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PARAFERMION VERTEX OPERATOR ALGEBRAS AND

W-ALGEBRAS

TOMOYUKI ARAKAWA, CHING HUNG LAM, AND HIROMICHI YAMADA

Abstract. We prove the conjectual isomorphism between the level k ŝl2-parafermion
vertex operator algebra and the (k+1, k+2) minimal series Wk-algebra for all k ∈ N. As
a consequence, we obtain the conjectural isomorphism between the (k+1, k+2) minimal
series Wk-algebra and the coset vertex operator algebra SU(k)1 ⊗ SU(k)1/SU(k)2.

1. Introduction

A parafermion vertex operator algebra K(g, k) is by definition the commutant of the
Heisenberg vertex operator subalgebra M

ĥ
(k, 0) in the simple vertex operator algebra

Lĝ(k, 0) of the level k integrable highest weight module for an affine Kac-Moody algebra
ĝ, where g is a finite dimensional simple Lie algebra and h is a Cartan subalgebra of
g. Some basic properties of K(g, k) were studied in [21, 22]. Their arguments heavily
depend on the properties of the parafermion vertex operator algebra K(sl2, k), which
were obtained in [16, 17]. Thus, for the study of the general parafermion vertex operator
algebras, it is essential to understand the case g = sl2.

The parafermion vertex operator algebra K(sl2, k) is also known as aW -algebra. It was
conjectured over 20 years ago in the physics literature [10] that the parafermion vertex
operator algebra K(sl2, k) is isomorphic to the (k + 1, k + 2)-minimal series W -algebra
[29, 4] associated with slk. The purpose of this paper is to prove this conjecture. As a
consequence, the rationality of K(sl2, k) is established.

In [16, 17] it was shown that K(sl2, k) is isomorphic to the simple quotient of the
W -algebra W (2, 3, 4, 5) of [10, 33] for k ≥ 5. This relationship between K(sl2, k) and
the simple quotient of W (2, 3, 4, 5) is clear because a set of generators and the operator
product expansions among the generators of these two vertex operator algebras are known
[10, 16, 17], and they coincide with each other. On the other hand, theW -algebra W

ℓ(slk)
was constructed in a different manner and the explicit operator product expansions of gen-
erators of Wℓ(slk) are not known in general. Therefore, we should take another approach
to establish a correspondence between the vertex operator algebras K(sl2, k) and W

ℓ(slk).

The key idea is the use of a decomposition L
ŝl2
(k, 0) =

⊕k−1
j=0 VZγ−jγ/k ⊗ M j , where

VZγ−jγ/k is a simple module for a vertex operator algebra VZγ associated with a rank
one lattice Zγ, 〈γ, γ〉 = 2k, and M j is a simple module for M0 = K(sl2, k). That is, we
consider not only the vertex operator algebraK(sl2, k) but also some of its simple modules
and take tensor product with VZγ−jγ/k. We shall characterize L

ŝl2
(k, 0) as a unique vertex

operator algebra that admits such a decomposition, see Section 3 for the precise statement.
The fusion rules among the simple VZγ-modules play an important role in the argument
here. Furthermore, we shall apply the result to show that under a certain assumption, a
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vertex operator algebra having similar properties as the (k + 1, k + 2)-minimal series W -
algebra Wk+1,k+2(slk) associated with slk is in fact isomorphic to the parafermion vertex
operator algebra K(sl2, k).

We note that by the level rank duality K(sl2, k) is isomorphic to the coset vertex al-
gebra ComL

ŝlk
(1,0)⊗L

ŝlk(1,0)
(L

ŝlk
(2, 0)) ([37]). Therefore our result gives another conjectural

isomorphism ([36, 11])

Wk+1,k+2(slk) ∼= ComL
ŝlk

(1,0)⊗L
ŝlk(1,0)

(L
ŝlk
(2, 0))

for all k ≥ 2.
This paper is the final version of our unpublished preprint “A characterization of

parafermion vertex operator algebras”.
The organization of the paper is as follows. In Section 2, we prepare some materials

which will be necessary in later sections. We review intertwining operators and simple
current extensions. We also recall some properties of the lattice vertex operator algebra
VZγ and its simple modules as well as the construction of the parafermion vertex op-
erator algebra K(sl2, k). In Section 3, we study a vertex operator algebra of the form

V =
⊕k−1

j=0 VZγ−jγ/k ⊗M j . Under a certain hypothesis, we show that V is isomorphic

to L
ŝl2
(k, 0). In Section 4, we obtain a characterization of the parafermion vertex oper-

ator algebra K(sl2, k). In Section 5, we recall some results on W-algebras established in
[1, 3, 4, 6]. Finally, in Section 6, we apply the result of Section 4 to show that K(sl2, k) is
isomorphic to Wk+1,k+2(slk). A correspondence of the simple modules for K(sl2, k) with
those for Wk+1,k+2(slk) is discussed as well. In Appendix A, we prove Proposition 5.2 that
was stated in [24] without a proof.

2. Preliminaries

We use standard notation for vertex operator algebras and their modules [30, 31, 38].
Let (V, Y, 1, ω) be a vertex operator algebra and (M,YM) its module. Then

YM(v, z) =
∑

n∈Z

vnz
−n−1

is the vertex operator associated with v ∈ V . The linear operator vn of M is called a
component operator. The eigenspace with eigenvalue n for the operator L(0) = ω1 is
denoted by M(n). An element w ∈ M(n) is said to be of weight n or ω-weight n and we
write wtw = n. In this paper we always assume that wtw ∈ Q. The top level of M
means the nonzero weight subspace M(n) of smallest possible n. We denote the top level
of M by M(0). The weight of the top level M(0) is called the top weight of M . The
generating function

chM =
∑

n∈Q

(dimM(n))q
n

of dimM(n) is called the character of M . A vertex operator algebra V is said to be of
CFT-type if V =

⊕
n≥0 V(n) and V(0) = C1.

Let M ′ =
⊕

n∈QM
∗
(n) be the restricted dual space of a V -module M , where M∗

(n) is the

ordinary dual space of M(n). The adjoint vertex operator YM ′(v, z) ∈ (EndM ′)[[z, z−1]] is
defined by

〈YM ′(v, z)w′, w〉M = 〈w′, YM(ezL(1)(−z−2)L(0)v, z−1)w〉M
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for v ∈ V , w ∈ M and w′ ∈ M ′, where 〈 · , · 〉M is the natural pairing of M ′ and M [30,
(5.2.4)]. Then (M ′, YM ′) is a V -module [30, Theorem 5.2.1] called the contragredient or
dual module of M . If M and M ′ are isomorphic as V -modules, then M is said to be
self-dual. The vertex operator algebra V is said to be self-dual if V is isomorphic to its
dual V ′ as a V -module.

For an automorphism g of V , we define a V -module (M ◦g, YM◦g) by settingM ◦g =M
as vector spaces and YM◦g(v, z) = YM(gv, z) for v ∈ V . Then M 7→ M ◦ g induces a
permutation on the set of simple V -modules. The V -module M is said to be g-stable if
(M ◦ g, YM◦g) is isomorphic to (M,YM).

2.1. Fusion rules. We review intertwining operators for later use. Let V be a vertex op-
erator algebra and (U i, YU i), i = 1, 2, 3 simple V -modules. Let Y( · , z) be an intertwining

operator of type
(

U3

U1 U2

)
[30, Section 5.4]. We define linear operators u1m and u1(n) from

U2 to U3 by

Y(u1, z)u2 =
∑

m∈Q

u1mu
2z−m−1

=
∑

n∈Z

u1(n)u2z−n−h1−h2+h3

for ui ∈ U i, i = 1, 2, m ∈ Q and n ∈ Z, where hi is the top weight of U i. If u1 is
homogeneous, then the weight of the operator u1m is wt u1m = wt u1 −m− 1 [30, (5.4.14)].

In the case U1 = V and u1 = 1, it is well-known that Y(1, z) : U2 → U3 is a homomor-
phism of V -modules (cf. page 285 of [39]).

Let I
(

U3

U1 U2

)
= IV

(
U3

U1 U2

)
be the space of intertwining operators of type

(
U3

U1 U2

)
.

Lemma 2.1. Let V be a self-dual vertex operator algebra and U1, U2 simple V -modules
with integral weight. Assume that I

(
V

U1 U2

)
6= 0. Then the following assertions hold.

(1) U1 is isomorphic to the dual module (U2)′ of U2.
(2) Let 0 6= Y( · , z) ∈ I

(
V

U1 U2

)
. Then for any 0 6= u1 ∈ U1(0), there exists u2 ∈ U2(0)

such that the weight 0 coefficient u12h−1u
2 of Y(u1, z)u2 is nonzero: 0 6= u12h−1u

2 ∈ V(0),
where h is the top weight of U1.

