
Abstract 

 

Purpose  

This work studies the effect of parameter variations on reduced systems and aims at developing a general formulation 

for parametrized model order reduction (MOR) methods with the dynamical transition of parameterized state.  

 

Design/methodology/approach  

We derive a nonlinear MOR based on the Cauer ladder network (CLN) representation, which serves as an application of 

the parameterized MOR. Two parametrized CLN representations were developed to handle the nonlinear magnetic 

field. Simulations using the parameterized CLN were also conducted using an iron-cored inductor model under the first-

order approximation. 

 

Findings  

Terms including time derivatives of basis vectors appear in nonlinear state equations, in addition to the linear network 

equations of the CLN method. The terms are newly derived by an exact formulation of the parameterized CLN and are 

named parameter variation terms in this study. According to the simulation results, the parameter variation terms play a 

significant role in the nonlinear state equations when reluctivity is used, while they can be neglected when differential 

reluctivity is used. 

 

Practical implication  

The computational time of nonlinear transient analyses can be greatly reduced by applying the parameterized CLN 

when the number of time steps is large.  

 

Originality  

We introduced a general representation for the dynamical behavior of the reduced system with time-varying parameters, 

which has not been theoretically discussed in previous studies. The effect of the parameter variations is numerically 

given as a form of parameter variation terms by the exact derivation of the nonlinear state equations. The influence of 

parameter variation terms was confirmed by simulation.  
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1. INTRODUCTION 

The coupled analysis of an electric machine and its 

control circuit requires efficient computation of the 

electromagnetic field. In recent years, several model order 

reduction (MOR) methods have been developed to provide 

reduced systems, wherein the number of unknown 

variables for electromagnetic field representations is 

reduced without the loss of accuracy. To handle the 

reduced systems under multiple states, some MOR 

methods have parameterized representation depending on 

the degree of magnetic saturation (Sato et al., 2017; Hasan 

et al., 2018; Eskandari and Matsuo, 2020), temperature, 

and the rotational angle of the motors (Henneron and 

Clenet, 2014; Shimotani et al., 2016). The dynamical 

behavior of such reduced systems, however, has not been 

rigorously discussed with time-varying orthogonal basis 

functions. A short article by Tobita and Matsuo (2020) 

derived the exact state equations of reduced systems, 

including the variation of the basis functions. 

In this work, we numerically study the effect of the 

parameter variation on reduced systems and aim to 

develop a general formulation for parametrized MOR 

methods with the dynamical transition. We further derive 

a nonlinear MOR based on the Cauer ladder network 

(CLN) representation, which serves as an application of 

the parameterized MOR. The CLN method (Kameari et al., 

2018; Matsuo et al., 2018) is a procedure that reduces the 

electromagnetic field distribution provided by the finite 

element method (FEM) to Cauer network representation. 

The method retains a clear physical meaning in the form 

of the Cauer network with the help of the orthogonal 

function expansion, which is a significant advantage over 

other MORs. In this study, two parameterized CLN 

representations are developed for handling the nonlinear 

magnetic field: one parameterizes reluctivity, and the other 

parameterizes differential reluctivity to reflect the degree 

of saturation.   

2. CLN METHOD BASED ON RELUCTIVITY  

2.1 Parameterized CLN 

The eddy-current field in the finite element space is 

represented by 

 

Ka = σe,  (1) 

d

d
 

t
Ce Ca= − , (2) 

 

where C is the edge-face incident matrix, and e and a are 

variable vectors of the electric field and magnetic vector 

potential, respectively. The reluctivity matrix ν and 

conductivity matrix σ are defined as follows: 

{ }ijν = , 2 21
dij i jw w


=   , (3) 

{ }ijσ = , 1 1dij i jw w 


=   , (4) 

where Ω is the analysis domain, 
1

iw  and 
2

iw  are finite 

element basis functions, μ is the permeability, and σ is the 

conductivity. 

