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Modularity of Relatively Rational Vertex Algebras and Fusion
Rules of Principal Affine W -Algebras
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Abstract. We study modularity of the characters of a vertex (super)algebra equipped with a family of
conformal structures. Along the way we introduce the notions of rationality and cofiniteness relative to such
a family. We apply the results to determine modular transformations of trace functions on admissible modules
over affine Kac-Moody algebras and, via BRST reduction, trace functions on minimal series representations
of principal affine W -algebras.

1. Introduction

A striking feature of the representation theory of infinite dimensional Lie algebras and vertex algebras is the
appearance of modular functions as normalised graded dimensions of integrable modules. The phenomenon
of modularity is in turn the source of important technical tools in the representation theory of these algebras.

Let (V, ω) be a conformal vertex algebra of central charge c, assumed to be rational and C2-cofinite. In [35]
Zhu proved modular invariance of the normalised graded dimensions of irreducible positive energy V -modules,
and more generally of the trace functions

SM (τ |u) = q−c/24
∞∑

n=0

TrMn u0q
L0 ,

of such modules. Here u ∈ V , and SM (τ |u) is viewed as a holomorphic function of τ ∈ H where q = e2πiτ

and H is the upper half complex plane. In particular

SM (−1/τ |τ−L[0]u) =
∑

M ′

SM,M ′SM ′(τ |u)(1.1)

where

L[0] = L0 −
∞∑

j=1

(−1)j

j(j + 1)
Lj

is the neutral Zhu mode (see (2.6)), and the sum here is over the set of irreducible positive energy V -modules.

The S-matrix {SM,M ′} is an important datum associated with V . Indeed the celebrated Verlinde formula
[32] (proved as a theorem of vertex algebras by Huang [19]) determines the decomposition multiplicities of
the fusion product between V -modules in terms of the S-matrix.

The specialisation of (1.1) to u = |0〉 recovers modularity of normalised graded dimensions of modules. For
the purpose of computing the S-matrix it is important to allow the insertion of arbitrary u ∈ V . This is
because, while the SM (τ |u) are known to be linearly independent, their restrictions SM (τ ||0〉) need not be.

In the first half of this paper we study modularity in the context of a vertex algebra V together with an
infinitesimal variation of its conformal structure ω.
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Let (V, ω) be a conformal vertex algebra, and let h ∈ V be a current (i.e., a vector of conformal weight 1). It
is well known that modification of ω by the derivative of h defines a new “shifted” conformal vector, so that

ω(z) = ω − zTh

defines a family of conformal structures on V , indexed by the parameter z. (For explanation of technical
terms used in this introduction, we refer the reader to Section 2.)

The vertex algebra (V, ω) is said to be rational if its category of positive energy modules is semisimple. Since
the positive energy condition depends on a choice of conformal structure, so does the condition of rationality.
One is thus presented with the possibility of a family of conformal structures (V, ω(z)) as above for which V
is “generically rational”, i.e., rational for all ω(z) in some neighbourhood of ω, but not necessarily at ω itself.
In fact this situation occurs relatively frequently.

Indeed we may speak of the subcategory of the category of positive energy (V, ω)-modules which retain the
positive energy condition upon deformation of ω to ω(z) for small z ∈ R>0. We call such modules “h-stable”,
and we say that (V, ω) is rational relative to h if its category of h-stable positive energy modules is semisimple.

In [35] Zhu introduced the commutative (indeed Poisson) algebra R(V ) = V/V(−2)V canonically associated
with the vertex algebra V . He also identified the condition dimR(V ) < ∞ as crucial for establishing his
modularity theorem. A vertex algebra satisfying this condition is said to be “C2-cofinite” or “lisse”. In
the relative setting it is appropriate to replace C2-cofiniteness with a weaker condition involving V and its
subalgebra V 0 ⊆ V consisting of vectors that commute with h. Accordingly we make the following general
definition.

Definition 1.1. Let V be a vertex algebra equipped with a decomposition V = V 0 ⊕ V + as the direct sum
of a vertex subalgebra V 0 and a V 0-module V +. The quotient

Rrel(V ) =
V

V 0
(−2)V

0 + V(−1)V +

is a commutative algebra. We say that V is cofinite relative to the decomposition V = V 0 ⊕ V + if

dimRrel(V ) <∞.

We remark that relative cofiniteness is implied by C2-cofiniteness either of V itself or of V 0, but the converse
is not true. The applications that most interest us involve relatively cofinite but non C2-cofinite vertex
algebras.

Let (V, ω) and h be as above, and suppose that V decomposes under the action of h0 into the sum V 0 ⊕ V +

of the zero eigenspace V 0 and a complementary invariant subspace V +. We say that V is cofinite relative to
h if it is cofinite relative to the decomposition V 0 ⊕ V +.

The neutral mode of ω(z) is L0(h) = L0 + zh0. Hence trace functions on (V, ω(z))-modules are naturally
functions of z alongside τ and u ∈ V . The following theorem summarises the main results of Section 5.

Theorem 1.2. Let (V, ω) be a conformal vertex (super)algebra graded by integer conformal weights. Let
h ∈ V be a current satisfying the OPE relations

[hλh] = 2λ|0〉 and [Lλh] = (T + λ)h+ pλ2

2 |0〉,

where p is some constant, and such that h0 acts semisimply on V . Assume (V, ω) to be rational relative to
h and cofinite relative to h, and write X for the set of irreducible h-stable positive energy V -modules. For
u ∈ V and M ∈ X we consider the supertrace function

FM (τ, z|u) = STrM u0e
2πiz(h0−p/2)qL0−c/24.

There exists ε > 0 such that for each M ∈ X and all u ∈ V the supertrace function FM (τ, z|u) converges
absolutely uniformly on compact subsets of the domain

{(τ, z) ∈ H × C|0 < Im(z) < ε Im(τ)}.
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We consider the following action of SL2(Z) on functions F of τ and z and linear in u ∈ V :

[F ·A](τ, z|u) = exp

[
−2πi

cz2

cτ + d

]
F

(
aτ + b

cτ + d
,

z

cτ + d

∣∣∣∣(cτ + d)−L[0] exp

[
− cz

cτ + d
I(h)

]
u

)
,(1.2)

where

I(h) =

∞∑

j=1

(−1)j

−j hj .(1.3)

Suppose (1 ) that the set of functions FM (τ, z||0〉) as M runs over X is modular invariant, i.e., that there
exists a representation υ of SL2(Z) for which (5.17) holds for u = |0〉, and (2 ) that for each α ∈ (0, ε) ⊂ R
and β ∈ R the set of functions FM (τ, ατ + β||0〉), as M runs over X, is linearly independent. Then for all
u ∈ V the relation

[FM ·A](τ, z|u) =
∑

M ′∈X

ρM,M ′(A)FM ′ (τ, z|u)(1.4)

is satisfied in the intersection of the domains of convergence of the two sides.

We make some remarks on the theorem and its proof. The essential idea is to apply Zhu’s modularity
theorem to the vertex algebra (V, ω(z)). However ω(z) equips V with noninteger conformal weights, and
Zhu’s theorem does not apply in this case. In [12] it is shown instead that modular transformations map
the trace functions FM to trace functions on particular twisted modules. The task becomes to relate trace
functions on twisted and untwisted V -modules. This is achieved by use of Li’s shift operators ∆(u, z). The
condition of relative cofiniteness is inspired by the work [9], see also [12].

The transformation (1.2) was uncovered in the case of N = 2 superconformal vertex algebras in [17, Theorem
9.13 (b)], with h equal to the U(1) current of the N = 2 algebra. There the functions FM are shown to be
flat sections of the bundle of conformal blocks over the universal elliptic curve, and (1.2) is derived from the
geometry of this bundle. We also note that a result closely related to Theorem 1.2 was recently independently
obtained in [28] in the case of V rational and C2-cofinite (see also [29]).

An important class of vertex algebras that are relatively cofinite and generically rational in the sense discussed
above is afforded by the simple affine vertex algebras at admissible level.

Let g be a finite dimensional simple Lie algebra over C, and g the corresponding affine Kac-Moody algebra.
In [27] Kac and Wakimoto identified the notion of admissible weight and initiated the study of the characters

χλ(τ, x) = TrL(λ) e
2πix0qL0−ck/24 (where x ∈ h, τ ∈ H, and q = e2πiτ )

of the irreducible g-modules of admissible highest weight λ.

We recall that k ∈ Q is said to be an admissible number for g if kΛ0 is an admissible weight. If k is an
admissible number then it is either principal or else coprincipal. Roughly speaking these cases distinguish
whether the integrable root system of kΛ0 is equivalent to that of g or else to that of the Langlands dual
L(L̂g) of the affine algebra associated with Lg, respectively (see Section 3 for precise definitions). We denote

by Prk (resp. CoPrk) the set of principal (resp. coprincipal) weights of level k.

In [25] Kac and Wakimoto showed that if k ∈ Q is a principal admissible number for g and λ ∈ Prk then

χλ

(
aτ + b

cτ + d
,

x

cτ + d

)
= exp

[
2πik

c(x, x)

2(cτ + d)

] ∑

λ′∈Prk

ρλ,λ′(A)χλ′(τ, x)

for some representation ρ of SL2(Z). They also explicitly computed the S-matrix

a(λ, λ′) = ρλ,λ′

(
0 −1
1 0

)
.

In Section 4 we extend this result to the coprincipal case, and we compute the S-matrix explicitly.

Now let V k(g) be the universal affine vertex algebra at admissible level k, and Vk(g) its simple quotient. A
smooth g-module of level k is naturally a V k(g)-module. Consider the subcategory of the BGG category
Ok consisting of modules that descend to Vk(g)-modules. It was conjectured in [1] and proved in [6] that
this category is semisimple, i.e., that Vk(g) is rational in the category O. Furthermore if k is principal
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(resp. coprincipal) then the simple objects are precisely the irreducible g-modules L(λ) for λ ∈ Prk (resp.

λ ∈ CoPrk).

For λ an admissible weight, we introduce the trace function

Ψλ(τ, x|u) = TrL(λ) u0e
2πix0qL0−c/24,(1.5)

of u ∈ Vk(g) on L(λ). The Kac-Wakimoto character χλ is recovered from Ψλ as the u = |0〉 specialisation.
As an application of Theorem 1.2 we prove the following.

Theorem 1.3. Let g be a simple Lie algebra and k ∈ Q a (co)principal admissible level for g. For all

λ ∈ (Co)Pr
k
we have

Ψλ

(
aτ + b

cτ + d
,

x

cτ + d

∣∣∣∣(cτ + d)−L[0] exp

[
− c

cτ + d
I(x)

]
u

)
= exp

(
2πik

c(x, x)

2(cτ + d)

) ∑

λ′∈(Co)Prk

ρλ,λ′(A)Ψλ′(τ, x|u)

where ρ is a representation of SL2(Z). The S-matrix a(λ, λ′) = ρ
(
0 −1
1 0

)
is given in [25, Theorem 3.6] (see

Theorem 3.8 below) if k is principal, and by Theorem 4.3 below if k is coprincipal.

Finally we apply Theorem 1.3 to solve a problem in the representation theory of affine W -algebras.

Recall that from the data of g and k as above, plus a choice of nilpotent element f ∈ g, the universal affine
W -algebra Wk(g, f) is defined as the quantized Drinfeld-Sokolov reduction H0

f (V
k(g)) [13], [24]. We focus

on the case of f a principal nilpotent element and k a principal admissible number, and we omit f from the
notation.

Let k be a non-degenerate admissible level. It was conjectured in [15] and proved in [4] and [5] that the
simple quotient Wk(g) of W

k(g) is a rational and C2-cofinite vertex algebra. Zhu’s theorem therefore asserts
modularity for Wk(g). The S-matrix of Wk(g) can be deduced from that of Vk(g) using the Euler-Poincaré
principle. With the S-matrix in hand one may use the Verlinde formula to compute the fusion rules of Wk(g).

The fusion rules of Wk(g), for g simply laced, were worked out by Frenkel, Kac and Wakimoto in [15] by
carrying out the calculation outlined above at the level of the characters χλ, i.e., at the level of graded
dimensions of Wk(g)-modules. As noted above the graded dimensions are not linearly independent. However
Theorem 1.3 can be used to upgrade the calculation to the level of trace functions of arbitrary u ∈ Wk(g),
which are linearly independent, and the result of [15] is confirmed.

Acknowledgements The first author is partially supported by JSPS KAKENHI Grant Number 17H01086
and 17K18724. The second author was supported by an Alexander von Humboldt Foundation grant and
later by CAPES-Brazil. The second author would like to thank Victor G. Kac for several ideas which go
back to discussions had with him in 2011. Both authors would like to thank the referees for their helpful
comments. The work has been presented at conferences “Lie and Jordan Algebras VI”, Bento Gonçalves,
Brazil, December 2015, “Quántum 2016”, Córdoba, Argentina, February 2016, and “Vertex Algebras and
Quantum Groups” Banff, Canada, March 2016. The authors would like to thank the organisers of these
conferences.

Notation Implicitly tensor products are taken over the ground field C of complex numbers. The domain of
the complex variable τ is the upper half complex plane, denoted H, and q = e2πiτ . The letter c is used for
the central charge, and in the matrix

(
a b
c d

)
∈ SL2(Z). We trust that no confusion will arise.

2. Preliminaries on Vertex Algebras

2.1. Vertex Algebras. For background on vertex algebras we refer the reader to the book [22]. Note that
‘vertex algebra’ implicitly includes the super case.

