima∗

Abstract

The recent cryptanalysis by Costello and Smith [10] employed the subgraphs whose ver-

tices consist of decomposed principally polarized abelian varieties, hence it is important to study

the subgraphs in isogeny-based cryptography. Katsura and Takashima [22] initiated the inves-

tigation of the decomposed abelian surface subgraphs in the genus-2 case. This paper surveys

the work, aiming to provide a kind of handbook for applying our results to cryptography.

§ 1. Introduction

Isogenies of supersingular elliptic curves are widely studied as one candidate for

post-quantum cryptography (PQC), e.g., [6, 11, 18, 4]. In particular, the supersingular

isogeny-based Diffie-Hellman (SIDH) key exchange proposed by De Feo et al. [11] is

elegantly designed and strongly secure in the post-quantum age, that is, it allows only

exponential-time (classical and) quantum cryptanalyses [19, 9]1. Moreover, the key

encapsulation mechanism SIKE [18] that is selected as the only isogeny-based (alternate)

candidates in the third round of NIST2 PQC competition is based on the SIDH key

exchange.

Note that the families of supersingular isogeny graphs in SIDH are Ramanujan [25],

that is, they have an optimal expanding graph property. The Ramanujan property of the

isogeny graphs is very desirable for cryptography, and the fact was originally pointed
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out by Charles et al. [6] as an advantage of the CGL hash function proposal. The

mathematical and computational aspects of the graphs are closely connected with the

security and efficiency of SIDH, and have been actively studied by several researchers,

e.g., [8, 13, 14, 23].

Recently, several authors have extended the cryptosystems to higher genus isoge-

nies, especially the genus-2 case [5, 29, 15, 3, 10]. Castryck, Decru, and Smith [3] showed

that superspecial genus-2 curves and their isogeny graphs give a correct foundation for

constructing genus-2 isogeny cryptography. The recent cryptanalysis by Costello and

Smith [10] employed the subgraph whose vertices consist of decomposed principally

polarized abelian varieties, hence it is important to study the subgraph in cryptogra-

phy. Katsura and Takashima [22] initiated the investigation of the decomposed abelian

surface subgraphs, especially we studied how the decomposed part connects with the

non-decomposed part in the superspecial Richelot isogeny graphs. Moreover, by ex-

tending an approach by Ibukiyama, Katsura, and Oort [16], which is based on the

classification of reduced automorphism groups (cf. Bolza [1] and Igusa [17]), we also

count the total number of Richelot isogenies up to isomorphism. (For connectedness

and the (non-)Ramanujan property of the superspecial Richelot isogeny graphs, refer

to [20])

This paper surveys the work of Katsura and Takashima [22], aiming to provide

a kind of handbook for applying the results to cryptography. Section 2 gives some

preliminary definitions and facts on superspecial abelian surfaces and Richelot isogenies.

Section 3 gives classical results on counting superspecial curves of genus 1 and 2. Section

4.1 classifies long reduced automorphisms which are a key ingredient in our work, and

based on it, Section 4.2 determines local configuration types (LCT) of Richelot isogenies.

Combining it with the superspecial curve counting in Section 3, Section 4.3 gives total

numbers of superspecial Richelot isogenies up to isomorphism.

We use the following notation: For an abelian surface A, A[n] denotes the group

of n-torsion points of A, and D ∼ D′ (resp.D ≈ D′) denotes linear equivalence

(resp. numerical equivalence) for divisors D and D′ on A.

§ 2. Preliminaries

Let k be an algebraically closed field of characteristic p > 5. An abelian surface

A defined over k is said to be superspecial if A is isomorphic to E1 × E2 with Ei

supersingular elliptic curves, i.e., Ei[p] = {OEi
} for i = 1, 2. We have an isomorphism

E1×E2
∼= E3×E4 for any supersingular elliptic curves Ei (i = 1, 2, 3, 4) (cf. [28]). If we

do not consider polarizations, all superspecial abelian surfaces are isomorphic to each

other. For a nonsingular projective curve C of genus 2 over k, we denote by (J(C), C)
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the canonically polarized Jacobian variety of C. The curve C is said to be superspecial

if the Jacobian variety J(C) is superspecial as an abelian surface.