The CLN procedure with a fixed reluctivity matrix ν 

generates basis vectors e2n and a2n+1, and network 

elements R2n and L2n+1 (n = 0, 1,...) (Matsuo et al., 2018) 

as  

K(a2n+1 − a2n−1) = R2nσe2n, (5) 

2 2 2 2 1

2 1

1
n n n

nL
e e a+ +

+

− = − , (6) 

T

2 221/ nn nR e σe= , T

2 1 2 1 2 1n n nL a Ka+ + += ,   (7) 

where K = CTνC is the stiffness matrix, and a−1 = 0. The 

basis vectors satisfy orthogonal relations 

 
2 2 2

T /i j ij iRe σe = , T

2 1 2 1 2 1i j ij iLa Ka + + += ,   (8) 

where δij is the Kronecker delta.  

We assume that the variable vectors a and e are 

expanded as follows: 

2 1 2 1n n

n

Ia a+ += , (9) 

  
2 2n n

n

Ve e= .  (10) 

Substituting equations (9) and (10) into (1) and (2), we 

obtain 

 
2 1 2 1 2 2n n n n

n n

I VK a σ e+ + =  , (11) 

2 2 2 02n n n n S

n n

V V VC e C e C e= −        

                  
2 1 2 1

d

d
n n

n

I
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Ca+ += −  , (12) 

where the initial condition is given by an electrostatic 

field e0, which satisfies Ce0 = 0, and VS is the source 

voltage. Equation (12) yields 

 
02 2 2 1 2 1

d

d
n n S n n

n n

V V I
t

e e a+ +− = −  . (13) 

In this study, it is assumed that the reluctivity matrix ν 

is parameterized by the degree of magnetic saturation. 

Because ν depends on the magnetic flux density Σn 

I2n+1Ca2n+1, it can be considered a function of α in the 

parameterized CLN as follows: 

ν = ν (α), α = (I1, I3, ...). (14) 

Assuming that the first mode current I1 has a huge impact 

on the saturation, we approximate it as a function of I1 by 

choosing α = I1, which was also referred to as the first-
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order approximation in the study by Eskandari and 

Matsuo (2020). Thus, we have 

ν = ν (α), α = I1. (15) 

Figure 1 shows a general form of the parameterized 

CLN, wherein the circuit elements derived using ν (α) are 

functions of α.  

 
 

Figure 1. CLN parametrized with α. 

2.2 Exact Derivation of Nonlinear State Equations 

Multiplying a2k+1/L2k+1 to both sides of equation (11) 

and using equations (6) and (8), we obtain  

2 2 2
2 1

2 2 2

k k
k

k k

V V
I

R R

+
+

+

= −    (k = 0, 1, ...). (16) 

Multiplying R2kσe2k to both sides of equation (13) and 

using equation (5), we obtain 

T

2 2 2 2 0k k n n S
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                 ( )
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Using equations (8) and (15), equation (17) can be 

rewritten as 

2 1 2 1
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                                                          (k = 1, 2, ...), (18) 
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The last terms in equations (18) and (19) concerning 

da2n+1/dα are called parameter variation terms. These terms 

appear because of the variation of the system parameters 

and were newly derived by the exact formulation of the 

parameterized CLN, which has been conducted above. 

When α = I1, the term that includes da2n+1/dI1 can be 

prepared before solving the network equations. 

Under the circumstances that the parameter variation 

terms are negligible, equations (18) and (19) are 

approximated as     

2 1 2 1
2 2 1 2 1

d d

d d

k k
k k k

I I
V L L

t t

− +
− += −    (k = 1, 2, ...),  (20) 

1
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V V L

t
= − .  (21) 

Equations (16), (20), and (21) correspond to the Cauer 

network equations with constant reluctivity (Matsuo et al., 

2018).  