Definition 2.1. A vertex algebra consists of a vector superspace V with a distinguished vacuum vector
|0〉 ∈ V and a vertex operation, which is an even linear map V ⊗ V → V ((z)), written u ⊗ v 7→ Y (u, z)v =∑

n∈Z u(n)vz
−n−1, such that the following are satisfied:

• (Unit axioms) Y (|0〉, z) = 1V and Y (u, z)|0〉 ∈ u+ zV [[z]] for all u ∈ V .
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• (Borcherds identity)

∑

α≥0

(
m

α

)
(u(n+α)v)(m+k−α)x =

∑

α≥0

(−1)α
(
n

α

)[
u(m+n−α)v(k+α) − (−1)np(u, v)v(n+k−α)u(m+α)

]
x(2.1)

for all u, v, x ∈ V , k,m, n ∈ Z.

The operator T : u 7→ u(−2)|0〉 is called the translation operator and it satisfies Y (Tu, z) = ∂zY (u, z). The
operators u(n) are called modes.

A useful special case of Borcherds identity is

[u(m), v(n)] =
∑

j∈Z+

(
m

j

)
(u(j)v)(m+n−j),(2.2)

or, in the more compact λ-bracket notation,

[uλv] =
∑

j∈Z+

λj

j!
u(j)v.

Definition 2.2. A conformal structure on the vertex algebra V is a vector ω ∈ V such that Y (ω, z) = L(z) =∑
n∈Z Lnz

−n−2 furnishes V with an action of the Virasoro algebra, i.e.,

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm,−nc

for some constant c ∈ C. This action is required to satisfy L−1 = T , and that L0 act semisimply on V with
rational eigenvalues, bounded below. The constant c is called the central charge of V . A conformal vertex
algebra is a vertex algebra together with a choice of conformal structure.

After fixing a conformal structure ω on a vertex algebra V , we call the L0-eigenvalue of an eigenvector u ∈ V
its conformal weight, which we denote ∆(u), and we denote by V∆ the subspace of vectors with conformal
weight ∆. The conformal indexing of modes (relative to ω) is defined by

Y (u, z) =
∑

n∈Q

unz
−n−∆(u), i.e., un = u(n+∆(u)−1).

In terms of the conformal indexing Borcherds identity becomes

∑

α≥0

(
m+∆(u)− 1

α

)
(u(n+α)v)m+kx =

∑

α≥0

(−1)α
(
n

α

)
[um+n−αvk+α−n − (−1)np(u, v)vk−αum+α]x.(2.3)

Definition 2.3. Let V be a vertex algebra. A (weak) V -module is a vector superspace M together with an
even map YM : V ⊗M →M((z)), written u⊗x 7→ Y (u, z)x =

∑
n∈Z u(n)xz

−n−1, such that YM (|0〉, z) = 1M ,
and (2.1) holds for all u, v ∈ V , x ∈ M , and for all m, k, n ∈ Z. Now let V be a conformal vertex algebra.
A positive energy V -module is a weak V -module M,YM with grading M =

⊕
λ∈QMλ by finite dimensional

L0-eigenspaces Mλ, with eigenvalues bounded below.

An automorphism of the vertex algebra V is σ ∈ EndV such that (σu)(n) = σu(n)σ
−1. An automorphism of

a conformal vertex algebra is one that fixes ω.

Definition 2.4. Let g be an automorphism of the vertex algebra V of finite order K, and write V ǫ for its
e2πiǫ-eigenspace (so ǫ is defined modulo Z). A (weak) g-twisted V -module is a vector superspace M together
with an even map YM : V ⊗M →M((z1/K)), written u⊗x 7→ Y (u, z)x =

∑
n∈ǫ+Z unxz

−n−∆(u) for u ∈ V ǫ,

such that YM (|0〉, z) = 1M , and (2.3) holds for all u ∈ V ǫ, v ∈ V ǫ′ and x ∈ M , and for all m ∈ ǫ + Z,
k ∈ ǫ′ + Z and n ∈ Z.

Remark 2.5. For V integer graded our definition coincides with that used in [10] and in [30]. In [11] a different
convention is used which exchanges the notions of g- and g−1-twisted modules. The operator ξ to be defined
in equation 2.4 below is the inverse of φ used in [11, Equation (8.1)]. Note that in the present setting a vertex
algebra V is an e−2πiL0-twisted V -module.
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Definition 2.6. A vertex algebra V is said to be rational if it has finitely many irreducible positive energy
modules, and every positive energy V -module decomposes into a direct sum of irreducible positive energy
V -modules.

2.2. Relative Cofiniteness. We introduce a notion which we call relative cofiniteness, generalising the well
known C2-cofiniteness condition of Zhu [35].

Definition 2.7. Let V = V 0 ⊕ V + be a vertex algebra extension of V 0 by its module V +. Put

Crel(V ) = V 0
(−2)V

0 + V(−1)V
+ = V(−2)V + V(−1)V

+,

Rrel(V ) = V/Crel(V ).

Then we say V is cofinite relative to the decomposition V = V 0 ⊕ V + if dimRrel(V ) <∞.

Note that V + ⊂ Crel(V ), so Rrel(V ) is naturally a quotient of V 0. The case V + = 0 recovers C2-cofiniteness
of V 0. On the other hand if V is C2-cofinite then it is cofinite relative to any decomposition V = V 0 ⊕ V +.

In this paper we mainly use splittings of the following form: V 0 is the fixed point subalgebra of V with
respect to a finite order automorphism g, and V + is the sum of the remaining g-eigenspaces.

Lemma 2.8. Let V and W be vertex algebras carrying automorphisms of equal order, with V = V 0 ⊕ V +

and W = W 0 ⊕W+ the corresponding splittings. If V and W are relatively cofinite, then so is the tensor
product V ⊗W with its natural vertex algebra structure and splitting induced by the product automorphism.

Proof. Recall the tensor product vertex algebra structure is (v ⊗ w)(n) =
∑

j+k=n−1 v(j) ⊗ w(k). We have

Crel(V ⊗W ) = (V ⊗W )(−2)(V ⊗W ) + (V ⊗W )(−1)(V ⊗W )+

⊃ (V(−2)V )⊗W + V ⊗ (W(−2)W ) + (V(−1)V
+)⊗ (W(−1)W

0) + (V(−1)V
0)⊗ (W(−1)W

+)

= (V(−2)V )⊗W + V ⊗ (W(−2)W ) + (V(−1)V
+)⊗W + V ⊗ (W(−1)W

+)

= Crel(V )⊗W + V ⊗ Crel(W ).

Hence Rrel(V ⊗W ) is a quotient of Rrel(V )⊗Rrel(W ) which is finite dimensional. �

Lemma 2.9. The quotient Rrel(V ) is a commutative algebra with product ab = a(−1)b.

Proof. In [35, Section 4.4] Zhu proved the V + = 0 case, i.e., that the product ab = a(−1)b is well defined on
the quotient R(V ) = V/V(−2)V .

In the general case Rrel(V ) is the quotient of R(V ) by the image of V(−1)V
+, so it suffices to show that the

latter subspace is an ideal. Let u, v ∈ V and w ∈ V +. Putting m = 0, k = n = −1 in (2.1) yields

u(−1)(v(−1)w) ≡ (u(−1)v)(−1)w (mod V(−2)V ).

�

2.3. Trace Functions and Modular Invariance. Let (V, ω) be a conformal vertex algebra, and let M =⊕
λMλ be an irreducible positive energy V -module graded by finite dimensional eigenspaces for L0. We

define the supertrace function of u ∈ V on M to be

SM (τ |u) = STrM u0q
L0−c/24 =

∑

λ

qλ−c/24 STrMλ
u0,

wherever the right hand side converges.

More generally let g1, g2 be commuting finite order automorphisms of (V, ω), and letM,YM be an irreducible
g1-twisted V -module. The “g2-twisted” action

Y g2·M (u, z) = Y (g2u, z)
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of V on M defines a new structure of g1-twisted V -module, which we denote g2 ·M . If g2 ·M ∼= M then
we say M is g2-invariant, and we are then able to choose an equivalence ξ = ξ : g2 ·M → M of g1-twisted
V -modules. In other words

g2(u)n = ξ−1unξ for all u ∈ V ǫ, n ∈ ǫ+ Z.(2.4)

We define the g2-twisted supertrace function with respect to ξ of u ∈ V 0 on the g2-invariant g1-twisted
positive energy V -module M to be

SM,g2,ξ(τ |u) = STrM u0ξq
L0−c/24,

wherever the right hand side converges.

In order to describe modular invariance of supertrace functions we must recall the definition of Zhu’s modes.

Definition 2.10. Let (V, ω) be a conformal vertex algebra (with rational conformal weights), and let φ(t) =
e2πit − 1. Then

Y [u, z] = Y (e2πizL0u, φ(z)), and ω̃ = (2πi)2
[
ω − c

24
|0〉
]
.

We also write Y [u, z] =
∑

n∈Z u([n])z
−n−1.

Explicitly

u([n]) = Resν ν
nY (e2πiνL0u, e2πiν − 1)dν

= (2πi)−n−1 Resξ[log(1 + ξ)]nY
(
(1 + ξ)L0−1u, ξ

)
dξ,

(2.5)

and

L[0] = L0 −
∞∑

j=1

(−1)j

j(j + 1)
Lj, where Y [ω̃, z] =

∑

n∈Z

L[n]z
−n−2.(2.6)

If (V, Y (−, z), ω) has integer conformal weights, then (V, Y [−, z], ω̃) is again a conformal vertex algebra.
Indeed the two conformal vertex algebra structures are seen to be isomorphic because of Huang’s change of
coordinate formula, which we now recall. With ρ ∈ C×t+ t2C[[t]] we associate the linear endomorphism R(ρ)
of V defined by

R(ρ) = exp


−

∞∑

j=1

vjLj


 v−L0

0 , where ρ(t) = exp




∞∑

j=1

vjt
j+1∂t


 vt∂t

0 · t.

For z ∈ C the series ρz ∈ C×t+ t2C[[t]] is defined by ρz(t) = ρ(z + t)− ρ(z). Huang [18] proved the formula

Y (u, z) = R(ρ)Y (R(ρz)u, ρ(z))R(ρ)
−1

which is basic to the geometric approach to vertex algebras explained in [14]. If we take φ as in Definition
2.10 and put R = R(φ) then

Y [u, z] = R−1Y (R−1u, z)R.

So indeed V, Y [−, z] is isomorphic to V, Y (−, z) via R. One easily checks ω̃ = Rω.

We now recall the main theorem of [12], which is a generalisation of Dong, Li, and Mason’s [11, Theorem
1.3] to the case of vertex (super)algebras graded by rational conformal weights.

Theorem 2.11 ([12, Theorem 1.3 and Remark 5.2]). Let (V, ω) be a Q-graded conformal vertex algebra and
let G = 〈g1〉 be a cyclic group of automorphisms of (V, ω) of finite order N .

• Let V G denote the G-invariant subalgebra of V , and W the direct sum of the nontrivial eigenspaces
of g1. Suppose V = V G⊕W is relatively cofinite. Let g2 ∈ G and let M be a g2-invariant irreducible
positive energy g1-twisted V -module. Then for each u ∈ V G the series defining SM,g2,ξ converges
absolutely and uniformly on compact sets to a holomorphic function of τ ∈ H.
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• Suppose further that V is g-rational for each g ∈ G\{1}. For i, j ∈ Z/NZ with i 6= 0, let X(i, j)

denote the (finite) set of irreducible gj1-invariant g
i
1-twisted V -modules, and let C(i, j) denote the

vector space spanned by SM,gj
1,ξ

: V G ×H → C as M ranges over X(i, j). If (i′, j′) = (i, j) ·A where

A =
(
a b
c d

)
∈ SL2(Z), then under the action

[S · A](τ, u) := S

(
aτ + b

cτ + d

∣∣∣∣(cτ + d)−L[0]u

)

the vector space C(i, j) is mapped isomorphically to C(i′, j′).

Remark 2.12. If V G is Z-graded (as will be the case in this article), then the action of SL2(Z) on twisted
supertrace functions is a representation.

2.4. Li’s Operators. Let (V, ω) be a Z-graded conformal vertex algebra. Let h ∈ V1 be an even vector
satisfying the Heisenberg λ-bracket relation

[hλh] = (const.)λ(2.7)

(the value of the constant is unimportant at the moment). Suppose further that h(0) acts semisimply on V
with eigenvalues in a lattice, i.e., a discrete subset, Q ⊂ (Qh)∗.

We now recall the operator series ∆(h, z) used by Li to ‘shift’ between differently twisted V -modules.

Definition 2.13. For h ∈ V as above, let

∆(h, z) = zh(0) exp

∞∑

k=1

(−z)−k

−k h(k).(2.8)

This expression makes sense on untwisted V -modules, and more generally on g-twisted V -modules whenever
h ∈ V g. The shifted module h ∗M of a V -module M is defined to be M as a vector space, equipped with the
vertex operation

Y h∗M (u, z) = YM (∆(h, z)u, z).

The following theorem is due to Li (under conditions weaker than (2.7) actually).

Theorem 2.14 ([30], Proposition 5.4). Let g be a finite order automorphism of V , let h ∈ V g
1 be as above,

and let M be a g-twisted V -module. Then h ∗M is a ge−2πih0-twisted V -module.

For later use we recall some special cases of the action of shift operators. Suppose h, h′ ∈ V1 satisfy h(0)h
′ = 0.

Then we have

∆(h, z)h′ = h′ + 〈h, h′〉 |0〉z−1(2.9)

and ∆(h, z)ω = ω + hz−1 +
1

2
〈h, h〉 |0〉z−2.(2.10)

Let us write

Y (∆(h, z)u, z) =
∑

n∈Z

ûnz
−n−∆(u).