Let ι ∈ Aut(C) be the hyperelliptic involution. We put RA(C) = Aut(C)/〈ι〉 and

we call it the reduced group of automorphisms of C. For σ ∈ RA(C), σ̃ is an element

of Aut(C) such that σ̃ mod 〈ι〉 = σ. An element σ ∈ RA(C) of order 2 is said to be

long if σ̃ is of order 2. Otherwise, it is said to be short (cf. Katsura–Oort [21]). This

definition does not depend on the choice of σ̃.

Let (A,D) be a principally polarized abelian surface with G ∼= Z/2Z × Z/2Z a

maximal isotropic subgroup of A[2] with respect to the Weil pairing. We have a quotient

homomorphism π : A −→ A/G. There exists a divisor D′ on A/G s.t. 2D ∼ π∗D′. We

see that D′ is a principal polarization on A/G and that D′ is either a nonsingular curve

of genus 2 or E′

1+E′

2 with elliptic curves E′

1, E
′

2 and (E′

1 ·E
′

2) = 1. The correspondence

from (A,D) to (A/G,D′) is called a Richelot isogeny since the first explicit construction

was given by Richelot [26, 27]. It is called decomposed if D′ consists of two elliptic

curves. Otherwise, it is called non-decomposed.

Definition 2.1 (Isomorphism of Richelot isogenies). Let (A,D), (A′, D′) and

(A′′, D′′) be principally polarized abelian surfaces. The Richelot isogeny π : A −→

A′ is said to be isomorphic to the Richelot isogeny ̟ : A −→ A′′ if there exist an

automorphism σ ∈ Aut(A) with σ∗D ≈ D and an isomorphism g : A′ −→ A′′ with

g∗D′′ ≈ D′ s.t. the following diagram commutes:

A
σ

−→A

π ↓ ↓ ̟

A′
g

−→A′′

§ 3. Counting superspecial curves of genus g = 1, 2

By definition, the notion of supersingularity and superspeciality are equivalent in

the genus-1 case.

The case that g = 1 ([12]). For supersingular elliptic curves E defined over k of

characteristic p ≥ 5, Aut(E) is isomorphic to

(1) Z/2Z, (2) Z/4Z, (3) Z/6Z.

We denote by hl the number of supersingular elliptic curves whose Aut(E) are of

type (l) and h = h1 + h2 + h3. The numbers hl’s are given as follows:

(1) h1 = p−1
12 − {1− (−1

p
)}/4− {1− (−3

p
)}/6,
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(2) h2 = {1− (−1
p
)}/2, and

(3) h3 = {1− (−3
p
)}/2

since supersingular curves E2 : y2 = x3 − x for p ≡ 3 (mod 4) and E3 : y2 = x3 − 1 for

p ≡ 2 (mod 3) have Aut(E2) ∼= Z/4Z and Aut(E3) ∼= Z/6Z. The total number h of su-

persingular elliptic curves over k is h = h1+h2+h3 = p−1
12 +{1−(−1

p
)}/4+{1−(−3

p
)}/3.

The case that g = 2 ([17, 16]). In 1986, Ibukiyama, Katsura, and Oort [16] explicitly

counted the curves of genus 2 with given reduced groups of automorphisms RA(C).

Based on the result, in Section 4, we count the number of Richelot isogenies from a

superspecial Jacobian to decomposed surfaces in terms of long reduced automorphisms.

RA(C) acts on the projective line P
1 as a subgroup of PGL2(k). The structure of

RA(C) is classified as follows (cf. Igusa [17, p. 644], and Ibukiyama–Katsura–Oort [16,

p. 130]):

(0) 0, (1) Z/2Z, (2) S3, (3) Z/2Z× Z/2Z, (4) D12, (5) S4, (6) Z/5Z.

We denote by nl the number of superspecial curves of genus 2 whose reduced group of

automorphisms is isomorphic to the group (l). Then, nl’s are given as follows (cf. [16,

Theorem 3.3]):

(0) n0 = (p− 1)(p2 − 35p+ 346)/2880− {1− (−1
p
)}/32− {1− (−2

p
)}/8 −{1− (−3

p
)}/9

+

{

0 if p ≡ 1, 2 or 3 (mod 5),

−1/5 if p ≡ 4 (mod 5),

(1) n1 = (p− 1)(p− 17)/48 + {1− (−1
p
)}/8 + {1− (−2

p
)}/2 + {1− (−3

p
)}/2,

(2) n2 = (p− 1)/6− {1− (−2
p
)}/2− {1− (−3

p
)}/3,

(3) n3 = (p− 1)/8− {1− (−1
p
)}/8− {1− (−2

p
)}/4− {1− (−3

p
)}/2,

(4) n4 = {1− (−3
p
)}/2,

(5) n5 = {1− (−2
p
)}/2, and

(6) n6 =

{

0 if p ≡ 1, 2 or 3 (mod 5),

1 if p ≡ 4 (mod 5).