Proof. Since the weights of U1 and U2 are integral and V is self-dual, there are one-to-one
correspondences among the four spaces

I

(
V

U1 U2

)
, I

(
(U2)′

U1 V ′

)
, I

(
(U2)′

V ′ U1

)
, I

(
(U2)′

V U1

)

of intertwining operators by [30, Propositions 5.4.7 and 5.5.2]. More precisely, let ψ :
V → V ′ be an isomorphism of V -modules and 0 6= Y( · , z) ∈ I

(
V

U1 U2

)
. We consider three

intertwinig operators

Y1( · , z) ∈ I

(
(U2)′

U1 V ′

)
, Y2( · , z) ∈ I

(
(U2)′

V ′ U1

)
, Y3( · , z) ∈ I

(
(U2)′

V U1

)
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defined by

〈Y1(u1, z)ψ(a), u2〉U2 = 〈ψ(a),Y(ezL(1)(−z−2)L(0)u1, z−1)u2〉V , (2.1)

Y2(ψ(a), z)u1 = ezL(−1)Y1(u1,−z)ψ(a), (2.2)

Y3(a, z)u1 = Y2(ψ(a), z)u1, (2.3)

respectively for a ∈ V , u1 ∈ U1 and u2 ∈ U2 [30, (5.5.4), (5.4.33)].
Let a = 1 and 0 6= u1 ∈ U1(0). Then Y3(1, z) 6= 0 by [18, Proposition 11.9]. Since U1

and (U2)′ are simple by our assumption and [30, Proposition 5.3.2], Y3(1, z) : U1 → (U2)′

is in fact an isomorphism of V -modules. Thus the assertion (1) holds.
We can choose u2 ∈ U2(0) so that

〈Y3(1, z)u1, u2〉U2 6= 0, (2.4)

for Y3(1, z)u1 is a nonzero element of the dual space U2(0)∗ of U2(0). The weight of u2

coincides with that of u1. It follows from (2.2), (2.3) and (2.4) that

〈ezL(−1)Y1(u1,−z)ψ(1), u2〉U2 6= 0. (2.5)

Since u2 ∈ U2(0), we have L(1)u2 = 0 and

〈Y1(u1,−z)ψ(1), u2〉U2 6= 0 (2.6)

by (2.5) and [30, (5.2.10)]. Recall that u1 ∈ U1(0) and the weight of u1 is h. Then

e−zL(1)(−z−2)L(0)u1 = (−z−2)hu1

and so

〈Y1(u1,−z)ψ(1), u2〉U2 = (−z−2)h〈ψ(1),Y(u1,−z−1)u2〉V ,
which is nonzero by (2.6). Since ψ(1) is an element of the dual space V ∗

(0) of V(0), we

conclude that u12h−1u
2 is a nonzero element of V(0). �

2.2. Simple current extensions. A simple module M of a vertex operator algebra is
called a simple current if the tensor product M ⊠N exists and it is a simple module for
every simple module N . We review some known results about simple current extensions
of vertex operator algebras for later use.

We assume the following hypothesis.

Hypothesis 2.2. (1) V is a simple, self-dual, rational and C2-cofinite vertex operator
algebra of CFT-type.

(2) The top weight of any simple V -module M is non-negative, and is zero only if
M = V .

(3) U i, i ∈ D is a set of simple current V -modules with integral weight, where D is a
finite abelian group and U0 = V . The fusion rules among U i’s are

U i × U j = U i+j , i, j ∈ D.

Let Ii+j
i,j = IV

(
U i+j

U i Uj

)
be the space of intertwining operators of type

(
U i+j

U i Uj

)
for i, j ∈ D.

Let Y i+j
i,j be a nonzero element of Ii+j

i,j . Since Ii+j
i,j is one dimensional, Y i+j

i,j is unique up to
a nonzero scalar multiple. However it is far from trivial whether there are λi,j ∈ C× such

that {λi,jY i+j
i,j }i,j∈D gives a vertex operator algebra structure on a direct sum

⊕
i∈D U

i.
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For i, j ∈ D, define Ω(i, j) ∈ C× by

Y i+j
i,j (u, z)v = Ω(i, j)ezL(−1)Y i+j

j,i (v,−z)u (2.7)

for u ∈ U i, v ∈ U j [12, Definition 2.2.4] (see also [13, 23]). Such a constant Ω(i, j) exists
by [30, Proposition 5.4.7].

The following fact has been shown in the proof of [23, Theorem 4.1] (see also [13,
Theorem 3.12]).

Proposition 2.3. Ω(i, i) = 1, i ∈ D.

Indeed, the categorical dimension of U i coincides with the quantum dimension in the
sense of [15, Definition 3.1] by [15, Eq. (4.1)] under Hypothesis 2.2. Since U i is a simple
current, the quantum dimension of U i is 1 [15, Lemma 4.15]. Then the condition that U i

has integral weight implies Ω(i, i) = 1 by the equation e(qΩ(α)) = e(−q∆(α)) in the proof
of [23, Theorem 4.1], for q∆(α) = 0 with α = i.

The condition that Ω(i, i) = 1, i ∈ D is called evenness in [12]. The evenness implies
the next theorem [12, Theorem 3.2.12], [13, Theorem 3.12], [23, Theorem 4.2].

Theorem 2.4. There exists a choice of nonzero intertwining operators Y i+j
i,j ∈ Ii+j

i,j ,

i, j ∈ D which gives a vertex operator algebra structure on
⊕

i∈D U
i as an extension of V .

Such a vertex operator algebra structure on
⊕

i∈D U
i is unique up to isomorphism

[20, Proposition 5.3]. The vertex operator algebra
⊕

i∈D U
i is called a simple current

extension of V . It is a simple, self-dual, rational and C2-cofinite vertex operator algebra
of CFT-type [42, Theorem 2.14].

2.3. Lattice vertex operator algebra VZγ. We recall some basic properties of a vertex
operator algebra associated with a positive definite even rank one lattice. Let Zγ be
a positive definite even rank one lattice generated by γ, where the square norm of γ
is 〈γ, γ〉 = 2k. Let VZγ = M(1) ⊗ C[Zγ] be a vertex operator algebra associated with
the lattice Zγ [31]. Thus M(1) is a simple highest weight module for the Heisenberg
algebra generated by γ with highest weight 0. It is isomorphic to a polynomial algebra
C[γ(−n) |n ∈ Z>0] as a vector space. Since Zγ is a rank one lattice, the twisted group
algebra C{Zγ} considered in [31] is isomorphic to an ordinary group algebra C[Zγ]. Its
standard basis is {enγ |n ∈ Z} with multiplication eαeβ = eα+β . The conformal vector is

ωγ =
1

4k
γ(−1)21 (2.8)

and its central charge is 1.
The vertex operator algebra VZγ is simple, self-dual, rational, C2-cofinite and of CFT-

type. The simple modules for VZγ were classified [14]. Since the dual lattice of Zγ is
(1/2k)Zγ, any simple VZγ-module is isomorphic to one of VZγ+iγ/2k, 0 ≤ i ≤ 2k − 1. The

top level of VZγ+iγ/2k is Ceiγ/2k with weight i2/4k if 0 ≤ i < k and Ce(2k−i)γ/2k with weight

(2k − i)2/4k if k < i ≤ 2k − 1. In the case i = k, the top level is Ceγ/2 + Ce−γ/2 with
weight k/4.

The fusion rules among these simple modules are also known and intertwining operators
were constructed by using vertex operators [18, Chapter 12]. In fact, the fusion rules are

VZγ+iγ/2k × VZγ+jγ/2k = VZγ+(i+j)γ/2k. (2.9)
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In particular, all the simple modules are simple currents.
Since the commutator map ( · , · ) of [18, (12.5)] is trivial for the rank one lattice (1/k)Zγ

and since 〈γ, iγ/k〉 = 2i ∈ 2Z implies (−1)〈a,b〉 = 1 in [18, (12.5)], the vertex operator
Y ( · , z) on V(1/k)Zγ =M(1)⊗C[(1/k)Zγ] defined in [31, Section 8.4] (see also [18, Chapter
3]) itself can be taken as the intertwining operator Yλj

( · , z) of [18, (12.3)] for VZγ+jγ/k,

0 ≤ j ≤ k−1. That is, (−1)〈a,b〉c(a, b) = 1 in [18, (12.5)] and so Y (v, z)w with v ∈ VZγ+iγ/k

and w ∈ VZγ+jγ/k satisfies the Jacobi identity for intertwining operators [18, (12.8)].

Let Y i+j
L,i,j( · , z) be the vertex operator Y ( · , z) for V(1/k)Zγ restricted to VZγ−iγ/k and

acting on VZγ−jγ/k, so that Y i+j
L,i,j(u, z)v = Y (u, z)v for u ∈ VZγ−iγ/k and v ∈ VZγ−jγ/k. It

is an intertwining operator of type
(

VZγ−(i+j)γ/k

VZγ−iγ/k VZγ−jγ/k

)

for the vertex operator algebra VZγ . The action of Y (e±γ/k, z) on the top level of VZγ±γ/k

will be used later. By the definition

Y (e±γ/k, z) = E−(∓γ/k, z)E+(∓γ/k, z)e±γ/kz±γ/k,

where E±(α, z) = exp(
∑

n∈±Z>0

α(n)
n
z−n). Since eγ/kzγ/ke−γ/k = 1z−2/k, we have

Y (eγ/k, z)e−γ/k = 1z−2/k +
1

k
γ(−1)1z1−2/k + · · · . (2.10)

2.4. Parafermion vertex operator algebra K(sl2, k). We recall from [7, 16, 17] the
properties of parafermion vertex operator algebra associated with sl2. Let k ≥ 3 be
an integer. Let {h, e, f} be a standard Chevalley basis of the Lie algebra sl2, so that
[h, e] = 2e, [h, f ] = −2f , [e, f ] = h for the bracket and (h|h) = 2, (e|f) = 1, (h|e) =
(h|f) = (e|e) = (f |f) = 0 for the normalized invariant inner product.