One easily verifies that

ûn = [∆(h, 1)u]0 =

[
exp

(
∞∑

n=1

(−1)k

−k h(k)

)
u

]

0

(2.11)

whenever h(0)u = 0. Hence

ĥ′0 = h′0 + 〈h, h′〉(2.12)

and L̂0 = L0 + h0 +
1

2
〈h, h〉 .(2.13)

Lemma 2.15. Let h ∈ V1 be as above, and let M be an exp (−2πih0)-twisted V -module. Then

(1) The module M may be written as h ∗M0 for some untwisted V -module M0,



9

(2) Let ǫ ∈ Q and consider the automorphism g2 = exp (−2πiǫh0) of V , and ξ = exp (+2πiǫh0) considered
as an automorphism of M via the identification M ∼= h ∗ M0 above. Then (2.4) is satisfied. In
particular M is a g2-invariant module.

Proof. Part (1) is an immediate consequence of Theorem 2.14. Part (2) is a simple computation. Indeed
exp (−2πiǫh0) commutes with ∆(h, z), so we have

YM (e−2πiǫh0u, z) = YM0

(∆(h, z)e−2πiǫh0u, z) = YM0

(e−2πiǫh0∆(h, z)u, z)

= e−2πiǫh0YM0

(∆(h, z)u, z)e+2πiǫh0 = e−2πiǫh0YM (u, z)e+2πiǫh0.

Thus ξ = exp (+2πiǫh0) provides the intertwining map that we need. �

For h ∈ V1 it is convenient to denote

I(h) =

∞∑

j=1

(−1)j

−j hj .

Observe that

I(h) = (2πi)2h([1]) and ∆(h, 1) = exp I(h).(2.14)

3. Preliminaries on Lie Algebras

3.1. Lie Algebras and Affine Vertex Algebras. Let g be a finite dimensional simple Lie algebra over
C of rank ℓ. We fix a Cartan subalgebra h and a triangular decomposition g = n− ⊕ h ⊕ n+, with Borel

subalgebra b = h + n+. We then have the set ∆ ⊂ h
∗
of roots, and its subsets ∆+ of positive roots, and

Π = {α1, . . . , αℓ} of simple roots. We denote by Q the root lattice Z∆.

There is a unique up to scaling nondegenerate invariant bilinear form on g, which induces a form on h
∗
. The

roots come in one or two norms, and the lacing number r∨ ∈ {1, 2, 3} is the ratio between these norms. We
denote by ∆long (resp. ∆short) the set of long (resp. short) roots, and we normalise the form (·, ·) so that the

long roots have norm 2. We denote by ν the corresponding identification h → h
∗
.

We let θ denote the highest root with respect to the height function ht :
∑

i kiαi 7→
∑
ki on Q. It is a long

root. We similarly denote by θshort the highest of the short roots.

The simple coroots α∨
i ∈ h are by definition α∨

i = 2ν−1(αi)/(αi, αi). We denote by Q
∨
the coroot lattice

Z∆
∨
. The coroots come in one or two norms, namely 2 and 2r∨. We denote by ∆

∨

long (resp. ∆
∨

short) the

set of long (resp. short) coroots. We let θ
∨

= θ
∨

long denote the highest coroot with respect to the height

function ht∨ :
∑

i kiα
∨
i 7→

∑
ki on Q

∨
, and θ

∨

short the highest of the short coroots. In fact θ
∨

short = ν−1(θ)

and θ
∨
= r∨ν−1(θshort).

The weight lattice P ⊂ h
∗
is the natural dual of Q

∨ ⊂ h. The fundamental weights Λ1, . . . ,Λℓ, which form a

basis of P , are by definition dual to the simple coroots. Similarly the fundamental coweights Λ
∨

i are dual to
the simple roots αi. We define P+ = Z+{Λ1, . . . ,Λℓ}.

The marks ai and comarks a∨i (i = 1, . . . , ℓ) are defined by θ =
∑

i aiαi, and ν−1(θ) =
∑

i a
∨
i α

∨
i . The

dual Coxeter number is h∨ = 1 +
∑

i a
∨
i . We have the relation aiαi = a∨i ν(α

∨
i ). The Weyl vector is

ρ =
∑ℓ

i=1 Λi =
1
2

∑
α∈∆+

α, and the dual Weyl vector is ρ∨ =
∑ℓ

i=1 Λ
∨

i = 1
2

∑
α∈∆+

α∨. Clearly htα = α(ρ∨).

The finite Weyl groupW is the subgroup of Aut h
∗
generated by reflections si : λ 7→ λ−2

〈
λ, α∨

i

〉
αi in simple

roots.
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The (untwisted) affine Kac-Moody algebra associated with g as above is

g = g[t, t−1]⊕ CK ⊕ Cd

[am, bn] = [a, b]m+n +mδm,−n(a, b)K, [K, g] = 0, [d, am] = mam,

where am denotes atm. We extend (·, ·) to h = h+CK+Cd by declaring (K, h) = (d, h) = (K,K) = (d, d) = 0,
and (K, d) = 1. We denote the restriction of λ ∈ h∗ to h by λ. We extend ν to h using (·, ·) and we write

δ = ν(K), Λ0 = ν(d). We also set α0 = δ − θ and α∨
0 = K − θ

∨

short. The level of a weight λ is 〈λ,K〉.

The affine fundamental weights (dual to the coroot basis Π∨ = Π
∨∪{α∨

0 }) are Λ0 together with Λi = Λi+a
∨
i Λ0

for i = 1, . . . , ℓ. Put ρ =
∑ℓ

i=0 Λi, so that all 〈ρ, α∨
i 〉 = 1 and 〈ρ,K〉 = h∨. We write P = Z{Λi} the affine

weight lattice, as well as P+ = Z+{Λi} and P++ = Z≥1{Λi}. Then P k, P k
+ and P k

++ denote their respective

subsets of weights of level k. We have P k = kΛ0 + P , similarly we define Q∗,k = kΛ0 +Q
∗ ⊂ P k (where Q

∗

is the dual of Q with respect to (·, ·)).

Let W act trivially on δ and Λ0. Any element α ∈ h acts on h∗ via

tα : λ 7→ λ+ λ(K)α−
(
(λ, α) + 1

2 (α, α)λ(K)
)
δ.

The affine Weyl group is the semidirect product W =W ⋉ tQ∨ . The coroot system ∆∨ is actually invariant

under the larger extended affine Weyl group W̃ = W ⋉ tQ∗ . Let W̃+ be the subgroup of automorphisms

that preserve the coroot basis Π∨. Explicitly W̃+ = {σj}j∈J , where J is the set of indices i ∈ {1, . . . , ℓ}
such that ai = 1, where σj = tΛj

σj , and where σj ∈ W is as in Definition 3.1 below. We record that

W̃+
∼= W̃/W ∼= Q∗/Q∨.

The set of positive real roots of g is ∆re
+ = ∆+ ∪ {α+ nδ|α ∈ ∆, n ∈ Z>0} ⊂ h∗, and ∆re = ∆re

+ ∪−∆re
+ . The

set of positive real coroots is

∆∨ re
+ = ∆

∨

+ ∪ {α+ nK|α ∈ ∆
∨

short, n ∈ Z>0} ∪ {α+ nr∨K|α ∈ ∆
∨

long, n ∈ Z>0}.

We now record some material on twisted root systems and the Langlands dual to be used in Section 4.

Let g, g, etc. be as above, but now suppose r∨ > 1. We introduce the affine root system of twisted type ◦∆∨

in h∗ as follows:

◦∆re
+ = ∆+ ∪ {α+ n

r∨ δ|α ∈ ∆short, n ∈ Z>0} ∪ {α+ nδ|α ∈ ∆long, n ∈ Z>0}.
The associated coroot system is determined by

◦∆∨ re
+ = ∆

∨

+ ∪ {α+ nK|α ∈ ∆
∨
, n ∈ Z>0}.

We define {◦Λi} to be the dual basis to {◦α∨
i } and ◦P+ = Z+{◦Λi}. We also define ◦ρ =

∑ℓ
i=0

◦Λi, so that
〈◦ρ, ◦α∨

i 〉 = 1 for i = 0, 1, . . . , ℓ.

In the following table we record the types of ∆ and ◦∆.

∆ ∆ ◦∆

Bℓ B
(1)
ℓ D

(2)
ℓ+1

Cℓ C
(1)
ℓ A

(2)
2ℓ−1

F4 F
(1)
4 E

(2)
6

G2 G
(1)
2 D

(3)
4

Note that the normalisation of (·, ·) we have adopted for the twisted root system ◦∆ differs from that used
in [21, Section 6.4]; there the roots have norms 2 and 2r∨.

The Weyl group of ◦∆ is ◦W =W ⋉ tQ, and
◦∆∨ is invariant under the extended affine Weyl group

◦W̃ =W ⋉ tP .
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Let ◦W̃+ be the subgroup of automorphisms that preserve the coroot basis ◦Π∨ = Π
∨∪{K−θ∨long}. Explicitly

◦W̃+ = {σj}j∈LJ , where
LJ is the set of indices i ∈ {1, . . . , ℓ} such that Lai = 1, where σj = tΛj

Lσj , and

where Lσj ∈W is as in Definition 3.1 below. We record that ◦W̃+
∼= ◦W̃/◦W ∼= P/Q.

We recall the Langlands dual L∆ to the finite root system ∆. Explicitly

L∆ = {Lα|α ∈ ∆} where Lα :=
2√

r∨(α, α)
α.

Definition 3.1. If aj = 1 then the set {−θ, α1, . . . , αℓ}\{αj} is a root basis of ∆. The Weyl group acts

simply transitively on root bases. Define σj to be the unique element ofW that sends −θ to αj , and permutes

the simple roots other than αj . If Laj = 1 then {−Lθshort,
Lα1, . . . ,

Lαℓ}\{Lαj} is a root basis of L∆, and

we define ◦σj ∈ ◦W =W in the same way.

Later we shall require the following lemma.

Lemma 3.2. Let ∆ be a finite type root system of rank ℓ. And let J , σj,
LJ , and Lσj be as in Definition

3.1.

(1) The weights {Λj}j∈J represent Q
∗
modulo Q

∨
. The weights {Λj}j∈LJ represent P modulo Q.

(2) For j ∈ J it holds that σjΛj = −Λj, and for j ∈ LJ it holds that LσjΛj = −Λj.

Proof. (1) For j ∈ J the claim is well known and appears in [15, Section 1.1] for example. Now let j ∈ LJ .
The set {LΛj}j∈LJ represents

(LQ)∗/LQ
∨
= ((1/

√
r∨)Q

∨
)∗/LQ

∨
= (

√
r∨P )/(

√
r∨Q).

Hence {(1/
√
r∨)LΛj}j∈LJ represents P/Q. Since

Lα∨
i =

2

(Lαi, Lαi)
Lαi =

Lai
La∨i

Lαi =
Lai√
r∨La∨i

α∨
i ,

our representatives are

(1/
√
r∨)LΛj = (La∨j /

Laj)Λj =
La∨j Λj.

If j ∈ LJ then La∨j = 1. This is obviously true for simply laced cases, vacuously true for types F4 and G2,
and is directly confirmed in the remaining cases Bℓ and Cℓ.

(2) We observe

(σ−1
j Λ

∨

j , αi) = (Λ
∨

j , σjαi) =

{
−1 if i = j
0 if i 6= 0, j

.

Thus σ−1
j Λ

∨

j = −Λ
∨

j , and the result follows since Λi is proportional to Λ
∨

i . For j ∈ LJ , we note that the

Weyl groups of ∆ and L∆ are canonically identified. The claim now follows immediately from (1). �

Finally we recall definitions relating to affine vertex algebras. Let g, g be as above, and fix k ∈ C (which we
assume different than the critical level −h∨). The universal affine vertex algebra is the ‘vacuum’ g-module

V k(g) = U(g)⊗U(g[t]+CK+Cd) Cvk

where K acts on vk by the scalar k, and g[t] + Cd acts trivially (so V k(g) is naturally a quotient of the
Verma module M(kΛ0)). The vertex algebra structure on V k(g) is uniquely defined [22] by Y (a, z) =∑

m∈Z at
mz−m−1 for a ∈ g, the vacuum vector |0〉 = vk, and translation operator T = L−1 where L(z) is the

Virasoro field associated with the Sugawara vector

ω = ωSug =
1

2(k + h∨)

∑

i

ai(−1)b
i
(−1)|0〉

(here {ai}, {bi} are bases of g dual with respect to (·, ·)). The central charge of V k(g) is

ck =
k dim g

k + h∨
.
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We denote by Vk(g) the simple quotient of V k(g).

Let λ ∈ h∗. The Verma g-module is

M(λ) = U(g̃)⊗U(h+n++tg[t]+CK+Cd) Cvλ,

where h acts on vλ via λ, K by k and n++ tg[t]+Cd acts by 0. We denote by L(λ) the irreducible quotient of
M(λ). Both of these naturally acquire the structure of positive energy V k(g)-modules, in which L0 = −d+hλ,
where

hλ =
(λ, λ+ 2ρ)

2(k + h∨)

is the vacuum anomaly.

We denote by Ok the category of g-modules M of level k possessing a generalised weight decomposition
M =

⊕
µ∈h∗ Mµ such that each dimMµ <∞, and such that the set of weights be contained in a finite union

of sets of the form µi − Z∆+.

