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In this study, we established the nonlinear model order reduction (MOR) of induction motors by parameterizing a multi-port Cauer
ladder network (CLN). Appropriate parameters were selected to incorporate nonlinear magnetic characteristics. The parameterized
multi-port CLN was applied to the transient analysis of a rotating induction motor. The proposed method reproduced the finite-
element analysis results with various driving frequencies and slips. The parameterized multi-port CLN can effectively reduce the
computation time for analyses requiring a large number of time steps.
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I. INTRODUCTION

THE recent developments in semiconductor technologies
have enabled inverters to utilize switching frequencies up

to several hundred kilohertz. A major challenge in the eddy-
current field simulation of motors with such high frequencies
is excessively long computation time, particularly for the
transient calculations in control applications.

Model-order reduction (MOR) methods can reduce the
computation time of motor analyses [1]-[3]. The Cauer ladder
network (CLN) method, which is an efficient MOR method,
was extended to a multi-port model [4] and applied to a
linear induction motor [5]. However, incorporating magnetic
saturation in the MOR methods remains an open problem.
For practical applications of induction motor analyses, the
nonlinear characteristics of magnetic saturation should be
considered when using the MOR method.

This study aims at establishing a nonlinear MOR for induc-
tion motors by introducing the concept of parameterization to
multi-port CLNs. A parameterized MOR was used to formu-
late the nonlinear CLN method [6]. The parameterized single-
port CLN contains circuit elements represented by functions
of the input current. In the parameterized multi-port CLN,
the nonlinear magnetic characteristics of iron are incorporated
by employing multiple parameters. Because the number of
ports is large, the choice of parameters is not straightforward.
An appropriate parameter set must be selected to achieve fast
analyses that accurately reflect magnetic saturation. To the best
of our knowledge, this is the first attempt to apply a nonlinear
MOR method to a rotating induction machine with variable
motor speed and driving frequency.

II. NONLINEAR CLN FOR INDUCTION MOTORS

A. Basic Equations

The eddy-current field in the FE space is represented by

Ka = σe, Ce = − d

dt
Ca, (1)
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where a and e are the variable vectors of the magnetic vector
potential and electric field, respectively. ν and σ are the reluc-
tivity and conductivity matrices, respectively, in the analysis
domain. Stiffness matrix K is represented by K = CTνC,
where C is edge-face incident matrix.

Using the procedures described below, the CLN method
reduces the electromagnetic field distribution in the finite
element (FE) space to the resistance and inductance matrices
representing electric and magnetic spatial modes, respectively.

Let the number of ports be M . It is assumed that the
electromagnetic field can be expressed by a space mode
summation

a =
∑
n

a2n+1I2n+1, e =
∑
n

e2nV2n, (2)

where I2n+1,V2n ∈ RM are the current and voltage vec-
tors, respectively, determined by the ladder network [5]. The
matrices a2n+1 and e2n consist of the basis vectors of the
magnetic vector potential and electric field, respectively. Their
columnwise expressions are

a2n+1 = [a1,2n+1, · · · ,aM,2n+1], (3)
e2n = [e1,2n, · · · , eM,2n], (4)

where am,2n+1 and em,2n are the nth basis vectors when a
unit input is supplied to port m, with no input applied to the
other ports.

If the reluctivity, ν, is fixed, the basis matrices have the
recurrence relation

K(a2n+1 − a2n−1) = σe2nR2n, (5)
e2n+2 − e2n = −a2n+1L

−1
2n+1, (6)

where the resistance and inductance matrices are obtained by

R−1
2n = eT2nσe2n, L2n+1 = aT

2n+1Ka2n+1, (7)

respectively. The basis matrices satisfy orthogonal relations

eT2iσe2j = δijR
−1
2i , aT

2i+1Ka2j+1 = δijL2i+1. (8)
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Fig. 1. Parameterized multi-port CLN applied to induction motors. It consists
of a stator, interface, and rotor. The stator is parameterized by vector α.