Let V (k, 0) = V
ŝl2
(k, 0) be a Weyl module for the affine Lie algebra ŝl2 = sl2⊗C[t, t−1]⊕

CC at level k. Denote by 1 its canonical highest weight vector, which is called the vacuum
vector. Then sl2⊗C[t] acts as 0 and C acts as k on 1, and V (k, 0) is the induced module
of the sl2 ⊗C[t]⊕CC-module C1. We write a(n) for the action of a⊗ tn on V (k, 0). The
Weyl module V (k, 0) is a vertex operator algebra with the conformal vector

ωaff =
1

2(k + 2)

(1
2
h(−1)21+ e(−1)f(−1)1+ f(−1)e(−1)1

)
,

whose central charge is 3k/(k + 2) [32], [38, Section 6.2].
Let M

ĥ
(k, 0) be the vertex operator subalgebra of V (k, 0) generated by h(−1)1. That

is, M
ĥ
(k, 0) is a Heisenberg vertex operator algebra. The conformal vector of M

ĥ
(k, 0) is

ωh =
1

4k
h(−1)21

and its central charge is 1. As a module for M
ĥ
(k, 0), we have a decomposition

V (k, 0) =
⊕

λ∈2Z

M
ĥ
(k, λ)⊗Nλ,
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whereM
ĥ
(k, λ) is a simple highest weight module forM

ĥ
(k, 0) with a highest weight vector

vλ such that h(0)vλ = λvλ and

Nλ = {v ∈ V (k, 0) | h(m)v = λδm,0v for m ≥ 0}. (2.11)

In particular, N0 is the commutant [32, Theorem 5.1] of M
ĥ
(k, 0) in V (k, 0), which is a

vertex operator algebra with the conformal vector ωpara = ωaff − ωh. The central charge
of N0 is 2(k − 1)/(k + 2). The character of N0 is chN0 = 1 + q2 + 2q3 + · · · . It is known
[17, Section 2] that

W 3 = k2h(−3)1 + 3kh(−2)h(−1)1+ 2h(−1)31− 6kh(−1)e(−1)f(−1)1

+ 3k2e(−2)f(−1)1− 3k2e(−1)f(−2)1.
(2.12)

is a unique, up to a scalar multiple, Virasoro singular vector in the weight 3 subspace
(N0)(3). The vertex operator algebra N0 is generated by the conformal vector ωpara and
the weight 3 vector W 3 [16, Theorem 3.1].

The vertex operator algebra V (k, 0) has a unique maximal ideal J , which is generated
by a single element e(−1)k+11 [34]. Let L(k, 0) = L

ŝl2
(k, 0) = V (k, 0)/J . SinceM

ĥ
(k, 0)∩

J = 0,M
ĥ
(k, 0) can be considered as a subalgebra of L(k, 0) and we have a decomposition

L(k, 0) =
⊕

λ∈2Z

M
ĥ
(k, λ)⊗Kλ

of M
ĥ
(k, 0)-modules, where

Kλ = {v ∈ L(k, 0) | h(m)v = λδm,0v for m ≥ 0}.
Note that K0 is the commutant ofM

ĥ
(k, 0) in L(k, 0). We use the same symbols a(−1)1

for a ∈ {h, e, f}, ωaff , ωh, ωpara and W 3 to denote their images in L(k, 0).
We call K0 a parafermion vertex operator algebra associated with sl2 and denote it by

K(sl2, k). It is a simple vertex operator algebra of central charge 2(k − 1)/(k + 2) and
generated by ωpara and W 3. The character is chK0 = 1 + q2 + 2q3 + · · · .

The vertex operator algebra K0 can be embedded in a vertex operator algebra VL
associated with a rank k lattice L = Zα1 + · · ·+Zαk with 〈αp, αq〉 = 2δp,q [17, Section 4],
[18, Chapter 14]. In fact, let γ = α1 + · · ·+ αk and set

H = γ(−1)1, E = eα1 + · · ·+ eαk , F = e−α1 + · · ·+ e−αk .

Then 〈γ, γ〉 = 2k and the component operators Hn, En, Fn, n ∈ Z give a level k

representation of ŝl2 under the correspondence h(n) ↔ Hn, e(n) ↔ En, f(n) ↔ Fn.
In particular, the vertex operator subalgebra V aff of VL generated by H , E and F is
isomorphic to L(k, 0). We also consider the vertex operator subalgebra V γ of VL generated
by eγ and e−γ . Note that V γ ∼= VZγ . We identify V aff with L(k, 0) and V γ with VZγ . We
also identify Hn with h(n), En with e(n) and Fn with f(n). Then we have [17, Lemma
4.2]

L(k, 0) =
k−1⊕

j=0

VZγ−jγ/k ⊗M j (2.13)

as VZγ ⊗M0-modules, where

M j = {v ∈ L(k, 0)|γ(m)v = −2jδm,0v for m ≥ 0}. (2.14)
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That is, M j = K−2j for 0 ≤ j ≤ k − 1. In particular,

M0 = K0 = K(sl2, k).

Remark 2.5. M j is denoted by M0,j in [17, Lemma 4.2]. The index j ofM j is considered
to be modulo k.

Those M j ’s are simple M0-modules [17, Theorem 4.4]. Hence (2.13) is a decomposition
of L(k, 0) as a direct sum of simple VZγ ⊗M0-modules VZγ−jγ/k ⊗M j , 0 ≤ j ≤ k − 1.

Let L⊥ = 1
2
L be the dual lattice of L. The simple module L(k, i) = L

ŝl2
(k, i) for the

simple affine vertex operator algebra L(k, 0) with i + 1 dimensional top level of weight
i(i+2)
4(k+2)

can be constructed in the simple VL-module VL⊥, 1 ≤ i ≤ k. Let

M i,j = {v ∈ L(k, i)|γ(m)v = (i− 2j)δm,0v for m ≥ 0} (2.15)

for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1. Then M i,j ’s are simple M0-modules and

L(k, i) =

k−1⊕

j=0

VZγ+(i−2j)γ/2k ⊗M i,j (2.16)

as VZγ ⊗M0-modules [17, Lemma 4.3].

Remark 2.6. The decomposition (2.15) implies thatM i,j is the multiplicity of VZγ+(i−2j)γ/2k

in L(k, i). Since for a fixed i, 0 ≤ i ≤ k, the simple VZγ-module VZγ+(i−2j)γ/2k is deter-
mined by j (mod k), we consider the second index j of M i,j to be modulo k.

The −1 isometry of the lattice L lifts to an automorphism θ of the vertex operator
algebra VL of order 2. Actually, θ(H) = −H , θ(E) = F and θ(F ) = E. Both V aff =
L(k, 0) and M0 = K(sl2, k) are invariant under θ. In fact, the automorphism group
AutM0 of M0 is generated by θ and we have θ(W 3) = −W 3.

We summarize the properties of M0 and M i,j for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1 (see [7,
Theorem 4.4, Proposition 4.5], [16, Theorem 4.1], [17, Theorem 8.2]).

(1) M0 is a simple vertex operator algebra of central charge 2(k − 1)/(k + 2).
(2) chM0 = 1 + q2 + 2q3 + · · · .
(3) M0 is generated by M0

(2) and M
0
(3).

(4) The simple M0-modules M i,j ’s are not always inequivalent. In fact,

M i,j ∼=Mk−i,j−i (2.17)

for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.
(5)M i,j , 0 ≤ j < i ≤ k form a complete set of representatives of the isomorphism classes

of simple M0-modules. There are exactly k(k + 1)/2 inequivalent simple M0-modules.
(6) The top level of M i,j is one dimensional and its weight is

1

2k(k + 2)

(
k(i− 2j)− (i− 2j)2 + 2k(i− j + 1)j

)
(2.18)

for 0 ≤ j < i ≤ k.
(7) The automorphism θ of M0 induces a permutation

M i,j 7→ M i,j ◦ θ =M i,i−j (2.19)

on the simple M0-modules for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.



PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS 9

Remark 2.7. It follows from (2.17) that Mk,j is isomorphic to M0,j−k = M0,j for 0 ≤
j ≤ k − 1, even though the simple L(k, 0)-module L(k, k) is not isomorphic to L(k, 0) in
the decomposition (2.16). We also note that M j is equal toM0,j =Mk,j and its top weight
is j(k − j)/k for 0 ≤ j ≤ k − 1 by (2.18). The top weight (2.18) of M i,j is non-negative,
and is zero only if i = k and j = 0.

3. A characterization of L
ŝl2
(k, 0)

Let k ≥ 3 be an integer. In this section we argue that a simple vertex operator algebra
satisfying the following hypothesis is isomorphic to the affine vertex operator algebra
L
ŝl2
(k, 0).

Hypothesis 3.1. (1) (V, Y, 1, ω) is a simple vertex operator algebra of CFT-type with
central charge 3k/(k + 2).

(2) V contains a vertex operator subalgebra (T 0, Y, 1, ω1) isomorphic to VZγ, where
〈γ, γ〉 = 2k. We identify T 0 with VZγ. Then ω1 = 1

4k
γ(−1)21 is the conformal vector of

T 0 with central charge 1. We assume that ω1 ∈ V(2) and ω2ω
1 = 0.

(3) Let N0 be the commutant of T 0 in V and set ω2 = ω − ω1. Thus (N0, Y, 1, ω2) is
a vertex operator subalgebra of V with central charge 2(k − 1)/(k + 2). We assume that
chN0 = 1+ q2 +2q3+ · · · and that N0 is generated by N0

(2) and N
0
(3) as a vertex operator

algebra.
(4) We assume that V is isomorphic to

⊕k−1
j=0 VZγ−jγ/k ⊗N j as a T 0-module, where

N j = {v ∈ V | γ(m)v = −2jδm,0v for m ≥ 0}.
We also assume that as a module for N0, the top weight of N j is j(k − j)/k.