3. CLN METHOD BASED ON DIFFERENTIAL 

RELUCTIVITY 

3.1 Parameterized CLN 

When a differential reluctivity is used instead of 

reluctivity, equations (1) and (2) can be rewritten as 

 CTh = σe,   (22) 

( )
1 d

d

d 
t

ν
h

Ce
−

= − , (23)  

where h is the variable vector of the magnetic field. The 

differential reluctivity matrix νd is defined by 

{ }d d

ijν = , 2 2  dij i j

d H
w w

B




 
=   

 
 , (24) 

where ∂H/∂B is a second-order tensor of the differential 

reluctivity. 

The CLN procedure with the differential reluctivity 

matrix νd for a fixed α consists of the following equations: 

 ( )2 1 2 1 22

d d d d d

n n nnRK a a σe+ −− = , (25) 
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The basis vectors, the network elements, and the 

stiffness matrix are denoted by superscript d, because they 

are different from those with reluctivity ν. 

Similar to the case with the reluctivity ν, the basis 

vectors satisfy orthogonal relations 

 ( )2 2 2

T

/d d d

i j ij iRe σe = , ( )
T

2 1 2 1 2 1

d d d d

i j ij iLa K a + + += .  (28) 

We assume vectors h and e are expanded as follows: 
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Substituting equations (29) and (30) into (22) and (23), 

we obtain 
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The reluctivity matrix νd is parameterized by the degree 

of saturation as follows.  

  νd = νd (α), α = I1. (33) 

3.2 Exact Derivation of Nonlinear State Equations 

From equations (26), (28), and (31), we have  
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Transforming equation (32) and taking the initial 

conditions into account, we obtain 
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Multiplying ( )2 1 2 1

d d

k ka a+ −−  to both sides of equation (35) 

and using equations (25) and (28), we obtain the following 

equations:  
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The last terms in equations (36) and (37) concerning 

( )2 1d / dd d

nK a +
 are the parameter variation terms. They can 

be prepared before the computation of time evolution 

when α = I1. 

If the parameter variation terms are negligible, 

equations (36) and (37) are approximated as 

2 1 2 1
2 1 2 1

2

d d

d d

d d k
k k

k
k L L

I I
V

t t
− +

− += −    (k = 1, 2, ...),  (38) 
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V V
t
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Equations (34), (38), and (39) correspond to the nonlinear 

Cauer network equations examined by Eskandari and 

Matsuo (2020).  

4. RESULTS OF COMPUTATIONS 

The two-dimensional iron-cored inductor, shown in 

figure 2, was analyzed. Only a quarter of the whole domain 

was calculated by the utilization of its line symmetry. We 

assumed that the iron core consists of bulk material. The 

magnetic characteristics of the iron core are represented by 

the polynomial function 

1 2

0

| |
i

a

h h
B

B
H B

 
+ 

 

 
 =
  

,  (40) 

where νi = (1/4π) × 103 m/H, h1 = 2, h2 = 1, B0 = 1 T, and 

a = 6. 

The B–H characteristics of the iron core, represented by 

equation (40), are shown in figure 3. The conductivity of 

the iron core is 1.0 × 106 S/m, while the reluctivity and 

conductivity of the coil are (1/4π) × 107 m/H and 4.0 × 106 

S/m, respectively.  

 
Figure 2. Iron-cored inductor with dimensions in millimeters. 

 

 
Figure 3. B–H characteristics of the iron core assumed in the 

simulation. 

 

4.1 Preparation of Network Elements and Parameter 

Variation Terms 

The network elements R, L, Rd, and Ld are calculated 

along with several parameter variation terms before 

solving the state equations. They are obtained for α = I1 = 

0–200 A with intervals of 0.1, 1, and 10 A for 0 ≤ I1 ≤ 10 

A, 10 < I1 ≤ 100 A, and I1 > 100 A, respectively. 

Figure 4 shows the variations in R2n and L2n+1 (n = 0, 1, 

2) based on the reluctivity ν for I1 = 0–50 A. The 

inductance of L2n+1 decreases as I1 increases owing to 

magnetic saturation. L1 is larger than L2n+1 (n > 1). 