3.2. Characters and Trace Functions. Let Y = H × h and

Y + =
{
(τ, h) ∈ Y

∣∣∣Imα(h) < 0 for all α ∈ ∆
∨

+ and Im θ
∨
(h) > − Im τ

}
.(3.1)

For any highest weight g-module M , the sum

χM (τ, x) = TrM e2πix0qL0−ck/24(3.2)

converges absolutely to a holomorphic function on Y +, and extends to a meromorphic function on Y with
possible poles on the hyperplanes

Hα,ω = {(τ, h) ∈ Y |α(h) = ω} ,(3.3)

for α ∈ ∆
∨

+ and ω ∈ Z+ Zτ . Indeed for Verma modules

χM(λ)(τ, x) = qhλ−ck/24e2πiλ(x)
∏

n∈Z>0

1

(1− qn)ℓ
·
∏

α∈∆
∨
+

∏

n∈Z+

1

(1 − qne−2πiα(x))(1− qn+1e2πiα(x))
.

On the other hand if λ is dominant integral then χL(λ) is holomorphic on Y [21, Section 12.7].

3.3. Admissible Weights. Kac and Wakimoto introduced the notion of admissible weight in [27]. The
irreducible modules L(λ) for λ admissible of level k are relevant to the representation theory of Vk(g) and
its Hamiltonian reductions (see Section 8 below), and their characters have interesting modular invariance
properties.

Definition 3.3. Let λ ∈ h∗. The associated integral coroot system is

R(λ) = {α∨ ∈ ∆∨ re| 〈λ+ ρ, α∨〉 ∈ Z}.
The weight λ is called admissible if

〈λ+ ρ, α∨〉 /∈ Z≤0 for all α∨ ∈ ∆∨ re
+ .

The admissible weight λ is called G-integrable if

〈λ, α∨〉 ∈ Z≥0 for all simple roots α ∈ Π of the finite Lie algebra g.

The admissible weight λ is called principal admissible if

R(λ) is isometric to ∆∨ re.

The sets of admissible, G-integrable admissible, and principal admissible weights of level k are denoted
respectively Admk, Admk

+, and Prk.

Example 3.4. Let α1, α2 denote the long and short simple roots of G2, respectively. Then the weight

λ = 1
3Λ0 +

1
2Λ1 + Λ2 of G

(1)
2 (of level k = 7/3) is admissible. Since

R(λ) = {3nK ± α∨
1 ± α∨

2 |n ∈ Z}
is isometric to the affinisation of A1 ⊕A1, the weight λ is not principal admissible.
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The classification of all admissible weights was carried out in [25]. The classification ofG-integrable admissible
weights is much simpler, and consists of just two cases. Indeed let k ∈ Q, put k+ h∨ = p/q where (p, q) = 1,
and define S(q) ⊂ ∆∨

+ by

S(q) = {γ∨0 , . . . , γ∨ℓ }, where γ∨i = α∨
i for i = 1, . . . , ℓ, and

γ∨0 =

{
qK − θ

∨

short if (q, r∨) = 1,

qK − θ
∨

long if (q, r∨) 6= 1.

(3.4)

If λ ∈ Admk
+ then R(λ) is the coroot system with base S(q). If (q, r

∨) = 1 then R(λ) is isometric to ∆∨, and
if (q, r∨) 6= 1 then R(λ) is isometric to ◦∆∨.

Let λ ∈ Prk, then (q, r∨) = 1 and [25, Lemma 2.1] implies that R(λ) = y(S(q)) for some y ∈ W̃ .

Definition 3.5. The admissible weight λ is called coprincipal admissible if R(λ) = y(S(q)) for some y ∈ W̃

and some q such that (q, r∨) 6= 1. The set of coprincipal weights of level k is denoted CoPrk.

Remark 3.6. If λ is coprincipal admissible then R(λ) is isometric to ◦∆∨. In [25, Table 1] coroot systems

R(λ) for admissible λ are classified up to the action of W̃ . There is a unique W̃ -orbit of such coroot bases

equivalent to ◦∆∨ in types Bℓ, F4 and G2. In type Cℓ there are two such W̃ -orbits. In other words, λ ∈ CoPrk

if and only if R(λ) is isometric to ◦∆∨ in types Bℓ, F4 and G2, but not in type Cℓ.

The number k ∈ Q is called an admissible, principal admissible, or coprincipal admissible number if kΛ0 lies
in Admk, Prk, CoPrk respectively.

We see the importance of admissible weights from the perspective of vertex algebras in the following result.

Theorem 3.7 ([6, Main Theorem]). Let k ∈ Q be a principal (resp. coprincipal) number for g. The V k(g)-

module L(λ) descends to a module over the simple quotient Vk(g) if and only if λ ∈ Prk (resp. λ ∈ CoPrk).
Furthermore any Vk(g)-module from category Ok is completely reducible.

Having put k + h∨ = p/q as above, let φ : h∗ → h∗ be the isometry

φ(Λ0) = (1/q)Λ0, φ(δ) = qδ, φ|h∗ = 1.(3.5)

For the rest of this section we assume k ∈ Q to be a principal admissible number. The weights λ ∈ Admk

satisfying R(λ) = y(S(q)) for some fixed y ∈ W̃ are precisely

λ = y(φ(ν)) − ρ,

where ν ranges over the set of regular elements of P p
+. Let y = tβy where y ∈ W and β ∈ Q

∗
. In this way a

triple (ν, y, β) is associated with λ ∈ Admk.

In [27] and [25] Kac and Wakimoto established modular properties for the characters χλ = χL(λ) of irreducible
g-modules L(λ) of principal admissible highest weight. In the next section we derive a similar result in the
coprincipal case.

Theorem 3.8 ([25], Theorem 3.6). Let k ∈ Q be a principal admissible number, and put k+h∨ = p/q where

(p, q) = 1. Then the C-linear span of the set {χλ|λ ∈ Prk} is invariant under the action

[
f ·
(
a b
c d

)]
(τ, x) = exp

[
πikc(x, x)

cτ + d

]
f

(
aτ + b

cτ + d
,

x

cτ + d

)

of SL2(Z) on functions of (τ, x) ∈ H × h. Furthermore the S-matrix {a(λ, λ′)}, defined by

χλ · S =
∑

λ′∈Prk

a(λ, λ′)χλ′ ,

is given explicitly by

a(λ, λ′) =
i|∆+|

|P/pqQ∨|1/2
e−2πi[(ν|β′)+(ν′|β)+p

q (β|β
′)]ǫ(yy′)

∑

w∈W

ε(w)e−
2πiq

p (w(ν)|ν′).

where (ν, y, β) is a triple associated with λ as above, and (ν′, y′, β′) is similarly associated with λ′.
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4. Coprincipal S-matrix

In Theorem 6.5 below we establish SL2(Z)-invariance for the affine vertex algebra Vk(g) at (principal or
coprincipal) admissible level k. In this section we compute the associated S-matrix in the coprincipal case.
The proof follows the pattern of [25] (see also [33, Chapter 3]), but several adaptations to the coprincipal
case must be made.

We assume then that k is a coprincipal admissible number, and we write k+ h∨ = p/q so that (p, q) = 1 and
r∨ divides q. Defining S(q) and φ as in (3.4) and (3.5), we have φ∗(S(q)) =

◦∆∨. The admissible weights with
coroot basis S(q) are exactly those λ ∈ h∗ such that

〈λ+ ρ, γ∨i 〉 = ni + 1 ∈ Z≥1 i = 0, . . . , ℓ.

Equivalently φ−1(λ+ ρ) is strictly dominant integral relative to ◦∆∨. The level of this weight is
〈
φ−1(λ+ ρ),K

〉
= 〈λ+ ρ, qK〉 = q(k + h∨) = p.

Hence the coprincipal admissible weights with coroot system y(S(q)) are exactly the weights

λ = y(φ(ν)) − ρ for regular ν ∈ ◦P p
+.

We observe that pΛ0 + λ ∈ ◦P p
+ if and only if λ ∈ P satisfies

〈
λ, α∨

i

〉
∈ Z+ for i = 1, . . . , ℓ and

〈
λ, θ

∨
〉
≤ p.

Therefore it is equivalent to write

λ = y(φ(ν + ◦ρ))− ρ for ν ∈ ◦P p−h
+ .

Let y = tβy where β ∈ Q
∗
and y ∈ W . In this way a triple (ν, y, β) is associated with λ ∈ CoPrk.

The normalised character χλ of a highest weight g-module of arbitrary admissible highest weight λ is given
by [27, Theorem 1]

χλ(h) =
Aλ+ρ(h)

Aρ(h)
,

where by definition

Aλ(h) = e−
(λ,λ)

2〈λ,K〉
(δ,h)

∑

w∈W (λ)

ǫ(w)e(w(λ),h).

Here W (λ) is the integral Weyl group of λ, that is the subgroup of W generated by reflections in roots of
R(λ).

Now, (λ+ ρ, h) = (y(φ(ν)), h) = (ν, φ−1y−1h), and in the coordinates

(τ, z, t) ≡ 2πi
(
−τΛ0 +

∑
ziαi + tδ

)

one has

φ−1y−1(τ, z, t) = qy−1t−β/q(τ, z/q, t/q
2).

This change of coordinates intertwines the summation on W (λ) = yW (S(q))y
−1 with a summation on

W (◦∆∨) =W ⋉Q. Thus we have:

Lemma 4.1. Let λ be a coprincipal admissible weight, and ν, y, β as above.

χλ(τ, z, t) =
Aν(qy

−1t−β/q(τ, z/q, t/q
2))

Aρ(τ, z, t)
.

To determine modular properties of the χλ, we wish to express the numerator of the right hand side in
Lemma 4.1 in terms of the theta functions

Θµ(h) = e−
(µ,µ)

2〈µ,K〉
(δ,h)

∑

t∈Q

e(t(µ),h).(4.1)

Since

Θµ(qh) = Θqµ(h) and Θtβµ(h) = Θµ(t−βh),
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it follows that

Aν(qy
−1t−β/q(τ, z/q, t/q

2) = ǫ(y)
∑

w∈W

ǫ(w)Θw(ν)

(
qt−β/q(τ, z/q, t/q

2)
)

= ǫ(y)
∑

w∈W

ǫ(w)Θqtβ/qw(ν)(τ, z/q, t/q
2).

(4.2)

We observe that

qtβ/qw(ν) = qw(ν) + pβ ∈ qP +Q∗ ⊂ Q∗,

and is a weight of level pq.

The following proposition is [21, Theorem 13.5] (where the stronger hypothesis that L be integral is implicit
but not used).

Proposition 4.2. Let L be a positive definite lattice of rank ℓ, and let m ∈ Z+ be such that the rescaled
lattice

√
mL is integral. Let Θµ be defined as in (4.1). For any µ ∈ L∗ one has

Θµ

(
− 1

τ
,
z

τ
, t− (z, z)

2τ

)
=

(−iτ)ℓ/2
|L∗/mL|1/2

∑

µ′∈L∗ mod mL

e−2πi(µ,µ′)/mΘµ′ .

Let us write Bλ(τ, z, t) for (4.2). By Proposition 4.2 we have

[Bλ · S](τ, z, t) = ǫ(y)
∑

w∈W

ǫ(w)Θqw(ν)+pβ(−1/τ, z/τ, 1/q2(t− (z, z)/2τ))

= (−i)ℓ/2|Q∗
/pqQ|−1/2ǫ(y)

∑

w∈W

ǫ(w)
∑

µ′∈Q
∗
mod pqQ

e−
2πi
pq (qw(ν)+pβ,µ′)Θµ′(τ, z/q, t/q2).(4.3)

For all ν ∈ P and α ∈ ∆ one has rα(ν) − ν = 〈ν, α∨〉α ∈ Q, and so for all w ∈ W one has w(ν)− ν ∈ Q. It

follows that for all β ∈ Q
∗
and ν ∈ P one has (w(ν), β)− (ν, β) ∈ (Q,Q

∗
) = Z. Thus modulo Z it holds that

(qw(ν) + pβ, qw′(ν′) + pβ′) ≡ q2(wν,w′ν′) + pq ((ν, β′) + (ν′, β)) + p2(β, β′).(4.4)

By Lemma 4.6 (1) below we are free to substitute µ′ = qw′(ν′) + pβ′ in (4.3). It follows from (4.4) and a
standard symmetry argument that only regular ν′ contribute nontrivially to the sum.

What results is a sum over w ∈ W and over equivalence classes of (ν′, w′, β′). More precisely ν′ runs over

a system of representatives of ◦P p
+/

◦W̃+, w
′ runs over W , and β is determined by µ′, ν′ and w′. We set

w = w′w′′, and rewrite (4.3) as

(−i)ℓ/2|Q∗
/pqQ|−1/2ǫ(y)

∑

ν′,β′

e−2πi[(ν,β′)+(ν′,β)+p
q (β,β

′)

×
∑

w′′∈W

ǫ(w′′)e−2πi q
p (w

′′ν,ν′)
∑

w′∈W

ǫ(w′)Θqw′(ν′)+pβ′(τ, z/q, t/q2).

Now we use β′ to determine an element y′ ∈ W̃ as in Lemma 4.6, and we put

λ′ = y′φ(ν′)− ρ.

We now have

Aλ′ (τ, z, t) = ǫ(y′)
∑

w′∈W

ǫ(w′)Θqw′(ν′)+pβ′(τ, z/q, t/q2).

By Lemma 4.6 (6) the weight λ′ depends on µ′, and not on the choice of ν′ in its W̃+-orbit.

Recall [21, Lemma 13.8 (b)] that

Aρ(−1/τ, z/τ, t− (z, z)/2τ) = (−i)ℓ/2+|∆+|Aρ(τ, z, t).