Under Hypothesis 3.1 we shall show that V is isomorphic to L(k, 0) = L
ŝl2
(k, 0). The

proof is divided into several steps. First, we shall introduce some notation. From the
hypothesis we may assume that T 0⊗N0 is a vertex operator subalgebra of V [32, Theorem
5.1]. Then the vacuum vector and the conformal vector of V are given as 1 = 11⊗12 and
ω = ω1⊗12+11⊗ω2, where 11 and 12 are the vacuum vectors of T 0 and N0, respectively.
For simplicity, we usually do not distinguish between T 0 ⊗ 12 and T 0 (resp. 11 ⊗N0 and
N0) and so ω1 ⊗ 12 and ω1 (resp. 11 ⊗ ω2 and ω2). The weight of v ∈ V as a module
for T 0 (resp. N0) or ω1-weight (resp. ω2-weight) means the eigenvalue for the operator
L1(0) (resp L2(0)), where Li(n) = ωi

n+1.
By our hypothesis, V decomposes into a direct sum of simple T 0-modules and each

simple direct summand is isomorphic to one of VZγ−jγ/k, 0 ≤ j ≤ k − 1. Moreover, N j

is the sum of top levels of all simple T 0-submodules of V isomorphic to VZγ−jγ/k. We
examine the action of γ(0) = (γ(−1)1)0 on the top level of each direct summand.

Let σ = exp(2π
√
−1γ(0)/2k), which is an automorphism of the vertex operator algebra

V of order k. We consider its eigenspace

V j = {v ∈ V | σv = exp(−2πj
√
−1/k)v} (3.1)

with eigenvalue exp(−2πj
√
−1/k). Then V =

⊕k−1
j=0 V

j . By [19, Theorem 3], V 0 is

a simple vertex operator algebra and V j , 1 ≤ j ≤ k − 1 are simple V 0-modules. For
convenience, we understand the index j of V j to be modulo k. Since σ is an automorphism
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of V , we have
unv ∈ V i+j for u ∈ V i, v ∈ V j, n ∈ Z. (3.2)

In fact, V j is the sum of all simple T 0-submodules of V isomorphic to VZγ−jγ/k, for

the operator γ(0) acts on enγ−jγ/k ∈ VZγ−jγ/k as a scalar 〈γ, nγ − jγ/k〉 = 2kn − 2j and
commutes with γ(m), m ∈ Z. Hence V j ∼= T j ⊗ N j , where T j is a simple T 0-module
isomorphic to VZγ−jγ/k. In particular, V 0 ∼= T 0 ⊗ N0 as vertex operator algebras. Since
V 0 is simple and V j, 1 ≤ j ≤ k − 1 are simple V 0-modules, the following lemma holds.

Lemma 3.2. V 0 ∼= T 0⊗N0 as vertex operator algebras and N0 is a simple vertex operator
algebra. Moreover, N j, 1 ≤ j ≤ k − 1 are simple N0-modules.

The weight 1 subspace of V 0 is V 0
(1) = Cγ(−1)1 and we have ω2V

0
(1) = 0. Hence, V 0

possesses a nonzero invariant bilinear form by [39, Theorem 3.1] and so the following
lemma holds.

Lemma 3.3. The vertex operator algebra V 0 is self-dual.

The top level N j(0) of N j is of weight j(k−j)/k by our hypothesis. Hence the weight of
the top level V j(0) = T j(0)⊗N j(0) of V j is j if 0 ≤ j < k/2 and k− j if k/2 < j ≤ k−1.
In the case k is even and j = k/2, the weight of V j(0) is k/2.

Now, V(n) = 0 for n < 0 and V(0) = V 0
(0) = C1. Moreover, V(1) = V 0

(1) + V k−1(0) + V 1(0)

and V 0
(1) = Cγ(−1)1, for we are assuming that k ≥ 3. Note that V k−1(0) = Ceγ/k ⊗

Nk−1(0) and V 1(0) = Ce−γ/k ⊗N1(0). Also, unv ∈ V 0 for u ∈ V k−1 and v ∈ V 1 by (3.2).
By Lemmas 2.1 and 3.3, we can choose E ∈ V k−1(0) and F ∈ V 1(0) such that E1F = k1.
Then (2.10) implies that E0F = γ(−1)1. Let H = γ(−1)1.

Lemma 3.4. (1) H0H = 0, H1H = 2k1.
(2) H0E = 2E, H1E = 0, H0F = −2F , H1F = 0.
(3) E0F = H, E1F = k1.
(4) E0E = E1E = F0F = F1F = 0.

Proof. Since Hn = γ(n) ⊗ 1 for n ∈ Z as an operator on the T 0 ⊗ N0-module T j ⊗ N j

and since γ(n)e±γ/k = ±2δn,0e
±γ/k if n ≥ 0, (1) and (2) hold. We have chosen E and F

so that (3) holds. By [31, (8.9.9)], E0E = F0F = 0. We also have E1E ∈ V k−2 ∩ V(0) = 0
and F1F ∈ V 2 ∩ V(0) = 0. Hence (4) holds. �

We want to show that the vertex operator algebra V is generated by H , E and F . Let
U be the vertex operator subalgebra of V generated by H , E and F . Note that AnB = 0
with A,B ∈ {H,E, F} and n ≥ 2, for the weight of AnB is −n + 1. Then Lemma 3.4
implies that the component operators Hn, En, Fn, n ∈ Z give a level k representation of

ŝl2 under the correspondence

h(n) ↔ Hn, e(n) ↔ En, f(n) ↔ Fn.

Since An1 = 0 if n ≥ 0 and since A−11 = A for A ∈ {H,E, F}, the map

h(−1)1 7→ H, e(−1)1 7→ E, f(−1)1 7→ F (3.3)

lifts to a surjective homomorphism ϕ : V (k, 0) → U of vertex operator algebras by the
universality of the Weyl module V (k, 0). The image ϕ(J ) of the maximal ideal J of
V (k, 0) is a maximal ideal of U and the quotient vertex operator algebra U/ϕ(J ) is
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isomorphic to L(k, 0) = V (k, 0)/J . Hence there is a surjective homomorphism ψ : U →
L(k, 0) of vertex operator algebras such that ψ(H) = h(−1)1, ψ(E) = e(−1)1, and
ψ(F ) = f(−1)1. Recall that we use the same symbols to denote elements of V (k, 0) and
their images in L(k, 0).

Since Hn = γ(n)⊗ 1, we have

γ(−n1)γ(−n2) · · · γ(−nr)1 ∈ U

for n1 ≥ n2 ≥ · · · ≥ nr ≥ 1, r = 0, 1, 2, . . ..

Lemma 3.5. N0 ⊂ U .

Proof. The image of the conformal vector ωaff of V (k, 0) under ϕ is

ϕ(ωaff) =
1

2(k + 2)

(1
2
H−1H + E−1F + F−1E

)
,

which is contained in V 0 by (3.2). We also have

ϕ(ωh) =
1

4k
H−1H ∈ T 0.

Note that N0 = {v ∈ V 0 |Hmv = 0 for m ≥ 0}. Since ωpara is the conformal vector of
N0 (cf. (2.11)) of central charge 2(k− 1)/(k+2), its image ϕ(ωpara) is a Virasoro element
of the same central charge. Moreover, h(m)ωpara = 0 implies Hmϕ(ωpara) = 0, m ≥ 0.
Thus ϕ(ωpara) is contained in N0. Since N0

(2) = Cω2 by our hypothesis, we conclude that

ϕ(ωpara) = ω2. In particular, ω2 ∈ U .
Next, we consider the image of W 3 (2.12) under the homomorphism ϕ,

ϕ(W 3) = k2H−31+ 3kH−2H−11+ 2(H−1)
31− 6kH−1E−1F−11

+ 3k2E−2F−11− 3k2E−1F−21.

As in the case of ωpara, we have ϕ(W 3) ∈ V 0 by (3.2) and furthermore, ϕ(W 3) ∈ N0,
for W 3 ∈ N0. Recall that W

3 is a Virasoro singular vector with respect to the conformal
vector ωpara ofN0. Hence ϕ(W

3) is a Virasoro singular vector with respect to the conformal
vector ω2 of N0. Now, the weight 3 subspace N0

(3) is of dimension 2 by our hypothesis.

Thus ω2
0ω

2 and ϕ(W 3) form a basis of N0
(3). Hence the lemma holds, for we are assuming

that the vertex operator algebra N0 is generated by N0
(2) and N

0
(3). �

Lemma 3.6. e±γ ⊗N0 ⊂ U .

Proof. Since Hn = γ(n)⊗ 1 and since V =
⊕k−1

j=0 V
j with V j ∼= T j ⊗ N j , it follows from

(3.1) that

e±γ ⊗N0 = {v ∈ V |Hnv = ±2kδn,0v for n ≥ 0}.
Now, e(−1)k1 6∈ J and so ϕ(e(−1)k1) = (E−1)

k1 is a nonzero element of U . Note also
that

h(n)e(−1)k1 = 2kδn,0e(−1)k1, n ≥ 0

in the Weyl module V (k, 0). Taking the image under the homomorphism ϕ, we have

Hn(E−1)
k1 = 2kδn,0(E−1)

k1, n ≥ 0.



12 T. ARAKAWA, C. H. LAM, AND H. YAMADA

This implies that (E−1)
k1 is a nonzero element of eγ ⊗N0. Then we have eγ ⊗N0 ⊂ U

by Lemma 3.5. Replacing e(−1) with f(−1) and E with F in the above argument, we
can also show that e−γ ⊗N0 ⊂ U . �

Lemma 3.7. U = V .