The variations of 
2

d

nR  and 
2 1

d

nL +
 (n = 0, 1, 2) based on 

the differential reluctivity νd
 are shown in figure 5 for I1 = 

0–50 A. Tendencies similar to those of R2n and L2n+1 are 

observed, except for the slope of 
2 1

d

nL +
 against I1, which is 

steeper than that of L2n+1.  

 
Figure 4. Result of (a) R2n and (b) L2n+1 using ν. 



 
Figure 5. Result of (a) 

2

d

nR  and (b) 
2 1

d

nL +
  using νd. 

 

A part of the parameter variation terms can be prepared 

beforehand. The da2n-1/dI1 part in the parameter variation 

terms is obtained by calculating the central difference of 

a2n-1 regarding I1. The results of T

2 1 2 1 1d / dk n Ia K a− −  are 

shown in figure 6 for (k, n) = (1, 1), (1, 3), (3, 1), and (3, 

3). The dominance of component (k, n) = (1, 1) is clearly 

observed. The components with k ≠ n were small. In 

particular, (k, n) = (3, 1) remains almost zero for all I1.  

When the differential reluctivity νd
 is used, 

( ) ( )
T

2 1 2 1 1d / dd d d

k n Ia K a− −
is prepared by the central 

difference scheme regarding I1, as shown in figure 7 for (k, 

n) = (1, 1), (1, 3), (3, 1), and (3, 3). Unlike the result based 

on the reluctivity ν, the component (k, n) = (1, 1) is small, 

whereas the (k, n) = (3, 1) term is dominant.  

 
Figure 6. Result of T

2 1 2 1 1d / dk n Ia K a− −
 using ν. 

 
Figure 7. Result of ( ) ( )

T

2 1 2 1 1d / dd d d

k n Ia K a− −
 using νd. 

 By combining the results in figures 4 and 6, we obtain 
T

11 11 1d / dL II a K a+ , which is represented by the solid line in 

figure 8, and L1 is also shown in this figure for comparison. 

As I1 increases, the solid line moves farther away from the 

dashed line, which indicates that the parameter variation 

terms have a significant influence on the inductance.  

The corresponding result based on differential 

reluctivity νd
 is shown in figure 9. The term 

( ) ( )11

T

1 11 d / dd d d d IL I a K a+  is represented by the solid line, 

which is almost identical to the dashed line showing 
1

dL . 

The influence of the parameter variation term was 

expected to be negligible. 

 

 
Figure 8. Result of T

11 11 1d / dL II a K a+  using ν is plotted in solid 

line. 

 
Figure 9. Result of ( ) ( )11

T

1 11 d / dd d d d IL I a K a+  using νd is plotted in 

solid line. 

 



4.2 Solution of State Equations 

The output current is calculated with the help of state 

equations, which are solved with the prepared parameters. 

A sinusoidal voltage ES with an amplitude of 0.3 V and 

frequency f = 5 Hz is applied to the coil. When B = 0 and f 

= 5 Hz, the skin depth is approximately 2.3 mm. We chose 

the frequency at which the skin depth was smaller than the 

thickness of the iron core (5 mm) to observe the effect of 

eddy-current generation. The CLN used in the simulation 

consisted of five stages and was terminated with L9. We 

also conducted a nonlinear transient analysis using the 

ordinary FEM.  

The resultant total current It (in figure 1) obtained with 

the reluctivity ν are shown in figure 10. The dots show the 

FEM results, while lines are obtained by applying the CLN 

method. The dotted line (linear) is the result of the linear 

CLN, which is far from the FEM result, as well as the 

dashed line (nonlinear 1) obtained by the nonlinear CLN 

neglecting the parameter variation terms. Both are 

calculated by solving the approximated state equations 

(16), (20), and (21). In contrast, the solid line (nonlinear 2) 

obtained from the parameterized CLN, including the 

parameter variation terms calculated by equations (16), 

(18), and (19), is close to the FEM result.  