We thus have the following theorem.
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Theorem 4.3. Let k ∈ Q be a coprincipal admissible number, and put k + h∨ = p/q where (p, q) = 1 (so r∨

divides q). Then the C-linear span of the set {χλ|λ ∈ CoPrk} is invariant under the action

[
f ·
(
a b
c d

)]
(τ, x) = exp

[
πikc(x, x)

cτ + d

]
f

(
aτ + b

cτ + d
,

x

cτ + d

)

of SL2(Z) on functions of (τ, x) ∈ H × h. Furthermore the S-matrix {a(λ, λ′)}, defined by

χλ · S =
∑

λ′∈CoPrk

a(λ, λ′)χλ′ ,

is given explicitly by

a(λ, λ′) =
i|∆+|

|Q∗
/pqQ|1/2

e−2πi[(ν|β′)+(ν′|β)+p
q (β|β

′)]ǫ(yy′)
∑

w∈W

ε(w)e−
2πiq

p (w(ν)|ν′).

where (ν, y, β) is a triple associated with λ as above, and (ν′, y′, β′) is similarly associated with λ′.

Remark 4.4. We have related characters of coprincipal admissible g-modules to characters of a certain subset
of integrable highest weight ◦g-modules, where ◦g is the twisted affine Lie algebra with root system ◦∆. See
also [25, (3.4)]. The characters of integrable highest weight ◦g-modules are detailed in [23, Proposition 4.5]
and [21, Theorem 13.9]. In particular their span is not SL2(Z)-invariant, and is instead invariant under a
congruence subgroup. On the other hand the span of the characters of coprinciple admissible g-modules
is invariant under the whole of SL2(Z). The difference comes about because (1) these admissible weights
correspond to a proper subset of integral weights of ◦∆, and (2) the Weyl denominator of ∆ is SL2(Z)-
invariant, while that of ◦∆ is not.

In the proof of Theorem 4.3 we have used the following technical lemmas which are the coprincipal analogue
of [25, Lemma 3.4].

Lemma 4.5. Let ∆ be a root system of type X
(1)
N where XN has lacing number r∨, and let q ∈ Z+ be a

multiple of r∨. Let S(q) be as above. For any β ∈ Q
∗
, there exists a unique y ∈ W and a unique γ ∈ Q such

that tβ+qγy(S(q)) ⊂ ∆∨
+.

Proof. We note that S(q) is the set of simple coroots for

∆∨
(q) = {α ∈ R| 〈Λ0, α〉 ∈ qZ},

(which is a coroot system isomorphic to ◦∆∨). The canonical imaginary coroot of ∆∨
(q) is qK, and the Weyl

group is

W(q) = {wtqα|w ∈ W,α ∈ Q} ∼=W ⋉Q.

Let C be the fundamental chamber of ∆∨ and C(q) the fundamental chamber of ∆∨
(q). Let ξ ∈ C ⊂ C(q)

be a regular element (i.e., 〈ξ, α∨〉 /∈ Z for all α∨ ∈ ∆∨) such that 〈ξ,K〉 = 1. Since β ∈ Q
∗ ⊂ P we see

that t−β(ξ) = ξ − β mod Cδ is also regular. Hence there exists unique w ∈ W(q) such that wt−β(ξ) ∈ C(q).

Writing w = y−1t−qγ , this tells us that

y−1t−β−qγ(ξ) ∈ C(q),

or rather that

〈ξ, tβ+qγy(γi)〉 > 0 for i = 0, . . . , ℓ.

But ξ ∈ C and tβ+qγy(γi) ∈ W̃γi ⊂ ∆∨. Hence we have tβ+qγy(γi) ⊂ ∆∨
+. �

Lemma 4.6. Let ∆ be a root system of type X
(1)
N where XN has lacing number r∨, and let q ∈ Z+ be a

multiple of r∨. Let S(q) be as above, and let p be coprime to q.

(1) Any element µ ∈ Q∗,pq can be written in the form

µ = qw(ν) + pβ where ν ∈ ◦P p
+, β ∈ Q

∗
, and w ∈W.(4.5)

(2) If (ν, β, w) is a solution of equation (4.5) with ν regular, then w and β are uniquely determined by ν.
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(3) Let µ be such that ν is regular in (4.5), then the equation has precisely |J | solutions (ν, β, w).

(4) For j ∈ LJ let σj = tΛj
σj be as in Remark 3.1. The transformation

νj = σjν, βj = β − qwσ−1
j Λj , wj = wσ−1

j

sends solutions to (4.5) to solutions, and is transitive.

Now let (νi, βi, wi) be a solution to (4.5), and let γi ∈ Q and yi ∈W be the unique solutions to tβi+qγiyi(S(q)) ⊂
∆∨

+ as in Lemma 4.5. We define yi = tβi+qγiyi ∈ W̃ for i = 1, . . . , |J |.
(5) The root subsystem S = yj(S(q)) depends on µ but not on j.

(6) The weight λ = yjφ(νj)− ρ depends on µ but not on j.

(7) If ν ∈ ◦P p
+ then λ is admissible.

Proof. (1) Let

µ = pqΛ0 +

ℓ∑

i=1

niΛi,

for i = 1, . . . , ℓ pick a solution to

n′
iq + n′′

i p = ni,

and set ν0 = pΛ0 +
∑
n′
iΛi and β0 =

∑
n′′
i Λi. Then ν0 ∈ pΛ0 + P , but since qP ⊂ Q

∗
and (p, q) = 1 we

deduce pβ0 = µ− qν0 ∈ Q
∗
.

Next we consider ν0. Every W (◦∆∨)-orbit on pΛ0 + P meets the positive chamber ◦P p
+, so we let ν0 = w(ν)

for some ν ∈ P p
+. Now write w = tξw (where ξ ∈ Q, w ∈ W ), that is,

ν0 = wν + pξ mod Cδ.

Now let β = β0 + qξ. Then we have

qwν + pβ = q(ν0 − pξ) + p(β0 + qξ) = qν0 + pβ0 = µ

as desired. Note that β ∈ Q
∗
still, indeed qξ ∈ qQ ⊂ qP ⊂ Q

∗
.

(2) The choice of regular dominant ν made above uniquely specifies the corresponding element w ∈W , hence
also β and w.

(3) Let (ν, β) ∈ (pΛ0 + P )×Q
∗
be a solution to µ = qν + pβ. All solutions to this equation are of the form

(ν − pζ, β + qζ) for ζ ∈ P . Let ζ ∈ P . Since ν is regular so is ν′0 = ν − pζ. Hence there exists unique
w = tξw ∈W (◦∆∨) =W ⋉Q such that ν′ = w−1(ν′0) ∈ ◦P p

+. Putting β
′ = β + qζ − qξ yields

µ = qw(ν′) + β′.

We observe that if µ ∈ Q∗ then β ∈ Q
∗
and β′ = β + qζ − qξ ∈ Q

∗
+ qP + qQ = Q

∗
. Also the class of β′ − β

is well defined in qP/qQ. Hence we obtain exactly |P/Q| = |J | distinct solutions.
(4) By direct calculation

qwj(νj) + pβj = qw(ν) + pβ,

so solutions are sent to solutions. To show transitivity we need to show that the weights σ−1
j Λj are all

distinct. This follows from Lemma 3.2 (2).

(5) We recall that the element σ
(q)
j := tqΛj

σj maps S(q) into itself. Using the relation twα = wtαw
−1 we

compute

y = tβ+qγy = tβj+qγ tqwσ−1
j Λj

y = tβj+qγwσ
−1
j σ

(q)
j w−1y(σ

(q)
j )−1σ

(q)
j .

Since W is normal in W̃ we have

wσ−1
j σ

(q)
j w−1y(σ

(q)
j )−1 ∈W.
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Since σ
(q)
j preserves S(q), the uniqueness property of Lemma 4.5 implies y = yjσ

(q)
j . It follows that y(S(q)) =

yj(S(q)).

(6) By direct calculation (using y = yjσ
(q)
j ) we obtain yφ(ν) = yjφ(νj).

(7) To check that λ is admissible with base S it suffices to confirm that 〈φ(ν), ◦γ∨i 〉 ∈ Z≥1 for i = 0, . . . , ℓ.
By direct calculation 〈φ(ν), ◦γ∨i 〉 = 〈ν, α∨

i 〉 for all i. So the claim follows from ν ∈ ◦P p
+.

�

5. Modular Invariance of Vertex Algebra Characters

Let (V, ω) be a conformal vertex algebra of central charge c, graded by integral conformal weights. Let h ∈ V1
be a vector satisfying the λ-bracket relations

[hλh] = 2λ and [ωλh] = (T + λ)h− p
λ2

2
|0〉,(5.1)

i.e.,

[h(m), h(n)] = 2mδm,−n and [Lm, h(n)] = −nh(m+n) −
m2 −m

2
δm,−np.

Let us assume also that h0 induces an eigenspace decomposition of V of the form V =
⊕

α∈Q V
(α), where Q

is a rank 1 lattice in (Qh)∗ and h0u = α(h)u for all u ∈ V (α). We write V ne = V (0).

We introduce the vector

ω(σ) = ω − σ
2Th,

depending on the parameter σ ∈ Q. The modes of L(σ)(z) = Y (ω(σ), z) satisfy the commutation relations
of the Virasoro algebra with central charge

c(σ) = c+ 6σ(p− σ).

Lemma 5.1. Let α ∈ Q and let L̂(σ)(z) denote the shifted field ((α− 1)σ2h) ∗ L(σ)(z). Then

L̂(σ)0 −
c(σ)

24
= L(ασ)0 −

c(ασ)

24
.

Proof. By direct computation

∆(βh, z)ω(σ) = ω − σ
2Th+ βhz−1 + 1

2

[
2β2 − β(p− 2σ)

]
|0〉z−2.

Substituting β = (α− 1)σ2 yields the result, after a short calculation. �

If the grading on V induced by L0(σ) = L0 +
σ
2h0 is bounded below, then ω(σ) is a conformal vector.

Definition 5.2. We say that the conformal vertex algebra (V, ω) is rational relative to h if for all sufficiently
small σ ∈ Q>0 we have (V, ω(σ)) conformal and rational. We call a positive energy (V, ω)-module h-stable if
it remains positive energy as a (V, ω(σ))-module for all sufficiently small σ ∈ Q>0.

We assume henceforth that (V, ω) is rational relative to h.

We now introduce the finite order automorphism

g(σ) = exp
(
−2πiσ2h0

)
(5.2)

of V . It follows from Definition 2.4 that (V, ω(σ)) is a g(σ)-twisted V -module, indeed

e−2πiL0(σ) = e−2πiL0−2πiσ2 h0 = g(σ).

Let V + ⊂ V denote the sum of the nontrivial eigenspaces of g(σ). We assume that V is cofinite relative to
the splitting V = V g(σ) ⊕ V +.



19

Definition 5.3. Let V , ω, h be as above, let u ∈ V , and let M be an irreducible h-stable positive energy
V -module. The supertrace function on M is the function defined by

FM (τ, z|u) = STrM u0e
2πiz(h0−p/2)qL0−c/24, where τ ∈ H and z ∈ C,

whenever the series on the right hand side converges.

We remark that in general the conformal weight ∆(u) of a vector u ∈ V and its conformal modes un depend
on the conformal structure ω(σ). However for u ∈ V ne the conformal weight and modes coincide with those
defined relative to ω, while for u ∈ V (α), for α 6= 0, the supertrace functions FM (τ, z|u) vanishes. Therefore,
although multiple conformal structures figure in the arguments of this section, we freely assume u ∈ V ne,
and we write ∆(u) and un without risk of confusion.

In this section we apply Theorem 2.11 to prove convergence of the series defining FM for h-stable irreducible
M , and to compute the modular transformations of FM . To make the connection with Theorem 2.11 we
introduce certain twisted supertrace functions GM .

Definition 5.4. Let V , ω, h, u, and M be as in Definition 5.3. For all ℓ ∈ Q, and all σ ∈ Q>0 sufficiently
small that (V, ω(σ)) be conformal and rational, we define

GM (τ, ℓ, σ|u) = STrM u0g(σ)
−ℓqL0(σ)−c(σ)/24.

Lemma 5.5. The functions FM and GM are related in the following way:

GM (τ, ℓ, σ|u) = e2πi
σpℓ
4 q

σ2

4 FM

(
τ, σ2 (ℓ+ τ)|u

)
.(5.3)

Proof. The proof is an easy computation. We have

L0(σ)−
c(σ)

24
= L0 −

c

24
+
σ

2
h0 −

σ(p− σ)

4
.

Hence

GM (τ, ℓ, σ|u) = STrM u0e
2πiℓ σ

2 h0qL0(σ)−c(σ)/24

= qσ
2/4 STrM u0e

2πiℓ σ
2 h0q

σ
2 (h0−p/2)qL0−c/24

= qσ
2/4 STrM u0 exp 2πi

σ
2 [(ℓ+ τ)h0 − pτ/2]qL0−c/24

= qσ
2/4 STrM u0 exp 2πi

σ
2 [(ℓ+ τ)(h0 − p/2) + pℓ/2]qL0−c/24

= e2πi
σpℓ
4 qσ

2/4FM

(
τ, σ2 (ℓ+ τ)|u

)
.

�

The conditions we have imposed allow us to interpret GM (hence FM ) as an element of the space of conformal
blocks C(1, ℓ) associated with the conformal vertex algebra (V, ω(σ)) and the automorphism g1 = g(σ). This
can be used to prove convergence of the series defining FM .

Proposition 5.6. Let M be a h-stable irreducible positive energy V -module. Then there exists ε > 0 such
that the supertrace function FM (τ, z|u) converges absolutely uniformly on compact subsets of the domain

{(τ, z) ∈ H × C|0 < Im(z) < ε Im(τ)},
for each u ∈ V .