Proof. The vertex operator algebra VZγ is generated by eγ and e−γ. Hence Lemma 3.6
implies that U contains V 0. Recall that V j is a simple V 0-module. Since F ∈ V 1, it
follows that V 1 ⊂ U . Then V j ⊂ U for all j by [18, Proposition 11.9], and we have U = V
as desired. �

Since V is a simple vertex operator algebra, Lemma 3.7 implies the following theorem.

Theorem 3.8. V ∼= L
ŝl2
(k, 0).

4. A characterization of K(sl2, k)

In this section we apply the results of Section 3 to obtain a characterization of the
parafermion vertex operator algebra K(sl2, k) associated with sl2. Let k ≥ 3 be an
integer. Throughout this section we assume the following hypothesis.

Hypothesis 4.1. (1) N0 is a simple, self-dual, rational and C2-cofinite vertex operator
algebra of CFT-type with central charge 2(k − 1)/(k + 2).

(2) chN0 = 1 + q2 + 2q3 + · · · .
(3) N0 is generated by N0

(2) and N
0
(3).

(4) There exist simple current N0-modules N j , 1 ≤ j ≤ k − 1 such that the top weight
of N j is j(k − j)/k and the fusion rules among N j’s are

N i ×N j = N i+j , 0 ≤ i, j ≤ k − 1.

Here the indices i, j are considered to be modulo k.
(5) Any simple N0-module except N0 itself has positive top weight.

Let VZγ−jγ/k be as in Section 2.3. Thus 〈γ, γ〉 = 2k. Let

V j = VZγ−jγ/k ⊗N j , 0 ≤ j ≤ k − 1

be a tensor product of vector spaces VZγ−jγ/k and N j . Then V 0 = VZγ ⊗ N0 carries
a structure of vertex operator algebra. In fact, V 0 is a simple, self-dual, rational and
C2-cofinite vertex operator algebra of CFT-type with central charge 3k/(k + 2) by our
assumption on N0. Moreover, any simple V 0-module except V 0 itself has positive top
weight. The V j , 0 ≤ j ≤ k − 1 are simple V 0-modules [30, Section 4.7]. These simple
modules are simple current V 0-modules and the fusion rules among them are

V i × V j = V i+j , 0 ≤ i, j ≤ k − 1 (4.1)

by (2.9) and Hypothesis 4.1.
The top weight of the V 0-module V j is a sum of those of the VZγ-module VZγ−jγ/k and

the N0-module N j , so that it is j if 0 ≤ j < k/2, k − j if k/2 < j ≤ k − 1 and k/2 if k is
even and j = k/2. In particular, V j has integral weight.

Therefore,
⊕k−1

j=0 V
j has a vertex operator algebra structure by Theorem 2.4. It is a

Zk-graded simple current extension of V 0.
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Now, we can apply Theorem 3.8 to conclude that the vertex operator algebra
⊕k−1

j=0 V
j

is isomorphic to L
ŝl2
(k, 0). Thus the following theorem holds.

Theorem 4.2. The space
⊕k−1

j=0 V
j is a Zk-graded simple current extension of V 0 and

it is isomorphic to the vertex operator algebra L
ŝl2
(k, 0), where V j = VZγ−jγ/k ⊗ N j with

〈γ, γ〉 = 2k and N j being as in Hypothesis 4.1.

Since N0 is the commutant of VZγ in the vertex operator algebra
⊕k−1

j=0 V
j and since

the parafermion vertex operator algebra K(sl2, k) is the commutant of VZγ in L
ŝl2
(k, 0),

the following theorem is a consequence of Theorem 4.2.

Theorem 4.3. Let N0 be as in Hypothesis 4.1. Then N0 is isomorphic to the parafermion
vertex operator algebra K(sl2, k) associated with sl2 for k ≥ 3.

5. W -algebras

In this section we recall some results on W -algebras.

5.1. W -algebra Wℓ(slk). Let g be a finite-dimensional simple Lie algebra, ( | ) the nor-
malized invariant inner product of g, and let ĝ be the affine Lie algebra associated with g

and ( | ):
ĝ = g⊗ C[t, t−1]⊕ CC,

where C is the central element. Let ĥ = h ⊕ CC be the Cartan subalgebra of ĝ, where

h is a Cartan subalgebra of g. Let ĥ∗ = h∗ ⊕ CΛ0 be the dual of h, where Λ0(C) = 1,
Λ0(h) = 0.

Let Vĝ(ℓ, 0) = U(ĝ)⊗U(g[t]⊕CC) Cℓ be the universal affine vertex algebra associated with
g at level ℓ ∈ C. Here g⊗ C[t] acts as 0 and C acts as ℓ on Cℓ .

For a weight λ of g denote by Lĝ(ℓ, λ) the simple highest weight module for ĝ with

highest weight λ̂ℓ = λ + ℓΛ0. The vacuum simple module Lĝ(ℓ, 0) is a quotient vertex
algebra of Vĝ(ℓ, 0) and called the simple affine vertex algebra associated with g at level ℓ.

Let Wℓ(g) be the W -algebra associated with g and its principal nilpotent element at a
non-critical level ℓ defined by the quantized Drinfeld-Sokolov reduction [25]:

W
ℓ(g) = H0

DS(Vĝ(ℓ, 0)),

where H•
DS(M) is the cohomology of the BRST complex for the quantized Drinfeld-

Sokolov reduction with coefficient in a ĝ-module M ([25]). Denote by Wℓ(g) the unique
simple quotient of Wℓ(g).

Later we shall set g = slk, in which case Wℓ(g) is isomorphic to the Wk-algebra defined
by Fateev and Lukyanov [24] (cf. [8]).

The level ℓ is called admissible if Lĝ(ℓ, 0) is an admissible representation [35] of ĝ. If
this is the case, the associated variety XLĝ(ℓ,0) of Lĝ(ℓ, 0) is contained in the nullcone N
of g ([2]), where XLĝ(ℓ,0) is the maximal spectrum of Zhu’s C2-algebra of Lĝ(ℓ, 0) ([2]). An
admissible number ℓ is called non-degenerate if XLĝ(ℓ,0) = N ([29, 2]). For an admissible
level ℓ, we have ([3])

H•
DS(Lĝ(ℓ, 0)) 6= 0 ⇐⇒ ℓ is non-degenerate.

The following assertion was conjectured by Frenkel, Kac and Wakimoto [29].
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Theorem 5.1 ([1, 3, 4]). Let ℓ be a non-degenerate admissible level. Then we have the
isomorphism

Wℓ(g) ∼= H0
DS(Lĝ(ℓ, 0))

of vertex algebras. Moreover, Wℓ(g) is self-dual, rational and C2-cofinite.

The rational and C2-cofinite W -algebras appearing in Theorem 5.1 are called minimal
series W -algebras. In the case that g = sl2, they are exactly the Virasoro vertex operator
algebras which belong to minimal series representations [9] of the Virasoro algebra.

The conjectural classification [29] of simple modules for minimal series W -algebras
was also established in [4]. In [6] it was shown that this together with Theorem 5.1
verifies the conjectual fusion rules of minimal series W -algebras obtained in [29]. In the
next subsection we shall describe these results more precisely in the cases that we are
interested in this article.

5.2. The case g = slk. Now, we set g = slk. One knows [27] that W
ℓ(g) is freely

generated by homogeneous elements of weight d1 + 1, . . . , drank g + 1, where d1, . . . , drank g
is the exponents of g. In particular Wℓ(slk) is freely generated by homogeneous elements
of weight 2, 3, . . . , k. Hence

chWℓ(slk) =
k−1∏

i=1

∞∏

j=1

(1− qi+j+1)−1 = 1 + q2 + 2q3 + . . .

Proposition 5.2 ([24]). For any non-cricial level ℓ, Wℓ(slk) is generated by its weight 2
and weight 3 subspaces as a vertex algebra.

We include a proof of this fact in Appendix A.
Note that we have

W
ℓ(slk) ∼= W

ℓ′(slk) if (ℓ+ k)(ℓ′ + k) = 1

([24], see also [8]), which is the special case of the Feigin-Frenkel duality [26].

The level ℓ is a non-degenerate admissible number for ĝ = ŝlk if and only if

ℓ+ k =
p

q
with p, q ∈ N, (p, q) = 1, p, q ≥ k.

Set

Wp,q(slk) = Wp/q−k(slk) = Wq/p−k(slk)

for p/q − k with p, q ∈ N, (p, q) = 1, p, q ≥ k. The central charge of Wp,q(slk) is given by

cp,q = −(k − 1)((k + 1)p− kq)(kp− (k + 1)q)

pq
.

Note that

ck+1,k+2 =
2(k − 1)

k + 2
. (5.1)

The simple modules of Wp,q(slk) are parametrized by the set

Ip,q = (P̂ p−k
+ × P̂ q−k

+ )/W̃+,
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where P̂m
+ denotes the set of integral dominant weights of ĝ of level m and W̃+ is the

subgroup of the extended affine Weyl group consisting of elements of length zero which
acts diagonally on the set P̂ p−k

+ × P̂ q−k
+ . By [4, Theorem 10.4] and [1, Remark 9.1.8],

{H0
DS(Lĝ(ℓ, λ− p

q
µ)) | [(λ̂p−k, µ̂q−k)] ∈ Ip,q, λ, µ ∈ h∗}

gives a complete set of representatives of the isomorphism classes of simple Wp,q(slk)-
modules.

5.3. Simple modules and fusion rules of Wk+1,k+2(slk). Consider the special case
that q = k + 1. Then we have a bijection

P̂ p−k
+

∼→ Ip,k+1, λ̂p−k 7→ [(λ̂p−k, 0̂1)].