B. Construction of Nonlinear Multi-port CLN

For application to an induction motor, the multi-port CLN
of the stator and rotor domains are constructed separately and
connected by the electromagnetic field on their interface, as
shown in Fig. 1. The circuit construction does not require
frequency or slip information. In this study, for simplicity,
only the stator CLN was parameterized, although rotor pa-
rameterization can be achieved by a similar process.

Vectors Is and Φs are source current and magnetic flux with
three-phase components represented by Is = [IU, IV, IW]T

and Φs = [ΦU,ΦV,ΦW]T, respectively. The source voltage
Vs = [VU, VV, VW]T can be derived by Vs = dΦs/dt.
Vectors I and Φ are defined by the spatial harmonics of
the circumferential magnetic field Hϕ and the axial vector
potential Az at the stator side of the interface, where the
tangential field Hϕ at the interface is given as the Neumann
boundary condition in the FE formulation. We assume that Hϕ

can be expanded into cosine and sine terms [5] as

(9)
Hϕ(ϕ, t) =

√
2

∑
m=odd

[Hcm(t) cos(mpϕ)

+Hsm(t) sin(mpϕ)] ,

where p is the number of pole pairs. The coefficients comprise
the vector I as

I = [Hc1,Hs1, · · · ,Hc2K−1,Hs2K−1]
T. (10)

The subscripts c2k − 1 and s2k − 1 denote the cosine and
sine components of the 2k − 1 th harmonics, respectively.
The harmonic components are defined in the spatial period
π/p, and those higher than the 2K − 1 th are truncated. By
expanding Az in the same manner, we define Φ as

Φ =
πrc
p

[Ac1, As1, · · · , Ac2K−1, As2K−1]
T, (11)

where rc is the radius of the gap interface. Vectors I ′ and Φ′

are counterparts on the rotor side, represented by

I ′ = [H ′
c1,H

′
s1, · · · ,H ′

c2K−1,H
′
s2K−1]

T, (12)

Φ′ =
πrc
p

[A′
c1, A

′
s1, · · · , A′

c2K−1, A
′
s2K−1]

T, (13)

respectively. Boundary conditions H ′
ϕ = Hϕ and A′

z = Az

give the relations

I ′ = TI, Φ′ = TΦ, (14)

where T = blockdiag(T1,T3, · · · ,T2K−1) is a rotation matrix
with

Tm =

[
cos(mp

∫
ωRdt) sin(mp

∫
ωRdt)

− sin(mp
∫
ωRdt) cos(mp

∫
ωRdt)

]
, (15)

for m = 1, 3, ..., 2K − 1. The relationship between the
mechanical angular frequency ωR and synchronous angular
frequency ωs is ωR = (1 − s)ωs/p, where s is the slip. The
electromotive force in the rotor, generated by the slip, can be
incorporated into the CLN using T .

In this study, for simplicity, the stator-winding resistance
was not included in the CLN, and the iron-core conductivity
was neglected. Accordingly, the stator-side CLN is represented
by a single stage with a single inductance matrix. The stator
equation is

Φ̃ =

[
L00(α) LT

10(α)
L10(α) L11(α)

]
Ĩ = L̃(α)Ĩ, (16)

where Φ̃ = [Φs,Φ]
T and Ĩ = [Is, I]

T. The inductance
matrix L̃ is treated as a function of the parameter vector α to
incorporate the nonlinear magnetic characteristics of the iron
core. Various parameters can be chosen for the components of
α, as described in the next section.

The state equations of the rotor [5] are derived as follows:

L′
2n−1

dI ′
2n−1

dt′
−L′

2n+1

dI ′
2n+1

dt′
= R′

2nI
′
2n,

I ′
2n = −I ′ − I ′

1 − · · · − I ′
2n−1. (17)

The magnetic flux at the interface Φ′ is determined by the
first stage of the rotor CLN as Φ′ = L′

1I
′
1. The substitution

of (16) into the boundary condition (14) results in

Φ = T−1L′
1I

′
1 = L10Is +L11I. (18)

The variables Φs, I , and Φ at time t can be derived by solving
(16) and (17) with the boundary condition (18) and a given
source current Is. The total input power P1，air-gap power
P2，and output torque τ are calculated as follows [5]:

P1 = V T
s Is, P2 = −V TI, τ = rcI

TB, (19)

where V = dΦ/dt, and B is defined by the radial magnetic
flux density Br = (1/rc)∂Az/∂ϕ as

(20)B = π[As1,−Ac1, · · · ,
(2K − 1)As2K−1,−(2K − 1)Ac2K−1]

T.