Here, for a prime number p and an integer a, (a
p
) is the Legendre symbol. The

total number n of superspecial curves of genus 2 is given by

n= n0 + n1 + n2 + n3 + n4 + n5 + n6

= (p− 1)(p2 + 25p+ 166)/2880− {1− (−1
p
)}/32 + {1− (−2

p
)}/8

+{1− (−3
p
)}/18 +

{

0 if p ≡ 1, 2 or 3 (mod 5),

4/5 if p ≡ 4 (mod 5).
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§ 4. Counting superspecial Richelot isogenies up to isomorphism

§ 4.1. Long elements in RA(C)

Table 1 counts the number of long elements of order 2 in RA(C). We denote the

set of long elements in RA(C) by L(C), and we express the reduced automorphism

f ∈ RA(C) by f : x 7→ f(x) with a suitable coordinate x of A1 ⊂ P
1. Table 1 also

gives the list of f(x) corresponding to long elements of order 2. Here, we denote by ω a

primitive cube root of unity, by i a primitive fourth root of unity, and by ζ a primitive

sixth root of unity.

RA(C) genus-2 curve C #L(C) f ∈ L(C)

{0} — 0 —

Z/2Z y2 = (x2 − 1)(x2 − a2)(x2 − b2) 1 f(x) = −x

S3 y2 = (x3 − 1)(x3 − a3) 3 f(x) = a
x
, ωa

x
, ω2a

x

Z/2Z× Z/2Z y2 = x(x2 − 1)(x2 − a2) 2 f(x) = a
x
, − a

x

D12 y2 = x6 − 1 4 f(x) = −x, ζ

x
, ζ3

x
, ζ5

x

S4 y2 = x(x4 − 1) 6
f(x) = x+1

x−1 , −
x−1
x+1 ,

i(x+i)
x−i

, i
x
,− i

x
,− i(x−i)

x+i

Z/5Z y2 = x5 − 1 0 —

Table 1. Long elements in RA(C).

§ 4.2. Local configuration types (LCT) of Richelot isogenies

LCT of nonsingular genus-2 curves C. The number of Richelot isogenies up to

isomorphism in each case and the number of elements in each isomorphism class are

listed in Table 2, where, for example, the type (1×6, 2×4) for non-decomposed Richelot

isogenies in the case (1) (s.t., RA(C) ∼= Z/2Z) means that there exist 1 isomorphism

class which contains 6 elements and 2 isomorphism classes which contain 4 elements.

We call the above type like (1 × 6, 2 × 4) local configuration type (LCT). Moreover, in

the table, let rnd,l (resp. rnd→d,l) be the number of Richelot isogenies (resp. decomposed

Richelot isogenies) up to isomorphism in the case (l).
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(l) RA(C) non-decomposed decomposed rnd,l rnd→d,l

(0) {0} (1× 15) (0) 15 0

(1) Z/2Z (1× 6, 2× 4) (1× 1) 11 1

(2) S3 (1× 3, 3× 3) (3× 1) 7 1

(3) Z/2Z× Z/2Z (1× 1, 2× 4, 4× 1) (1× 2) 8 2

(4) D12 (2× 1, 3× 1, 6× 1) (1× 1, 3× 1) 5 2

(5) S4 (1× 1, 4× 2) (6× 1) 4 1

(6) Z/5Z (5× 3) (0) 3 0

Table 2. Local configuration types of Richelot isogenies from nonsingular genus-2 curves

C and numbers rnd,l, rnd→d,l for l = 0, . . . , 6.