Therefore, by putting

L(Λ) = H0
BRST (Lŝlk

(ℓ, Λ̄)),

where Λ̄ is the restriction of Λ to h, the set {L(Λ) | Λ ∈ P̂ p−k
+ } gives a complete set of

representatives of the isomorphism classes of simple Wp,k+1(slk)-modules.

Let Am
g = {[L

ŝlk(m,λ)] | λ ∈ Pm
+ } be the fusion algebra for ŝlk at level m, and let Ap,q

W

be the fusion algebra of Wp,q(slk). Note that Wp,q(slk) = Wq,p(slk) and so Ap,q
W

∼= Aq,p
W
.

The following assertion is the special case of the fusion rule of Wp,q(slk) computed in
[29].

Theorem 5.3. Let p be an integer such that p ≥ k, (p, k + 1) = 1. Then the assignment

[L
ŝlk
(ℓ, λ)] 7→ [L(λ̂ℓ)]

gives the isomorphism of fusion algebras Ap−k
g

∼→ Ap,k+1
W

.

Now we set p = k + 2. Then

{L(Λi + Λj) | 0 ≤ i ≤ j ≤ k − 1}
gives a complete set of representatives of the isomorphism classes of simple Wk+2,k+1(slk)-
modules. The top level of L(Λi + Λj) is one dimensional with weight given by

−i2 + i(k(2k + 3)− 2j(k + 1)) + j(k − j)

2k(k + 2)
. (5.2)

Corollary 5.4. L(Λi + Λj) is a simple current module for Wk+1,k+2(slk) if and only if
i = j. We have

L(2Λp)× L(Λj + Λi) = L(Λj+p,Λi+p) (5.3)

for 0 ≤ p ≤ k − 1 and 0 ≤ i, j ≤ k − 1, where the index is considered to be modulo k. In
particular,

L(2Λp)× L(2Λq) = L(2Λp+q). (5.4)

We remark that
L(Λi + Λj)

′ ∼= L(Λ−i + Λ−j),

where L(Λi + Λj)
′ is the dual module of L(Λi + Λj) (see [1, Theorem 5.5.4]).

Here we summarize some of the properties of L(2Λ0) = Wk+1,k+2(slk).
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(1) L(2Λ0) is a simple, self-dual, rational and C2-cofinite vertex operator algebra of
CFT-type with central charge 2(k − 1)/(k + 2).

(2) chL(2Λ0) = 1 + q2 + 2q3 + · · · .
(3) L(2Λ0) is generated by L(2Λ0)(2) and L(2Λ0)(3).
(4) L(2Λj), 0 ≤ j ≤ k − 1 are simple current L(2Λ0)-modules and the fusion rules

among them are L(2Λi)× L(2Λj) = L(2Λi+j).
(5) The top weight of L(2Λj) is j(k − j)/k.
(6) Any simple L(2Λ0)-module except L(2Λ0) itself has positive top weight.

Remark 5.5. The pair (i, j) of the indices i and j for a complete set of representatives
of the isomorphism classes of simple M0-modules M i,j runs over the range 0 ≤ j < i ≤ k,
while that for L(2Λ0)-modules L(Λj + Λi) runs over the range 0 ≤ j ≤ i ≤ k − 1. Let
i′ = k − i+ j. Then 0 ≤ j ≤ i′ ≤ k − 1 if and only if 0 ≤ j < i ≤ k. Thus these two sets
of parameters (i, j)’s are related as

{(i, j)|0 ≤ j ≤ i ≤ k − 1} = {(k − i+ j, j)|0 ≤ j < i ≤ k}.
The following lemma will be used in Section 6.

Lemma 5.6. The top weight of the simple K(sl2, k)-module M i,j is equal to that of the
simple L(2Λ0)-module L(Λj + Λj−i) for 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.

Proof. By (2.18) and (5.2) we see that the top weight of the simple K(sl2, k)-moduleM i,j

is equal to that of the simple L(2Λ0)-module L(Λj + Λj−i) for 0 ≤ j < i ≤ k. For a pair
(i, j) with 0 ≤ i ≤ j ≤ k − 1, we have 0 ≤ j − i < k − i ≤ k. Hence the top weight of
Mk−i,j−i coincides with that of

L(Λj−i + Λ(j−i)−(k−i)) = L(Λj−i + Λj−k).

Since M i,j is isomorphic to Mk−i,j−i as M0-modules by (2.17) and L(Λj−i + Λj) =
L(Λj−k + Λj−i) the assertion holds for such a pair (i, j) also. �

6. Identification of K(sl2, k) and Wk+1,k+2(slk)

In this section we use the results of Section 4 to show that K(sl2, k) is isomorphic to the
(k + 1, k + 2)-minimal series W -algebra Wk+1,k+2(slk). We also discuss a correspondence
of the simple modules for K(sl2, k) with those for Wk+1,k+2(slk). If k = 2, it is well-known
that both K(sl2, 2) and W3,4(sl2) are isomorphic to the simple Virasoro vertex operator
algebra with central charge 1/2. So let us assume that k ≥ 3.

By the properties of Wk+1,k+2(slk) described in Section 5.3, we see that Wk+1,k+2(slk)
satisfies the five conditions of Hypothesis 4.1 for N0 together with the simple current
modules L(2Λj) for N

j , 0 ≤ j ≤ k−1. Therefore, Theorem 4.3 implies the next theorem.

Theorem 6.1. The (k + 1, k + 2)-minimal series W -algebra Wk+1,k+2(slk) is isomorphic
to the parafermion vertex operator algebra K(sl2, k) of type sl2.

Furthermore, it follows from Theorem 4.2 that
⊕k−1

j=0 VZγ−jγ/k ⊗ L(2Λj) is a Zk-graded

simple current extension of VZγ ⊗ L(2Λ0) and it is isomorphic to L
ŝl2
(k, 0). That is,

L
ŝl2
(k, 0) =

k−1⊕

j=0

VZγ−jγ/k ⊗ L(2Λj) (6.1)
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as VZγ ⊗M(2Λ0)-modules.

Corollary 6.2. The parafermion vertex operator algebra K(sl2, k) is rational.

It is known that K(sl2, k) is isomorphic to ComL
ŝlk

(1,0)⊗L
ŝlk(1,0)

(L
ŝlk
(2, 0)) ([37]). There-

fore Theorem 6.1 immediately gives the following assertion that has been conjectured in
[36, 11].

Corollary 6.3. We have the isomorphism

Wk+1,k+2(slk) ∼= ComL
ŝlk

(1,0)⊗L
ŝlk(1,0)

(L
ŝlk
(2, 0)).

For simplicity of notation we identify M0 with L(2Λ0), so that M0 = L(2Λ0). Then
it follows from (2.13), (2.14) and (6.1) that M j = L(2Λj) for 0 ≤ j ≤ k − 1. This in
particular implies that M j , 0 ≤ j ≤ k − 1 are the simple current modules for K(sl2, k).
The fusion rules among them are

M i ×M j =M i+j (6.2)

by (5.4), which is compatible with (2.9).
We have another description of L

ŝl2
(k, 0) as a Zk-graded simple current extension of

VZγ ⊗ L(2Λ0). Indeed, let N
j be as in Section 4. Then

Nk−i ×Nk−j = Nk−(i+j),

and so Nk−j , 0 ≤ j ≤ k−1 satisfy the conditions of Hypothesis 4.1 for N j , 0 ≤ j ≤ k−1.
Therefore, we can apply the argument in Section 4 to Nk−j in place of N j to conclude
that

⊕k−1
j=0 VZγ−jγ/k ⊗ Nk−j is a simple current extension of V 0 isomorphic to L

ŝl2
(k, 0).

Thus

k−1⊕

j=0

VZγ−jγ/k ⊗N j ∼=
k−1⊕

j=0

VZγ−jγ/k ⊗Nk−j

=
k−1⊕

j=0

VZγ+jγ/k ⊗N j

(6.3)

as vertex operator algebras and we have

L
ŝl2
(k, 0) =

k−1⊕

j=0

VZγ−jγ/k ⊗ L(2Λk−j) (6.4)

as VZγ ⊗ L(2Λ0)-modules. In (6.4) we have M j = L(2Λk−j) for 0 ≤ j ≤ k − 1.
Recall the automorphism θ of the vertex operator algebra L

ŝl2
(k, 0) of order 2 discussed

in Section 2.4. The automorphism θ transforms VZγ−jγ/k to VZγ+jγ/k and induces an
automorphism of VZγ . Hence θ ⊗ 1 gives the isomorphism (6.3). Note also that 1 ⊗ θ is
an automorphism of VZγ ⊗M0 and that θ transforms M j to M j ◦ θ = Mk−j by (2.19).
Thus the isomorphism (6.3) is afforded by 1⊗ θ also (cf. [41, Lemmas 3.14 and 3.15]).

The next proposition implies that there are only two ways of describing L
ŝl2
(k, 0) as a

Zk-graded simple current extension of VZγ ⊗ L(2Λ0), namely (6.1) and (6.4).
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Proposition 6.4. One of the following two cases occurs.
(1) M j = L(2Λj) for all 0 ≤ j ≤ k − 1.
(2) M j = L(2Λk−j) for all 0 ≤ j ≤ k − 1.