Proof. By assumption M is positive energy as a module over (V, ω(σ)) for some σ ∈ Q>0, and this vertex
algebra is rational. We recall that the graded pieces of an irreducible positive energy module over a rational
vertex algebra are finite dimensional. It follows from this, together with our assumptions on h, that M

possesses an eigenspace decomposition M =
⊕

(n,µ)M
(µ)
n where L0|M(µ)

n
= s + n and h0|M(µ)

n
= t + µ, the

index (n, µ) ranges over Z+ × ( 1
KQ) for some K ∈ Z>0 and s and t are two complex numbers. Moreover

dim(M
(µ)
n ) < ∞ for all (n, µ) and dim(M

(µ)
n ) = 0 for any fixed n and µ sufficiently positive. In fact the

h-stable condition implies something slightly stronger. Let us introduce the support

Supp(M) = {(n, µ) ∈ Z+ × ( 1
KQ)| dim(M (µ)

n ) > 0}
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of M . Then there exist real numbers ε > 0 and A such that Supp(M) ⊂ {(n, µ) ∈ Z+ × ( 1
KQ)|µ < εn+A}.

The condition that σ be sufficiently small now becomes 0 < σ < ε.

For σ ∈ Q satisfying 0 < σ < ε the twisted supertrace function GM is an element of the space of conformal
blocks C(1, ℓ) associated with the conformal vertex algebra (V, ω(σ)) and the automorphism g1 = g(σ). In
particular Theorem 2.11 implies that the series defining GM converges absolutely. Therefore by Lemma 5.5
the series

∑

(n,µ)∈Supp(M)

qs+n−c/24e2πiz(µ0+µ−p/2)
(
STr

M
(µ)
n

u0

)
,(5.4)

which represents the supertrace function FM (τ, z|u), also converges absolutely at z = στ/2.

Now we fix two values 0 < σ1 < σ2 < ε, and we consider the sum (5.4) on the strip Im(σ1τ/2) < Im(z) <
Im(σ2τ/2). Let Supp(M)+ and Supp(M)− denote the subsets of Supp(M) in which µ ≥ 0, respectively µ < 0,

and denote by F
(±)
M (τ, z|u) the restriction of the sum (5.4) to Supp(M)±. We observe that F

(+)
M (τ, z|u)

converges since it is dominated by F
(+)
M (τ, σ1τ/2|u), and F

(−)
M (τ, z|u) converges since it is dominated by

F
(−)
M (τ, σ2τ/2|u). Therefore FM converges absolutely uniformly on compact subsets of the strip. We now

take σ2 arbitrarily small and obtain the desired result. �

Remark 5.7. Convergence may be established more directly for C2-cofinite V as in [17, Appendix A]. The
supertrace functions are shown to satisfy differential equations whose coeffcients lie in a Noetherian ring of
quasi-Jacobi forms. As in [35] the Noetherian property implies convergence of the supertrace functions.

Let A =
(
a b
c d

)
∈ SL2(Z). Theorem 2.11 asserts that

[GM ·A](τ, ℓ, σ|u) = GM

(
aτ + b

cτ + d
, ℓ, σ

∣∣∣∣(cτ + d)−L[0](σ)u

)

lies in C(a+ cℓ, b+ dℓ), and is thus a linear combination of the g(σ)b+dℓ-twisted supertrace functions

STrM ′ u0ξq
L0(σ)−c(σ)/24(5.5)

on g(σ)a+cℓ-twisted positive energy V -modules M ′. Here ξ is the automorphism defined in Subsection 2.3.

We now use Li’s shift operator to reinterpret (5.5) as a supertrace function on a g(σ)-twisted V -module.
Indeed by Lemma 2.15 there exists a g(σ)-twisted V -module M0 such that M ′ =M0 as vector superspaces,
and

YM (u, z) = YM0

(∆((a+ cℓ− 1)σ2h, z)u, z).

Moreover, under this identification, we have ξ = g(σ)−(b+dℓ). Hence (5.5) is equal to

STrM0 û0e
2πi(b+dℓ)σ

2 h0qL̂(σ)0−c(σ)/24 where û0 = [∆((a+ cℓ− 1)σ2h, 1)u]0.(5.6)

We apply Lemma 5.1 to reduce (5.6) to

STrM0 û0e
2πi(b+dℓ)σ

2 h0qL([a+cℓ]σ)0−c([a+cℓ]σ)/24.(5.7)

Using formula (2.11) we may write (5.7) as

STrM0 [∆((a+ cℓ− 1)σ2h, 1)u]0g((a+ cℓ)σ)−
b+dℓ
a+cℓ qL0((a+cℓ)σ)−c((a+cℓ)σ)/24

= GM0

(
τ,
b+ dℓ

a+ cℓ
, (a+ cℓ)σ

∣∣∣∣∆((a+ cℓ− 1)
σ

2
h, 1)u

)
.

Remark 5.8. Shift operators do not in general preserve the positive energy condition. However rationality
relative to h guarantees that σ may be chosen sufficiently small that both (V, ω(σ)) and (V, ω((a+ cℓ)σ)) are
rational conformal vertex algebras, all of whose irreducible modules are positive energy.

The outcome of the preceding discussion is the following proposition.
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Proposition 5.9. Let V , ω, h and u be as in Definition 5.3. Fix ℓ ∈ Z>0 and A =
(
a b
c d

)
∈ SL2(Z). Then

there exists a matrix ρ = ρM,M ′ , whose entries depend on ℓ, σ, such that for each irreducible h-stable positive
energy V -module M the relation

GM

(
aτ + b

cτ + d
, ℓ, σ

∣∣∣∣(cτ + d)−L[0](σ)u

)
=
∑

M ′

ρM,M ′GM ′

(
τ,
b+ dℓ

a+ cℓ
, (a+ cℓ)σ

∣∣∣∣∆((a+ cℓ− 1)
σ

2
h, 1)u

)

holds (where the sum runs over all irreducible h-stable positive energy V -modules M ′).

We now convert the modular transformations for GM into modular transformations for FM . We begin by
temporarily restricting attention to u = |0〉 (and omitting it from the notation). By Lemma 5.5 we have

GM

(
aτ + d

cτ + d
, ℓ, σ

)
= exp2πi

pℓ

4
exp 2πi

[
σ2

4
· aτ + b

cτ + d

]
FM

(
aτ + d

cτ + d
,
σ

2

[
ℓ+

aτ + b

cτ + d

])

and GM

(
τ,
b+ dℓ

a+ cℓ
, (a+ cℓ)σ

)
= exp2πi

p(a+ cℓ)

4
exp 2πi

[
σ2

4
(a+ cℓ)2τ

]
FM

(
τ,
σ

2
[(b+ dℓ) + (a+ cℓ)τ ]

)
.

So Proposition 5.9 implies

FM

(
aτ + d

cτ + d
,
σ

2

[
ℓ+

aτ + b

cτ + d

])
= exp 2πi

p(a+ cℓ− 1)

4
exp 2πi

σ2

4

[
(a+ cℓ)2τ − aτ + b

cτ + d

]
×

∑

M ′

ρM,M ′FM ′

(
τ,
σ

2
[(b+ dℓ) + (a+ cℓ)τ ]

)
.

(5.8)

We make the substitution

z =
σ

2
[(b+ dℓ) + (a+ cℓ)τ ] ,(5.9)

and calculate

σ

2

[
ℓ+

aτ + b

cτ + d

]
=

z

cτ + d

σ2

4

[
(a+ cℓ)2τ − aτ + b

cτ + d

]
=

cz2

cτ + d
− σ2

4
(ab+ 2bcℓ+ cdℓ2).

(5.10)

Thus (5.8) becomes

FM

(
aτ + d

cτ + d
,

z

cτ + d

)
= exp

[
2πi

cz2

cτ + d

]∑

M ′

ρM,M ′FM ′ (τ, z) ,

where

ρM,M ′ = exp
2πi

4

[
σp(a+ cℓ− 1)− σ2(ab+ 2bcℓ+ cdℓ2)

]
× ρM,M ′ .(5.11)

To determine the modular behaviour of the functions FM (τ, z|u) for general u ∈ V , we require the following
Baker-Campbell-Hausdorff type formulas.

Lemma 5.10. Let X,Y be locally finite even operators on a vector superspace U , satisfying [X,Y ] = sY for
some constant s. We have

exp(αX)Y exp(−αX) = eαsY.

If, moreover, s 6= 0 then for any constants α and β we have

exp(αX) exp(βY ) = exp

(
αX +

αs

1− e−αs
βY

)

and

exp(αX) exp(βY ) exp(−αX) = exp(βeαsY ).
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Proposition 5.11. Let X and Y be locally finite even operators on a vector superspace U , satisfying

[X,Y ] = Y.

On the space of functions on (τ, z, u) ∈ H × C× U , linear in u, the formula

[ϕ ·A](τ, z|u) = ϕ

(
aτ + b

cτ + d
,

z

cτ + d

∣∣∣∣(cτ + d)Xe−
cz

cτ+dY u

)
, where A =

(
a b
c d

)
,

defines a right action of SL2(Z).

Proof. Let A =
(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
. Write Aτ = aτ+b

cτ+b , and γA(τ) = (cτ + d)−1. It is well known that

γA(Bτ)γB(τ) = γAB(τ),

and c′γB(τ) + cγB(τ)
2γA(Bτ) = (ca′ + dc′)γAB(τ).

(5.12)

Now we calculate

[(ϕA)B](τ, z|u) = [ϕA]

(
Bτ, γB(τ)z

∣∣∣∣γB(τ)−Xec
′γB(τ)zY u

)

= ϕ

(
A(Bτ), γA(Bτ)γB(τ)z

∣∣∣∣γA(Bτ)−XecγA(Bτ)γB(τ)zY γB(τ)
−Xec

′γB(τ)zY u

)
.(5.13)

The third formula of Lemma 5.10, with

α = log γB(τ) and β = cγA(Bτ)γB(τ)z,

implies

ecγA(Bτ)γB(τ)zY γB(τ)
−X = γB(τ)

−XecγA(Bτ)γB(τ)2zY .

Substituting this into (5.13) and using (5.12) reduces [(ϕA)B](τ, z|u) to

ϕ
(
(AB)τ, γAB(τ)z|γAB(τ)

−Xe(ca
′+dc′)γAB(τ)zY u

)
= [ϕ(AB)](τ, z|u).

�

The following proposition and the subsequent theorem, are the main results of this section.

Proposition 5.12. Let V , ω, h, and u be as in Definition 5.3. Let A =
(
a b
c d

)
and ℓ ∈ Z>0 and set

z = (σ/2)[(b+ dℓ) + (a+ cℓ)τ ]. Then for all τ ∈ H and σ ∈ Q>0 sufficiently small,

FM

(
aτ + b

cτ + d
,

z

cτ + d

∣∣∣∣(cτ + d)−L[0] exp

[
− cz

cτ + d
I(h)

]
u

)
= exp

[
2πi

cz2

cτ + d

]∑

M ′

ρM,M ′FM ′ (τ, z|u),(5.14)

where ρM,M ′ is the matrix of (5.11).

Proof. We start by proving the formula

(cτ + d)−L[0](σ)∆(−(a+ cℓ− 1)
σ

2
h, 1)u

= (cτ + d)−L[0] exp

[
− c

cτ + d
· σ
2
[(b + dℓ) + (a+ cℓ)τ ]I(h)

]
u.

(5.15)

Note that

[(2πi)2ω([1]), (2πi)
2h([1])] = −(2πi)2h([1]),

and that

L[0](σ) = (2πi)2
[
ω([1]) −

σ

2
(Th)([1])

]
= h0 + (2πi)2

[
ω([1]) +

σ

2
h([1])

]
.

We plug X = −(2πi)2ω([1]) and Y = σ
2 I(h) =

σ
2 (2πi)

2h([1]), along with the parameters

s = 1, α = log(cτ + d), and β =
1

cτ + d
− 1,
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into Lemma 5.10, to obtain

(cτ + d)−L[0](σ) = (cτ + d)−h0−(2πi)2ω([1])−
σ
2 (2πi)

2h([1])

= (cτ + d)−h0−(2πi)2ω([1]) exp

[(
1

cτ + d
− 1

)
σ

2
(2πi)2h([1])

]
.

This, together with (2.14), yields

(cτ + d)−L[0](σ)∆
(
−(a+ cℓ− 1)

σ

2
h, 1
)
u

= (cτ + d)−L[0] exp

[(
1

cτ + d
− 1

)
σ

2
(2πi)2h([1]) −

σ

2
(a+ cℓ− 1)(2πi)2h([1])

]
.

(5.16)

The term in square brackets here is σ
2 (2πi)

2h([1]) times

1

cτ + d
− (a+ cℓ) =

1− (a+ cℓ)(cτ + d)

cτ + d

=
1− c(a+ cℓ)τ − ad− cdℓ

cτ + d

= −c(a+ cℓ)τ + bc+ cdℓ

cτ + d
= − c

cτ + d
[(a+ cℓ)τ + b+ dℓ] .

Substituting this into (5.16) yields (5.15).

Now we substitute ∆(−(a+ cℓ− 1)σ2h, 1)u in place of u in Proposition 5.9 to obtain

GM

(
aτ + b

cτ + d
, ℓ, σ

∣∣∣∣(cτ + d)−L[0](σ)∆(−(a+ cℓ− 1)
σ

2
h, 1)u

)
=
∑

M ′

ρM,M ′GM ′

(
τ,
b+ dℓ

a+ cℓ
, (a+ cℓ)σ

∣∣∣∣u
)
.