III. COMPUTATION RESULTS

The induction motor depicted in Fig. 2(a) was analyzed in
the FE space. The stator has 12 slots and 2 pole pairs. The
rotor consists of an iron core and 16 rotor bars. The mesh
generated in the FE field is shown in Fig. 2(b). The reluctance
of stator iron is given by ν(B) = νi [h1 (|B|/B0)

a
+ h2],

where νi = (1/4π) × 103 m/H, a = 6, h1 = 2, h2 = 1,
and B0 = 1 T. The B-H curve is shown in Fig. 3(a). The
iron in the rotor is assumed to have a linear property with
reluctivity (1/4π) × 104 m/H. The conductivity of the rotor
bar is 4.0× 107 S/m.
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Fig. 2. (a) Induction motor model, (b) mesh generated in the finite element
space. The mesh for the stator and rotor domains is shown in different colors.

(a) (b)

Fig. 3. (a) B-H relation of the iron core in the stator, (b) the amplitude of
the input current Isrc.

A. Selection of Parameters

In the CLN analysis, a lookup table of the stator inductance
matrix was prepared beforehand (offline calculation), and then
the state equations were solved (online calculation).

We assumed a balanced three-phase current source

Is = Isrc

[
cos γsrc, cos(γsrc −

2

3
π), cos(γsrc −

4

3
π)

]T
(21)

where Isrc and γsrc are the current magnitude and phase angle,
respectively. The simplest parameterization can be realized by
a parameter vector α1 = [Isrc, γsrc]. For the offline calculation,
the reluctivity matrix ν of the stator was determined by impos-
ing the current source (21) for various α1 with I = 0, and the
stator inductance matrix was obtained using the determined ν
and unit inputs of Is and I . During the online calculation, we
used the stator inductance extracted from the lookup table at
α1 by using the spline interpolation.

However, when the rotor influence is significant (I ̸= 0), the
source currents, and therefore α1, do not directly represent the
degree of magnetic saturation. The magnetic-field distribution
inside the stator is more strongly associated with the magnetic
fluxes at the source port or interface than the source currents.
Hence, we propose other parameter vectors α2 = [Φcoil, γcoil]
and α3 = [Φgap, γgap], where [Φcoil, γcoil] and [Φgap, γgap]
are the amplitude and phase angle of the coil flux and gap
flux, respectively, calculated as follows:

Φcoil =

√
2

3
(Φ2

U +Φ2
V +Φ2

W), γcoil = tan−1

(
Φβ

Φα

)
, (22)

Φgap =
√
(Φ2

c1 +Φ2
s1), γgap = tan−1

(
Φs1

Φc1

)
. (23)

Here, [ΦU,ΦV,ΦW] are components of Φs, and [Φc1,Φs1] are
the first two components of Φ. Clarke transformation is used

(a) (b)

Fig. 4. (a) The U-phase diagonal component, and (b) three-phase diagonal
components (Isrc = 500 AT) of the inductance L00.

(a) (b)

Fig. 5. (a) The coil flux Φcoil, and (b) the coil phase γcoil.

to obtain Φα and Φβ from ΦU, ΦV, and ΦW. In the offline
calculation, a table containing the relation of α2 and α3 to
α1 was created from (16)(22)(23) under the condition that
I = 0. During the online calculation, the stator inductance
was determined using the inductance lookup table for α2 or
α3, where I was not necessarily zero depending on the rotor
condition.