Proof. Among the simple currentK(sl2, k)-modulesM j , 1 ≤ j ≤ k−1 (resp. Wk+1,k+2(slk)-
modules L(2Λj), 1 ≤ j ≤ k − 1), only M1 and Mk−1 (resp. L(2Λ1) and L(2Λk−1)) have
top weight (k − 1)/k. Hence M1 = L(2Λ1) or M1 = L(2Λk−1). By the fusion rules
Mp ×M1 = Mp+1 and L(2Λp)× L(2Λ1) = L(2Λp+1), (1) holds if M

1 = L(2Λ1), and (2)
holds if M1 = L(2Λk−1). �

Next, we study the correspondence of the remaining simple modules for K(sl2, k) with
those for Wk+1,k+2(slk). For this purpose we first inspect M i,j , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.
Recall that the second index j of M i,j is considered to be modulo k (cf. Remark 2.6).
By Lemma 5.6, the top weight of M i,j is equal to that of L(Λj + Λj−i) for 0 ≤ i ≤ k,
0 ≤ j ≤ k − 1.

SinceM j is a simple currentM0-module, we see from (2.13), (2.16) and the fusion rules
(2.9) for simple VZγ-modules that the fusion rule of Mp and M i,j is

Mp ×M i,j =M i,j+p, 0 ≤ p, j ≤ k − 1, 0 ≤ i ≤ k. (6.5)

Let
P (i, j) = k(i− 2j)− (i− 2j)2 + 2k(i− j + 1)j (6.6)

for 0 ≤ j ≤ i ≤ k. Then the top weight ofM i,j is P (i, j)/2k(k+2). Since M i,j ∼=Mk−i,j−i

as M0-modules by (2.17), the top weight of M i,j for 0 ≤ i ≤ j ≤ k − 1 is given by
P (k − i, j − i)/2k(k + 2). We have P (i, 0) = P (i, i) = i(k − i) and

P (i, j)− i(k − i) = 2(k + 2)j(i− j) ≥ 0

for 0 ≤ j ≤ i ≤ k. Moreover,

P (k − i, j − i)− i(k − i) = 2(k + 2)(k − j)(j − i) > 0

for 0 ≤ i < j ≤ k − 1. Thus the following Lemma holds.

Lemma 6.5. Let 1 ≤ i ≤ k. Then the top weight of M i,j for 0 ≤ j ≤ k − 1 is at least
i(k − i)/2k(k + 2) and it is equal to i(k − i)/2k(k + 2) if and only if j = 0, i.

We also note that i(k − i) is monotone increasing with respect to i for 0 ≤ i ≤ k/2.
We shall show that M i,j = L(Λj + Λj−i) for all 0 ≤ j < i ≤ k in the case (1) of

Proposition 6.4. Thus, assume that M j = L(2Λj) for all 0 ≤ j ≤ k − 1. We consider a
decomposition of L(k, i) into a direct sum of simple VZγ ⊗ L(2Λ0)-modules and compare
it with (2.16).

The top weight of VZγ+(i−2j)γ/2k ⊗M i,j is a sum of the top weight of VZγ+(i−2j)γ/2k and
that of M i,j . Hence we have

(top weight of VZγ+(i−2)γ/2k ⊗M i,i+1)− (top weight of VZγ+iγ/2k ⊗M i,0) =
k − 2i

k
(6.7)

for 0 ≤ i ≤ k. In the range of 1 ≤ i ≤ k/2, the difference (k − 2i)/k can be an integer
only if k is even and i = k/2.

Let

S = {M i,j |0 ≤ j < i ≤ k}
= {L(Λj + Λi)|0 ≤ j ≤ i ≤ k − 1} (6.8)
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be a complete set of representatives of the isomorphism classes of simple modules for
M0 = L(2Λ0). Using the isomorphismM i,j ∼= Mk−i,j−i, we can arrange the representatives
M i,j ’s so that

S = {M i,j |0 ≤ i ≤ (k − 1)/2, 0 ≤ j ≤ k − 1} (6.9)

if k is odd, and

S = {M i,j |0 ≤ i ≤ k/2− 1, 0 ≤ j ≤ k − 1} ∪ {Mk/2,j |0 ≤ j ≤ k/2− 1} (6.10)

if k is even. In the case k is even, we note that Mk/2,j ∼=Mk/2,k/2+j for 0 ≤ j ≤ k/2− 1.
Set

Ti = {M i,j |0 ≤ j ≤ k − 1}
for 0 ≤ i ≤ ⌊(k − 1)/2⌋, where ⌊(k − 1)/2⌋ denotes the largest integer which does not
exceed (k − 1)/2.

Moreover, set

Tk/2 = {Mk/2,j |0 ≤ j ≤ k/2− 1}
if k is even. Set

Sp =

⌊k/2⌋⋃

i=p

Ti

for 0 ≤ p ≤ ⌊k/2⌋. Then S0 = S.
We shall establish an identification of M i,j ∈ Ti and L(Λj + Λj−i) ∈ Ti, 0 ≤ j ≤ k − 1

(0 ≤ j ≤ k/2 − 1 if k is even and i = k/2) for i = 1, 2, . . . , ⌊k/2⌋ inductively. Note that
M j = L(2Λj), 0 ≤ j ≤ k − 1 by our assumption, that is, the identification is given for
i = 0 and (6.1) holds.

First, we discuss the case i = 1. By Lemma 6.5, we see that the top weight of a simple
module M ∈ S1 is at least (k − 1)/2k(k + 2) and it is equal to (k − 1)/2k(k + 2) if
and only if M = M1,0 or M1,1. Then Lemma 5.6 implies that one of the following two
cases occurs: M1,0 = L(Λ0 + Λk−1) and M

1,1 = L(Λ0 + Λ1), or M
1,0 = L(Λ0 + Λ1) and

M1,1 = L(Λ0 + Λk−1).
Suppose M1,0 = L(Λ0 + Λ1). Then since the fusion rule

(
VZγ−γ/k ⊗ L(2Λ1)

)
×
(
VZγ+γ/2k ⊗ L(Λ0 + Λ1)

)
= VZγ−γ/2k ⊗ L(Λ1 + Λ2) (6.11)

holds by (2.9) and (5.3), both VZγ+γ/2k ⊗ L(Λ0 + Λ1) and VZγ−γ/2k ⊗ L(Λ1 + Λ2) appear
as direct summands in a decomposition (2.16) of L(k, 1) into a direct sum of simple
VZγ ⊗L(2Λ0)-modules. However, the top weigh of L(Λ1+Λ2) coincides with that of M1,2

by Lemma 5.6, and so the difference of the top weight of these two direct summands is
(k− 2)/k by (6.7), which is not an integer. This is a contradiction, for L(k, 1) is a simple
L(k, 0)-module. Therefore, M1,0 = L(Λ0 + Λk−1). Then by the fusion rules (5.3) and
(6.5), we obtain M1,j = L(Λj +Λj−1) for 0 ≤ j ≤ k− 1. Thus the identification of simple
modules contained in T1 holds.

Next, let p be an integer such that 2 ≤ p ≤ ⌊(k−1)/2⌋ and assume that the identification
of simple modules contained in Ti, 0 ≤ i ≤ p− 1 holds.

We replace 1 with p in the above argument. By Lemma 6.5, the top weight of a simple
moduleM ∈ Sp is at least p(k−p)/2k(k+2) and it is equal to p(k−p)/2k(k+2) if and only
if M =Mp,0 or Mp,p. Hence one of the following two cases occurs: Mp,0 = L(Λ0 + Λk−p)
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and Mp,p = L(Λ0 + Λp), or M
p,0 = L(Λ0 + Λp) and Mp,p = L(Λ0 + Λk−p). Suppose

Mp,0 = L(Λ0 + Λp). Then since
(
VZγ−γ/k ⊗ L(2Λ1)

)
×

(
VZγ+pγ/2k ⊗ L(Λ0 + Λp)

)
= VZγ+(p−2)γ/2k ⊗ L(Λ1 + Λp+1) (6.12)

by (2.9) and (5.3), both VZγ+pγ/2k⊗L(Λ0+Λp) and VZγ+(p−2)γ/2k⊗L(Λ1+Λp+1) appear as
direct summands in a decomposition of L(k, p) into a direct sum of simple VZγ ⊗L(2Λ0)-
modules. However, the top weigh of L(Λ1 + Λp+1) coincides with that of Mp,p+1, and so
the difference of the top weight of these two direct summands is (k−2p)/k by (6.7), which
is not an integer. Thus Mp,0 = L(Λ0 + Λk−p). Hence we have the identification of simple
modules contained in Tp by the fusion rules.

In the case k is even and p = k/2, we have Sk/2 = Tk/2. The minimum of the top weight

of the simple modules contained in Tk/2 is k/8(k + 2) and it is attained only by M2/k,0.

Hence M2/k,0 = L(Λ0 + Λk/2) and the identification of simple modules contained in Tk/2

holds by the fusion rules. This completes the induction on i. Therefore, we conclude that
M i,j = L(Λj + Λj−i) for all 0 ≤ j < i ≤ k.

For M i,j with 0 ≤ i ≤ j ≤ k − 1, we use the isomorphism M i,j ∼= Mk−i,j−i (2.18) of
M0-modules. Since 0 ≤ j − i < k − i ≤ k, we apply the above identification to Mk−i,j−i.
Then we have

Mk−i,j−i = L(Λj−i + Λ(j−i)−(k−i)) = L(Λj + Λj−i).

Thus the identification M i,j = L(Λj + Λj−i) holds for all 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1 in the
case (1) of Proposition 6.4.