Substituting (5.15) transforms this into

GM

(
aτ + b

cτ + d
, ℓ, σ

∣∣∣∣(cτ + d)−L[0] exp

[
− c

cτ + d
· σ
2
[(b + dℓ) + (a+ cℓ)τ ](2πi)2h([1])

]
u

)

=
∑

M ′

ρM,M ′GM ′

(
τ,
b+ dℓ

a+ cℓ
, (a+ cℓ)σ

∣∣∣∣u
)
.

We make the substitution (5.9) again, using (5.10) and (5.11). Thus we obtain (5.14). �

For the applications we wish to pursue, the most useful consequence of Proposition 5.12 is the following
theorem.

Theorem 5.13. Let V , ω, h, and u be as in Definition 5.3. Let X denote the set of h-stable irreducible
positive energy V -modules, and let

FM (τ, z|u) = STrM u0e
2πiz(h0−p/2)qL0−c/24

be the supertrace function associated with M ∈ X. Then there exists ε > 0 such that for each M ∈ X and all
u ∈ V the supertrace function FM (τ, z|u) converges absolutely uniformly on compact subsets of the domain

{(τ, z) ∈ H × C|0 < Im(z) < ε Im(τ)}.
Now we suppose (1 ) that the set of functions FM (τ, z||0〉) as M runs over X is modular invariant, i.e.,
that there exists a representation υ of SL2(Z) for which (5.17) holds for u = |0〉, and (2 ) that for each
α ∈ (0, ε) ⊂ R and β ∈ R the set of functions FM (τ, ατ + β||0〉), as M runs over X, is linearly independent.
Then for all u ∈ V the relation

FM

(
aτ + b

cτ + d
,

z

cτ + d

∣∣∣∣(cτ + d)−L[0] exp

[
− cz

cτ + d
I(h)

]
u

)
= exp

[
2πi

cz2

cτ + d

]∑

M ′

υM,M ′FM ′(τ, z|u)(5.17)

is satisfied in the intersection of the domains of convergence of the two sides.
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Proof. Since X is finite the statement on convergence follows directly from Proposition 5.6, taking ε to be
the minimum of the values that appear there. Next by combining equation (5.14) at u = |0〉 with relation
(5.17), we obtain

∑

M ′

(ρM,M ′ − υM,M ′)FM ′

(
τ,
σ

2
[(b+ dℓ) + (a+ cℓ)τ ]

)
= 0,(5.18)

where ρM,M ′ is given by (5.11). Importantly ρM,M ′ = ρM,M ′(A, ℓ, σ) is independent of τ . By hypothesis,
i.e., by condition (2), the functions that appear in (5.18) are linearly independent for any sufficiently small
σ. Therefore ρM,M ′ = υM,M ′ . Now Proposition 5.12 implies that for each fixed τ ∈ H the relation (5.17)
holds at z = σ

2 [(b + dℓ) + (a+ cℓ)τ ]. By allowing σ to vary over a set of the form Q ∩ (0, ε1) we obtain
the identity (5.17) on a set of values that has accumulation points within the intersection of the domains
of convergence of the two sides of (5.17). The desired conclusion now follows by the identity theorem for
holomorphic functions. �

Finally we record the following corollary in the rational and C2-cofinite case. It is related to a result inde-
pendently obtained in [28].

Corollary 5.14. Let (V, ω) be a rational and C2-cofinite conformal vertex algebra graded by integer conformal
weights. Let h ∈ V1 satisfy the OPE relations (5.1), the grading condition stated thereafter, and the linear
independence condition (2 ) of Theorem 5.13. Then the supertrace functions FM (τ, z|u) on the irreducible
positive energy V -modules satisfy the relation (5.14) where ρ is some linear representation of the group
SL2(Z).

Proof. The modular invariance of the restricted trace functions FM (τ, z||0〉) has been established by Miyamoto
[31] for even vertex algebras. The extension to vertex algebras with nontrivial odd part is straightforward,
the important condition to maintain is that the conformal weights be integers. The modular invariance of
the FM at arbitrary u ∈ V now follows from Theorem 5.13. �

6. Admissible Affine Vertex Algebras

Let g be a simple Lie algebra, and let k be an admissible number for g. We denote by

C◦
− = {h ∈ hQ|α(h) < 0 for all α ∈ Π}.

the negative open fundamental chamber of g.

Lemma 6.1. Let h ∈ C◦
−, then Vk(g) is rational relative to h.

Proof. The condition h ∈ C◦
− guarantees that ω(σ) is a conformal vector for sufficiently small σ ∈ Q>0. The

shift of conformal structure from ω to ω(σ) has the effect of destroying the positive energy condition for those
(Vk(g), ω)-modules outside the category Ok. Indeed the positive energy irreducible (Vk(g), ω(σ))-modules are
precisely those irreducible Vk(g)-modules which lie in Ok. Thus rationality of Vk(g) relative to h is equivalent
to rationality of Vk(g) in the category Ok, which is the main theorem of [6] (cf. Theorem 3.7 above). �

Recall that Vk(g) is graded by the root lattice Q.

Lemma 6.2. Let h ∈ hQ and σ ∈ Q be such that σ
2α(h) /∈ Z for all roots α of g, and that the automorphism

g(σ) = exp
(
−2πiσ2h0

)

has prime order. Let W be the Q-graded complement in V = Vk(g) to the fixed point subalgebra V g(σ). Then
V is cofinite relative to the splitting V = V g ⊕W for each nontrivial element g ∈ 〈g(σ)〉.

Proof. By the condition that g(σ) be of prime order, we have V g = V g(σ) and so it suffices to verify the claim
on g = g(σ) itself. Let C2(V ) = V(−2)V and Crel(V ) = V g

(−2)V
g + V(−1)W . Since V is strongly generated

by g = V1, we have a surjection of commutative algebras S[g∗] ։ V/C2(V ). The conditions imposed on σ
and h ensure that each root space gα lies outside V g. It follows from a standard PBW argument that the
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quotient of V by Crel(V ) is naturally a quotient of U(h). Thus we have a commutative diagram of surjections
of commutative algebras

S[g∗] // //

��
��

R(V )

��
��

U(h) // // Rrel(V ).

We recall the associated variety of V , which is the affine scheme XV = SpecR(V ) [3]. We also put Xrel
V =

SpecRrel(V ) the relative associated variety. It was shown in [4, Theorem 5.3.1] that if V = Vk(g) where
k ∈ Q is an admissible number for g then XV ⊂ N where N ⊂ g is the nilpotent cone.

Our diagram above implies that Xrel
V ⊂ XV ∩ h ⊂ N ∩ h = {0}. It follows that dimCR

rel(V ) < ∞, and
V = Vk(g) is relatively cofinite as required. �

Recall the set Y = H × h and its subset Y + defined in (3.1), as well as the hyperplanes Hα,ω. We now
introduce the trace function

ΨM (τ, x|u) = TrM u0e
2πix0qL0−ck/24

of (τ, x) ∈ Y and u ∈ V k(g) on the highest weight g-moduleM . We also denote Ψλ = ΨL(λ) for λ admissible.
The ΨM specialise at u = |0〉 to the Kac-Wakimoto characters χM of (3.2). We have seen in Section 5 that,
on general grounds, Ψλ(τ, zh|u) converges on sets of the form 0 < Im(z) < εIm(τ). The following lemma
gives more precise information on convergence, but is not necessary for what follows and therefore can be
skipped.

Lemma 6.3. Let M be a highest weight g-module, which we regard as a V k(g)-module. For any u ∈ V k(g),
the series defining ΨM (τ, x|u) converges absolutely to a holomorphic function on Y +, and extends to a

meromorphic function on Y with possible poles on the hyperplanes Hα,ω for α ∈ ∆
∨

+, ω ∈ Z+ Zτ .

Proof. There is a grading V = V k(g) =
⊕

α∈Q Vα by the root lattice Q, extending that on g. For any u ∈ Vα
we have the commutation relations [x0, um] = α(x)um and [L0, um] = −mum. Hence

e2πix0um = e2πiα(x)ume
2πix0 and qL0um = q−mumq

L0 .(6.1)

Consider the increasing and exhaustive filtration L•V defined by

L0V = C|0〉, LpV = Lp−1V +
∑

n≤−1

g(n)L
p−1V.

We show the sum defining ΨM (τ, x|u) converges on Y + for u ∈ LpV by induction on p. The base case of
p = 0 is the convergence of χM .

Suppose the claim is proved for Lp−1V , and for all elements of LpV of conformal weight less than ∆. Let
u ∈ LpV be of conformal weight ∆. Either u ∈ Lp−1V or u = a(n)b for some n ≤ −1, a ∈ g, and b ∈ Lp−1V .

By the PBW theorem we may assume without loss of generality that a ∈ h or a ∈ gα for some α ∈ ∆+. We
write g0 = h for convenience.

Borcherds identity implies

∑

i∈Z+

(
m+∆(a)− 1

i

)
(a(n+i)b)0 =

∑

i≥0

(−1)i
(
n

i

)
[an−ib−n+i − (−1)nb−iai] .(6.2)

By the inductive assumption ΨM (τ, x|a(n+i)b) converges on Y
+ for i > 0. So it suffices to analyse the trace

of the right hand side.

Let j ∈ Z+. Using the commutation relations (6.1) and the symmetry of the trace we obtain

TrM a−jbje
2πix0qL0 = qje2πiα(x) TrM bja−je

2πix0qL0 .
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If j > 0 then bj is locally nilpotent, and we may deduce

TrM a−jbje
2πix0qL0 =

qje2πiα(x)

1− qje2πiα(x)

∑

i∈Z+

(
j

i

)
TrM (b(i)a)0e

2πix0qL0 .

If a ∈ gα for α > 0 then the same reasoning applies.

The trace TrM (· · · ) e2πix0qL0 of the right hand side of (6.2) is thus reduced to

∑

i∈Z+

TrM (a(i)b)0e
2πix0qL0


∑

j≥0

(−1)j
(
n

j

)((−n+ j

i

)
q−n+je2πiα(x)

1− q−n+je2πiα(x)
− (−1)n

(
j

i

)
qje−2πiα(x)

1− qje−2πiα(x)

)
 .

The denominators appearing within the j-summation are uniformly bounded on compact subsets of Y +,
and the summations have radius of convergence 1 in q by the ratio test. The i-summation is finite and
by our inductive assumption each function TrM (a(i)b)0e

2πix0qL0 is convergent on Y +. The convergence of
ΨM (τ, x|u) follows by induction.

The case of α = 0 must be handled separately, but follows easily from the identity

TrM b0a0e
2πix0qL0 =

d

dt
TrM b0e

2πi(x+ta)0qL0

∣∣∣∣
t=0

.

It is also clear from the induction that multiplication of ΨM (τ, x|u) by a sufficiently high power of
∏

j∈Z+

(1− qn+1)ℓ ·
∏

α∈∆+

∏

j∈Z+

(1− qne−2πiα(x))(1 − qn+1e2πiα(x)),

renders it expressible by a series which, for any fixed |q| < 1, has infinite radius of convergence in x ∈ h. The
meromorphicity statement follows. �

Lemma 6.4. Let g be a simple Lie algebra and k an admissible level. There exists a nonempty Zariski
open subset D ⊂ C◦

− (a complement of finitely many hyperplanes) such that for any h ∈ D the specialised

characters χλ(τ, τh), as λ runs over (Co)Pr
k
, are linearly independent functions of τ .

Proof. By the definition of C◦
− we know that χλ(τ, τh) is the sum of an absolutely convergent series in powers

of q. From the weight space decomposition of L(λ) it follows immediately that the leading term of this series
is qλ(h)+hλ−ck/24. The equality of any pair of the exponents λ(h)+hλ− ck/24 defines a certain hyperplane in
h. We define D to be the complement in C◦

− of these hyperplanes, and take h ∈ D now. Since the power series
defining the χλ(τ, τh) all begin with unequal powers of q, they are clearly linearly independent functions. �

Now we are ready to prove the main theorem of this section.

Theorem 6.5. Let g be a simple Lie algebra, and k ∈ Q a (co)principal admissible number for g. Then for

all λ ∈ (Co)Pr
k
we have

Ψλ

(
aτ + b

cτ + d
,

x

cτ + d

∣∣∣∣(cτ + d)−L[0] exp

[
− c

cτ + d
I(x)

]
u

)
= exp

[
πik

c(x, x)

cτ + d

] ∑

λ′∈(Co)Prk

ρλ,λ′(A)Ψλ′(τ, x|u).

The S-matrix a(λ, λ′) = ρλ,λ′

(
0 −1
1 0

)
is given by Theorem 3.8 (resp. Theorem 4.3) in the case that k be

principal (resp. coprincipal).

Proof. Let h ∈ C◦
−, such that 〈h, h〉 = 2. Relation (5.1) holds with p = 0 and the specialisation Ψλ(τ, zh|u)

coincides with the trace function FL(λ)(τ, z|u) of Definition 5.3. By Lemmas 6.1 and 6.2 we have rationality
and cofiniteness of V relative to h (we observe that the arguments of Section 5 are unaffected by the prime
order restriction on σ coming from Lemma 6.2). We wish to verify the conditions (1) and (2) of Theorem
5.13 for the functions χλ(τ, z) = Ψλ(τ, z||0〉). Condition (1), modular invariance, is guaranteed by Theorems
3.8 and 4.3. Condition (2) follows from Lemma 6.4. Indeed the functions

FL(λ)(τ, ατ + β) = χλ(τ, (ατ + β)h) = TrL(λ) e
2πiβh0qL0+αh0−ck/24
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are linearly independent whenever the set of numbers hλ + αλ(h), as λ ranges over (Co)Pr
k
, are distinct.