Figure 11 shows the results of the total current It when 

the reluctivity νd is used. The solid line (nonlinear d), 

which is calculated from the nonlinear CLN by excluding 

the variation terms, is in good agreement with the FEM 

result. This fact indicates that the parameter variation 

terms can be neglected.  

 
Figure 10. Transient waveform of the total current It obtained by the FEM 

and the CLN method when ν is used with α = I1. The applied voltage ES 

is shown in blue solid line. 

 

 
Figure 11. Transient waveform of the total current It obtained by the FEM 

and the CLN method when νd is used with α = I1. The applied voltage ES 

is shown in blue solid line. 

 

Figure 12 shows the current I2n+1 (n = 0, 1, 2) flowing 

through each inductor L2n+1 for (a) nonlinear 1 and (b) 

nonlinear 2 based on the reluctivity ν. The current I1, which 

flows through the first inductor L1, is the most dominant 

component in nonlinear 2, and it yields a result similar to 

that of the FEM. Currents I3 and I5 appear especially when 

the total current is less than approximately 50 A. The first-

order approximation is not fully satisfied in that region, 

and thus, the current does not agree very accurately with 

the FEM result for low current. It should be noted that the 

applied frequency is not suitable for the bulk-type iron 

core, as mentioned before; hence, the first-order 

approximation is affected owing to the generation of the 

eddy-current field.  

To improve the representation accuracy in the low 

current region, we can (a) parameterize not only with I1 but 

also with I3, or (b) use the total current It (=Σn I2n+1) 
instead of I1 as the parameter α when solving the state 

equations. The second method appeared to be effective in 

the study by Eskandari and Matsuo (2020).  

When the differential reluctivity νd
 is used, the current 

I2n+1 (n = 0, 1, 2) flowing through each inductor 
2 1

d

nL +
 is 

shown in figure 13 for nonlinear d. The current I1 is 

dominant in the high current region, indicating the validity 

of using the first-order approximation. 



 
Figure 12. Computational results of each current for (a) nonlinear 1 and 

(b) nonlinear 2 in the CLN calculation when ν is used. 

 
Figure 13. Each current for nonlinear d in the CLN calculation when νd 
is used.  

4.3 Computation Time 

The computation time for the FEM and parameterized 

CLN is dominated by the solutions of the linear systems. 

The Newton–Raphson method was used for the nonlinear 

solutions, and it required approximately four iterations on 

average for convergence in both the FE analysis and the 

CLN method above.  

Accordingly, the number of linear solutions required for 

the time-dependent nonlinear FE simulation is (the number 

of time steps) × 4. 

The CLN method, on the other hand, can yield any 

output under any transient input by solving the state 

equations, provided the network elements are prepared by 

the solutions beforehand. The CLN used in the simulation 

consists of five stages, and the preparation requires one 

nonlinear solution for the first stage to obtain L1, and four 

linear solutions for the remaining stages (L3 – L9) per 

parameter. The number of linear solutions for the 

preparation was approximately (the number of parameters 

α) × 8. The computational cost for solving the network 

equations is negligible. Therefore, the parameterized CLN 

is faster than the FEM when (the number of time steps) > 

(the number of parameters α) × 2 is satisfied.  

The parameterized CLN significantly reduces the 

computation time, especially when (a) large time steps are 

required, for instance, PWM input and transient input for 

a long duration, and (b) calculations are conducted under 

various frequencies and voltages. 

5. CONCLUSIONS 

In this study, we formulated a parameterized CLN 

method to handle magnetic saturation, where the dynamic 

behavior of an orthogonal basis is represented by the 

parameter variation terms. The terms were newly derived 

by an exact formulation of the parameterized CLN. 

The parameter variation terms play a significant role in 

the state equations when the reluctivity ν is used, whereas 

they can be neglected when the differential reluctivity νd 
is used. The computation time of nonlinear transient 

analyses can be greatly reduced by applying the 

parameterized CLN when the number of time steps is 

large.  

In the future, we plan to extend the parameterized CLN 

to a multi-input multi-output to handle induction motors. 
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