We have discussed the identification of simple modules for K(sl2, k) and those for
Wk+1,k+2(slk) in the case (1) of Proposition 6.4 so far. As to the case (2) of Proposition
6.4, recall the permutationM i,j 7→M i,j ◦θ =M i,i−j (2.19) on the simple modules induced
by the automorphism θ. In the case (1) of Proposition 6.4, M i,i−j = L(Λ−j + Λi−j).
Therefore M i,j = L(Λ−j +Λi−j) for all i, j in the case (2) of Proposition 6.4. In fact, Mp

and M i,0 are transformed to Mk−p and M i,i by the permutation and the fusion rule (6.5)
is transformed to Mk−p ×M i,i−j =M i,i−(j+p).

We have proved the following theorem.

Theorem 6.6. There are exactly two ways of identification of the simple modules for
K(sl2, k) and those for Wk+1,k+2(slk), namely,

(1) M i,j = L(Λj + Λj−i) for all 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.
(2) M i,j = L(Λ−j + Λi−j) for all 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1.

The following corollary is already discussed in the proof of Theorem 6.6.

Corollary 6.7. The automorphism θ of K(sl2, k) = Wk+1,k+2(slk) induces a permutation
L(Λj + Λi) 7→ L(Λ−j + Λ−i) on the simple modules for all i, j.

Appendix A. Proof of Proposition 5.2

For a Z≥0-graded vertex operator algebra V , let F pV be the subspace of V spanned by
the vectors

a1−n1−1 · · · ar−nr−1b
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with ai ∈ V , b ∈ V , ni ∈ Z≥0, n1 + · · ·+ nr ≥ p. We have [40]

V = F 0V ⊃ F 1V ⊃ · · · , TF pV ⊂ F p+1V,
⋂

F pV = 0,

anF
pV ⊂ F p+q−n−1V for a ∈ F pV , n ∈ Z,

anF
pV ⊂ F p+q−nV for a ∈ F pV , n ≥ 0.

Set gr V =
⊕∞

p=0 F
pV/F p+1V . Let σp : F pV → F pV/F p+1V be the symbol map. This

induces an linear isomorphism V ∼→ grV .

Proposition A.1. Let r be a non-negative integer such that

anF
pV ⊂ F p+q−n+rV for all a ∈ F pV , n ≥ 0. (A.1)

Then grV is a Poisson vertex algebra by

σp(a)σq(b) = σp+q(a−1b), Tσp(a) = σp+1(a),

σp(a)(n)σq(b) = σp+q−n+r(anb) for n ≥ 0. (A.2)

Proof. The assertion was proved by Li [40] for r = 0. The same proof applies to the cases
that r > 0 as well. �

Note that in Proposition A.1 we can always take r = 0, and this Poisson vertex algebra
structure of grV is trivial if and only if anF

q
W

ℓ(g) ⊂ F p+q−n+1
W

ℓ(g) for all a ∈ F p
W

ℓ(g),
n ≥ 0. Therefore, if this is the case we can give gr V a Poisson vertex algebra structure
using Proposition A.1 for r = 1.

Example A.2. The Poisson vertex algebra gr Vĝ(ℓ, 0) for r = 0 in Proposition A.1 is
isomorphic to C[J∞g∗] equipped with the level 0 Poisson vertex algebra structure induced
from the Kirillov-Kostant Poisson structure of g∗ ([2].) Here J∞X denotes the arc space
of a scheme X. Let M

ĥ
(ℓ, 0) ⊂ Vĝ(ℓ, 0) be the Heisenberg vertex subalgebra generated by

h(−1)1 with h ∈ h. Then grM
ĥ
(ℓ, 0) ∼= C[J∞h∗]. Here, again, C[J∞h∗] equipped with

the level 0 Poisson vertex algebra structure induced from the Kirillov-Kostant Poisson
structure of h∗, which is trivial. Therefore, (A.1) holds for r = 1. Hence (A.2) for r = 1
gives the Poisson vertex algebra structure on grM

ĥ
(ℓ, 0). We have

hnh
′ =

{
ℓ(h|h′) for n = 1

0 for n = 0 or n ≥ 2,

for h, h′ ∈ h ⊂ C[h∗] ⊂ C[J∞h∗]. In particular the Poisson vertex algebra structure of
grM

ĥ
(ℓ, 0) does not depend on the level ℓ provided that ℓ 6= 0.

Consider the W -algebra W
ℓ(g). The vertex Poisson algebra structure of grWℓ(g) is

trivial if we take r to be 0 in Proposition A.1 ([3]). Therefore, by Proposition A.1 grWℓ(g)
is the vertex Poisson algebra by σp(a)(n)σq(b) = σp+q−n+1(anb), n ≥ 0. Below we regard
grWℓ(g) as a vertex Poisson algebra with respect to this product.

In order to prove Proposition 5.2 it is sufficient to show the following propositions.

Proposition A.3. Let ℓ be non-critical. Then the vertex Poisson algebra grWℓ(slk) is
generated by the weight 2 subspace and the weight 3 subspace.

Proposition A.4. For a non-critical ℓ, the vertex Poisson algebra structure of grWℓ(g)
is independent of ℓ ∈ C\{−h∨}.
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Proof. We shall use the Miura map

W
ℓ(g) →֒ M

ĥ
(ℓ+ h∨, 0),

see [5] for the details. This induces the injective Poisson vertex algebra homomorphism

grWℓ(g) →֒ grM
ĥ
(ℓ+ h∨, 0),

where grM
ĥ
(ℓ+ h∨, 0) is equipped with the Poisson vertex algebra structure described in

Example A.2. The image of grWℓ(g) is generated by symmetric polynomials in S(h) =
C[h∗] ⊂ C[J∞h∗], and does not depend on ℓ. Hence, the vertex Poisson algebra structure
of grWℓ(g) is independent of ℓ as long as it is non-critical. �

By Proposition A.4, it is sufficient to show Proposition A.3 for a non-critical ℓ.
Recall the following assertion proved by Frenkel, Kac, Radul and Wang.

Theorem A.5 ([28]). For ℓ = 1 − k, W
ℓ(glk) is isomorphic to the simple quotient of

W1+∞-algebra W
k
1+∞ of central charge k.

Proof of Proposition A.3. The vertex algebra W
c
1+∞ is freely generated by fields Jm(z) =∑

n∈Z J
m
n z

−n−1, m = 0, 1, 2, . . . , satisfying the OPE’s

Jm(z)Jn(w)

∼
m+n∑

a=1

([n]aJ
m+n−a(w)− (−1)a[m]aJ

m+n−a(z)/(z − w)a+1) +
(−1)mm!n!c

(z − w)m+n+2
,

where [n]a = n(n−1) · · · (n−a+1). The conformal weight of Jm(z) ism+1. The image of
J0(z) generates the rank 1 Heisenberg subalgebra π and we have W

ℓ(glk) = W
ℓ(slk)⊗ π.

We have

Jm
0 J

n ≡ 0 (mod F 1
W

c
1+∞), Jm

1 J
n ≡ (m+ n)Jm+n−1 (mod F 1

W
c
1+∞),

Jm
r J

n = ([n]r − (−1)r[m]r)J
m+n−r (mod F 1

W
c
1+∞)

It follows that grWc
1+∞ is generated by J0, J1 and J2. Therefore grW1−k(slk) is

generated by the image of J1 and J2. This completes the proof. �

Acknowledgments

The authors would like to thank Toshiyuki Abe, Scott Carnahan, Chongying Dong, At-
sushi Matsuo and Hiroshi Yamauchi for helpful advice and stimulating discussions. The
authors learn Lemma 2.1 from Toshiyuki Abe. Part of the work was done while C. L.
and H. Y. were staying at Kavli Institute for Theoretical Physics China, Beijing in July
and August, 2010, T. A, C. L. and H. Y. were staying at National Center for Theoret-
ical Sciences (South), Tainan in September, 2010, and T. A. and H. Y. were staying at
Academia Sinica, Taipei in December, 2011. They are grateful to those institutes. To-
moyuki Arakawa was partially supported by the JSPS Grant-in-Aid for Scientific Research
No. 25287004 and No. 26610006, Ching Hung Lam was partially supported by MoST
grant 104-2115-M-001-004-MY3 of Taiwan, Hiromichi Yamada was partially supported
by JSPS Grant-in-Aid for Scientific Research No. 26400040.



PARAFERMION VERTEX OPERATOR ALGEBRAS AND W-ALGEBRAS 23

References

[1] T. Arakawa, Representation theory of W -algebras, Invent. Math. 169 (2007), 219–320.
[2] T. Arakawa, A remark on the C2 cofiniteness condition on vertex algebras. Math. Z. 270, (2012),

559–575.
[3] T. Arakawa, Associated varieties of modules over Kac-Moody algebras and C2-cofiniteness of W-

algebras, Int. Math. Res. Notices (2015) Vol. 2015 11605–11666.
[4] T. Arakawa, Rationality of W-algebras; principal nilpotent cases, Ann. Math. 182 (2015), 565-604.
[5] T. Arakawa, Introduction to W-algebras and their representation theory, preprint, arXiv:1605.00138

[math.RT].
[6] T. Arakawa and J. van Ekeren, Modularity of relatively rational vertex algebras and fusion rules of

regular affine W-algebras, preprint, arXiv:1612.09100[math.RT].
[7] T. Arakawa, C.H. Lam and H. Yamada, Zhu’s algebra, C2-algebra and C2-cofiniteness of parafermion

vertex operator algebras, Adv. Math. 264 (2014), 261–295.
[8] T. Arakawa and A. Molev, Explicit generators in rectangular affine W-algebras of type A, Lett.

Math. Phys. published online.
[9] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-

dimensional quantum field theory. Nuclear Phys. B241 (1984), 333–380.
[10] R. Blumenhagen, W. Eholzer, A. Honecker, K. Hornfeck and R. Hübel, Coset realization of unifying
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