LCT of decomposed principally polarized abelian surfaces. Let E, E′ be su-

persingular elliptic curves which are neither isomorphic to E2 nor to E3 with E2 and

E3 defined as above. We also assume that E is not isomorphic to E′. The number of

Richelot isogenies up to isomorphism outgoing from a decomposed principally polarized

superspecial abelian surface in each case and the number of elements in each isomor-

phism class are listed in Table 3. Here, we use the same notation for local configuration

types used in Table 2. Moreover, as in the table, let rd→nd,l (resp. rd→d,l) be the num-

ber of non-decomposed Richelot isogenies (resp. decomposed Richelot isogenies) up to

isomorphism in the case (l).

(l) A non-decomposed decomposed rd→nd,l rd→d,l

(i) E × E′ (1× 6) (1× 9) 6 9

(ii) E × E (1× 3, 2× 1) (1× 4, 2× 3) 4 7

(iii) E × E2 (2× 3) (1× 3, 2× 3) 3 6

(iv) E × E3 (3× 2) (3× 3) 2 3

(v) E2 × E2 (4× 1) (1× 1, 2× 1, 4× 2) 1 4

(vi) E3 × E3 (3× 1) (3× 1, 9× 1) 1 2

(vii) E2 × E3 (6× 1) (3× 1, 6× 1) 1 2

Table 3. Local configuration types of Richelot isogenies from decomposed principally

polarized abelian surfaces A and numbers rd→nd,l, rd→d,l for l = i, . . . , vii.

§ 4.3. Total numbers of superspecial Richelot isogenies up to isomorphism

Richelot isogenies from nonsingular genus-2 curves. Let Nnd→d (resp.Nnd→nd)

be the total number of decomposed (resp. non-decomposed) Richelot isogenies up to

isomorphism outgoing from irreducible superspecial curves of genus 2, and Nnd =
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Nnd→d + Nnd→nd be the total number of both types of Richelot isogenies up to iso-

morphism.

Theorem 4.1 (Theorem 6.2 in [22]).

Nnd =
(p− 1)(p+ 2)(p+ 7)

192
− 3{1− (

−1

p
)}/32 + {1− (

−2

p
)}/8,(4.1)

Nnd→d =
(p− 1)(p+ 3)

48
− {1− (

−1

p
)}/8 + {1− (

−3

p
)}/6.(4.2)

Proof. Since (rnd,0, . . . , rnd,6) = (15, 11, 7, 8, 5, 4, 3) and (rnd→d,0, . . . , rnd→d,6) =

(0, 1, 1, 2, 2, 1, 0) in Table 2, Nnd = rnd,0 · n0 + · · · + rnd,6 · n6 = 15n0 + 11n1 + 7n2 +

8n3 + 5n4 + 4n5 + 3n6 = RHS of (4.1) and Nnd→d = rnd→d,0 · n0 + · · ·+ rnd→d,6 · n6 =

n1+n2+2n3+2n4+n5 = RHS of (4.2). Here, the numbers nl are given in Section 3.

Richelot isogenies from elliptic curve products. Let Nd→nd (resp.Nd→d) be the

total number of non-decomposed (resp. decomposed) Richelot isogenies up to isomor-

phism outgoing from decomposed principally polorized superspecial abelian surfaces.

Theorem 4.2 (Theorem 6.4 in [22]).

Nd→nd =
(p− 1)(p+ 3)

48
− {1− (

−1

p
)}/8 + {1− (

−3

p
)}/6,(4.3)

Nd→d =
(p− 1)(3p+ 17)

96
+ (p+ 6){1− (

−1

p
)}/16 + {1− (

−3

p
)}/3.(4.4)

Proof. Since (rd→nd,i, . . . , rd→nd,vii) = (6, 4, 3, 2, 1, 1, 1), and (rd→d,i, . . . , rd→d,vii) =

(9, 7, 6, 3, 4, 2, 2) in Table 3, Nd→nd = 6{h1(h1−1)
2 }+4h1+3h1h2+2h1h3+h2+h3+h2h3 =

RHS of (4.3) and Nd→d = 9{h1(h1−1)
2 } + 7h1 + 6h1h2 + 3h1h3 + 4h2 + 2h3 + 2h2h3 =

RHS of (4.4). Here, the numbers hl are given in Section 3. Note that the results follow

from the facts {1− (−1
p
)}2 = 2{1− (−1

p
)} and {1− (−3

p
)}2 = 2{1− (−3

p
)}.
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