B. Stator Inductance

The lookup table of the stator inductance matrices was
prepared for Isrc = 0–631 AT (20 divisions in log scale) and
γsrc = 0–π (24 divisions). Fig. 4 shows the stator inductance
matrix L00, wherein the U-phase diagonal component with
the source phase γsrc = 0 and π/2 is shown in (a). The
inductance decreased as the amplitude increased owing to the
magnetic saturation. The difference in inductances between the
two phases also resulted from the nonlinear magnetic charac-
teristics. Fig. 4(b) shows the three-phase diagonal components
with Isrc = 500 AT. The inductance was minimum when the
source phase was positioned at the center of the stator slots.

Fig. 5 depicts the relation between the state of the source
current α1 and coil flux α2 obtained from (22). The coil flux
in Fig. 5(a) is saturated because of the nonlinear magnetic
characteristics. The difference between the source and coil flux
phases in Fig. 5(b) is attributed to the stator structure. Similar
tendencies are observed with the gap flux α3.

C. Transient Analyses

As shown in Fig. 3(b), source-current amplitude Isrc in-
creased from 0 to 500 AT in the first three cycles and remained
constant for the last two cycles. The employed frequency
ranged from 10 to 100 Hz, and the slip was varied from 0
to 1. Identical circuit parameters were used for all conditions
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50 Hz, s = 0.3
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Fig. 6. Transient waveforms of (a) V-phase magnetic flux, and (b) torque.
They were obtained using the FEM, linear CLN (L), nonlinear CLN param-
eterized by the source current (α1), coil flux (α2), and gap flux (α3).

(b)(a)

Fig. 7. The torque averaged in the last cycle with various (a) slips, and (b)
input frequencies.

because the CLN can incorporate the difference in rotor
conditions by modulating the rotation matrix T in (15).

Fig. 6 shows transient waveforms of (a) V-phase magnetic
flux ΦV, and (b) torque τ . The results of the parameterized
CLN agree with those of the FE analyses when α2 or α3 are
used as the parameters, as predicted in the previous section.
Fig. 7 compares the averaged torque in the last cycle with
various (a) slips and (b) frequencies. The results indicate that
the nonlinear CLN parameterized by α2 or α3 yields results
significantly close to those of the FE analysis.

D. Computation Time

The linear solutions dominate the computation time in both
FE and CLN analyses. The nonlinear equations were solved by
iterating linear solutions using the Newton-Raphson method.
The average number of iterations was 5.4 and 7.5 for the FE
and CLN calculations, respectively. Hence the transient FE
analyses with Nt time-steps required 5.4Nt linear solutions.

The CLN method, on the other hand, requires linear so-
lutions only for the offline calculation and not for online
calculation. For each stator-CLN parameter, we obtained a
single nonlinear solution to determine the reluctivity and 35
linear solutions to determine the inductance matrix (3 phase
+ 32 harmonic components). The rotor CLN with 2 stages
required 32× 2 linear solutions to derive R′ and L′ with 32
harmonic components. Therefore (7.5 + 35)Nα + 64 linear

solutions were required for the offline calculation. The online
computation time is negligible compared with the offline
computation time.

Because the degree of freedom in the full FE analyses
is larger than that of the stator or rotor model individually
computed in the CLN method, the speedup ratio of the param-
eterized CLN to transient FE analyses is estimated to be more
than 5.4Nt/(42.5Nα + 64), which was 4.1 for calculating 20
operating points shown in Fig. 7. The speedup ratio becomes
especially large for analyses with a large number of time steps,
such as the evaluation of pulse-width modulation (PWM) input
with high carrier frequencies, generation of an efficiency map
with various frequencies and slips, and coupled analyses with
a control circuit.

IV. CONCLUSION

The parameterized multi-port CLN method was developed
and applied to an induction motor with nonlinear magnetic
characteristics. The developed method reproduced the tran-
sient waveforms obtained from FE analysis with various slips
and frequencies. The CLN method is more computationally
efficient than the FE analyses when the number of time steps
is large. Transient analyses with PWM input and the inclusion
of iron losses [5] will be considered in further research.
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