We are now able to apply Theorem 5.13 to obtain (5.17) with X = (Co)Pr
k
, FL(λ) = Ψλ and υL(λ),L(λ′) = ρλ,λ′

is the Kac-Wakimoto representation. Substituting for x = zh, and using 〈h, h〉 = k(h, h), in (5.14) yields the
formula asserted in the theorem statement. Now since the set D of Lemma 6.4 contains a C-linear basis of
h we deduce, by the identity theorem for holomorphic functions, that the modular transformation relation
holds as an identity of functions of (τ, x) ∈ H×C, valid on the intersection of the domains of convergence of
the two sides. �

7. The Charged Free Fermions

We recall the theta product

Θ(τ, z) =
θ11(τ, z)

η(τ)
= q1/12eπiz

∞∏

n=1

(1− e2πizqn−1)(1− e−2πizqn),(7.1)

and the classical modular relation [34, pp. 475]

Θ(−1/τ, z/τ) = −ieπiz2/τΘ(τ, z).(7.2)

Let U be a finite dimensional vector space. The Clifford Lie superalgebra Cℓ(U) is defined by

Cℓ(U) = (U ⊕ U∗)[t, t−1]⊕ C1, [am, bn] = 〈a, b〉 1
where U ⊕U∗ is given odd parity and C1 even, am denotes atm, and 〈, 〉 is the natural symmetric pairing on
U ⊕ U∗ defined by 〈α, x〉 = 〈x, α〉 = α(x) for all x ∈ U , α ∈ U∗.

For now we take U = Cψ one dimensional, and let
∧

be the Fock Cℓ(Cψ)-module generated from the highest
weight vector |0〉, subject to the relations ψn|0〉 = 0 for n > 0, and ψ∗

n|0〉 = 0 for n ≥ 0. The module
∧

has a
vertex algebra structure [22, Section 3.6] (which goes by several names, including charged free fermions, and
the ghost system) with generating fields

ψ(z) =
∑

n

ψnz
−n and ψ∗(z) =

∑

n

ψ∗
nz

−n−1.

Putting ω =: (Tψ)ψ∗ : gives
∧

a conformal structure of central charge c = −2, in which ∆(ψ) = 0 and
∆(ψ∗) = 1. If we put α =: ψψ∗ : then we have

[αλα] = λ

and [Lλα] = (T + λ)α − λ2.

Let us put

Θ(τ, z|u) = STr∧ u0e
−2πiz(α0−1/2)qL0−c/24,

it is straightforward to see that Θ(τ, z||0〉) = Θ(τ, z). It is known that
∧

is C2-cofinite and rational, and that
the unique irreducible

∧
-module is

∧
. Hence Theorem 5.13 and (7.2) imply

Θ
(
−1/τ, z/τ |τ−L[0]e−

z
τ I(α)u

)
= −ieπiz2/τΘ(τ, z|u).

8. Principal Affine W -Algebras

The affine W -algebras form a large and interesting class of vertex algebras. From the data of a finite
dimensional simple Lie (super)algebra g, nilpotent element f ∈ g, and level k, the algebra Wk(g, f) is
obtained via quantised Drinfeld-Sokolov reduction, i.e., as cohomology of the BRST complex, of the affine
vertex algebra V k(g). See [13] for f principal nilpotent, and [24] for the general case.

In this section we study trace functions and their modular transformations for modules of Wk(g) the simple
quotient of the universal affine W -algebra associated with principal nilpotent element f , and admissible
number k. The article [15] is an excellent reference.
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8.1. The BRST Complex. Let g be a finite dimensional simple Lie algebra as in Section 3. Let {eα}α∈∆

be a root basis of g. For β, γ ∈ ∆+ the structure constants cαβ,γ are defined by [eβ , eγ ] =
∑
cαβ,γeα. For

α ∈ ∆+ we denote by ϕα ∈ n± the element of n± corresponding to e±α, and ϕ
∗
α ∈ n∗± its dual.

Let
∧

± be the Fock Cℓ(n±)-module generated from a vector |0〉 with relations ϕα,n≥0|0〉 = 0, ϕ∗
α,n≥1|0〉 = 0

in the case of
∧

+, and relations ϕα,n≥1|0〉 = 0, ϕ∗
α,n≥0|0〉 = 0 in the case of

∧
−. Once again, as in [22,

Section 3.6],
∧

± is a vertex algebra, with generating fields

ϕ(z) =
∑

n

ϕnz
−n−1 and ϕ∗(z) =

∑

n

ϕ∗
nz

−n,

in the case of
∧

+, and

ϕ(z) =
∑

n

ϕnz
−n and ϕ∗(z) =

∑

n

ϕ∗
nz

−n−1,

in the case of
∧

− (where ϕ ∈ n± and ϕ∗ ∈ n∗±). The vertex algebra
∧

± carries a Z-grading induced by
deg |0〉 = 0, degϕ = −1 and degϕ∗ = +1. It also carries a conformal structure

ω
∧
,+ =

∑

α∈∆+

: (Tϕ∗
α)ϕα : or ω

∧
,− =

∑

α∈∆+

: (Tϕα)ϕ
∗
α :,

which gives conformal weights ∆(ϕ) = 1, ∆(ϕ∗) = 0 in the case of
∧

+, and ∆(ϕ) = 0, ∆(ϕ∗) = 1 in the case
of
∧

−.

Let k ∈ C. The functor of quantised Drinfeld-Sokolov reduction on V k(g)-modules (which comes in two
variants: + and −) is defined as follows. Let M be a V k(g)-module and put

C•
±(M) =M ⊗∧±,

which is a module over the vertex algebra C•
± = C•

±(V
k(g)). In C•

± the element Q± = Qst
± + p is defined by

Qst
± =

∑

α∈∆+

e±α ⊗ ϕ∗
α − 1

2

∑

α,β,γ∈∆+

cαβγ : ϕαϕ
∗
βϕ

∗
γ :, and p =

∑

α∈Π

ϕ∗
α.

The module C•
±(M) with Z-grading induced from that on

∧
±, is regarded as a complex, with the differential

d± = (Q±)(0). The quantised Drinfeld-Sokolov reduction of M is the cohomology H•
±(M) of the complex

(C•
±(M), d±).

In [15] the following vectors of C•
± were introduced.

x̃ = x⊗ 1 + 1⊗ F x, where F x =
∑

α∈∆+

α(x) : ϕαϕ
∗
α :,

for x ∈ h. The associated fields x̃(z) commute with dst+.

At noncritical level k 6= −h∨ the complex C•
+ carries a conformal structure

ω = ωSug ⊗ 1 + 1⊗ ω
∧
,+ + T ρ̃∨,

compatible with the differential. The central charge is

c(k) = ℓ− 12

[
(k + h∨)(ρ∨, ρ∨)− 2(ρ, ρ∨) +

(ρ, ρ)

k + h∨

]
.

Using the ‘strange formula’ h∨ dim g = 12(ρ, ρ) of Freudenthal and de Vries [16], we rewrite c(k) as follows

c(k) = ck − 2|∆+| − 12 [(k + h∨)(ρ∨, ρ∨)− 2(ρ, ρ∨)] .(8.1)

We have the following λ-bracket relations:

[x̃λx̃
′] = (k + h∨)λ,

and [ωλx̃] = (T + λ)x̃ − λ2 [(k + h∨)(ρ∨, x)− ρ(x)] ,

from [15, Lemma 3.2] and [24, Theorem 2.4 (b)], respectively.



29

For an arbitrary vertex algebra V we put LieV = V [t, t−1]/(T + ∂t)V [t, t−1], denoting by u(m) the image of
utm. The formula (2.2) defines a Lie algebra structure on LieV .

As explained in [15, Section 2.2], there is a C•
+-module structure on C•

−(M), implemented by a morphism

w̃ : U(LieC•
+) → U(LieC•

−).

We just need the following formulas (which follow from (3.1.6), (2.2.4), and (2.2.6) of [15]):

w̃(L0) = LSug
0 + L∧,−

0 + (ρ, ρ∨)− k + h∨

2
(ρ∨, ρ∨),

and

w̃(x̃0) = (̃w0x)0 + (k + h∨)(ρ∨, x),

where w0 is the longest element of the finite Weyl group W .

For u ∈ C•
+, and x ∈ h, put

Ψλ(τ, x|u) = STrC•
−(L(λ)) u0e

2πi[x̃0−(k+h∨)(ρ∨,x)+ρ(x)]qL0−c(k)/24.(8.2)

Note that these functions specialise (under x = zh) to the supertrace functions of Definition 5.3. Substituting
the formulas above for the C•

+-action on C•
−(L(λ)), and using (8.1), yields

Ψλ(τ, x|u) = STrC•
−(L(λ)) w̃(u0)e

2πi[w̃(x̃0)−(k+h∨)(ρ∨,x)+ρ(x)]qw̃(L0)−c(k)/24

= q(ρ,ρ
∨)− k+h∨

2 (ρ∨,ρ∨)−c(k)/24 STrC•
−(L(λ)) w̃(u0)e

2πi[w̃0(x0)+ρ(x)]qL
Sug
0 +L∧,−

0

= e2πiρ(x)q(ρ,ρ
∨)−k+h∨

2 (ρ∨,ρ∨)−c(k)/24 STrC•
−(L(λ)) w̃(u0)e

2πiw̃0(x0)qL
Sug
0 +L∧,−

0

= e2πiρ(x)q−(ck−2|∆+|)/24 STrC•
−(L(λ)) w̃(u0)e

2πiw̃0(x0)qL
Sug
0 +L∧,−

0 .

Let us write

Θg(τ, x) =
∏

α∈∆+

Θ(τ, α(x)), for τ ∈ H and x ∈ h

where Θ is the theta function (7.1). Then formula (7.2), and the relation
∑

α∈∆+
α(x)2 = h∨(x, x), implies

Θg(−1/τ, z/τ) = (−i)|∆+|eπih
∨(x,x)/τΘg(τ, x).(8.3)

The commutation relations

[F x
0 , ϕα,n] = α(x)ϕα,n and [F x

0 , ϕ
∗
α,n] = −α(x)ϕ∗

α,n,

in
∧

−, together with the relation ρ = 1
2

∑
α∈∆+

α, imply that

e2πiρ(x)q|∆+|/12 STr∧
−
qL

∧,−
0 e2πiF

x
0 = Θg(τ, x).(8.4)

Let k ∈ Q be a principal (resp. coprincipal) number for g. The V k(g)-module L(λ) descends to a module

over the simple quotient Vk(g) if and only if λ ∈ Prk (resp. λ ∈ CoPrk). Furthermore any Vk(g)-module from
category Ok is completely reducible.

Theorem 8.1. Let k ∈ Q be a (co)principal admissible number for g, and λ ∈ (Co)Prk. Then the function
Ψλ of (8.2) satisfies

Ψλ

(−1

τ
,
x

τ

∣∣∣∣τ−L[0] exp

[
I(x)

τ

]
u

)
= exp

[
πi(k + h∨)

(x, x)

τ

] ∑

µ∈(Co)Prk

(−i)|∆+|a(λ, µ)Ψµ(τ, x|u)(8.5)

where a(λ, µ) is the S-matrix of Theorem 3.8 (resp. Theorem 4.3) for k principal (resp. coprincipal).
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Proof. We first show that the specialisation of (8.5) to u = |0〉 holds. Indeed

Ψλ(τ, x||0〉) = e2πiρ(x)q−(ck−2|∆+|)/24 TrL(λ) q
L0e2πix0 · STr∧

−
qL

∧,−
0 e2πiF

x
0

= χλ(τ, x)Θg(τ, x),

and the claim immediately follows from Proposition 3.8 and equation (8.3).

The vertex algebra
∧

+ is C2-cofinite and rational with unique irreducible module. Recall that C2-cofiniteness
implies cofiniteness relative to any splitting, and recall Lemma 2.8 on cofiniteness for tensor products. It
follows that if Vk(g) is rational and cofinite relative to x ∈ h, then

C•
+ = Vk(g)⊗

∧
+

is rational and cofinite relative to x̃. The results of Section 6 together with Theorem 5.13 now imply (8.5)
for general u. �

8.2. Trace functions ofW -algebra Modules. The (principal) affineW -algebra associated with the simple
Lie algebra g at the level k ∈ C is the vertex algebra

W
k(g) = H0(C•

+, d+).

The assignment

M 7→ H0(C•
−(M), d−)

defines a functor H0
−(−) from V k(g)-modules to Wk(g)-modules.

Let Z(g) denote the centre of the universal enveloping algebra U(g). Each weight µ ∈ h
∗
yields a character

γµ : Z(g) → C via evaluation on the Verma g-module M(µ).

Starting with a conformal vertex algebra (V, ω) Zhu constructed an associative algebra Zhu(V ) and an
induction functor from Zhu(V )-modules to positive energy V -modules. This functor is a bijection on simple
objects [35]. The Zhu algebra ofWk(g) is isomorphic to Z(g) [2, Theorem 4.16.3 (ii)] (see also [15, Proposition
3.3 (a)]). We denote by L(γ) the Wk(g)-module induced from the one dimensional Z(g)-module Cγ associated
with the character γ.

We now denote by Wk(g) the simple quotient of Wk(g). Let

(Co)Pr
k
nondeg = {λ ∈ (Co)Pr

k | λ(α∨) /∈ Z for all α∨ ∈ ∆
∨}

and (Co)Pr
k
W

= {γλ|λ ∈ (Co)Pr
k
nondeg}.

In the following theorem we summarise the results about Wk(g) and H
0
−(−) that we shall use.

Theorem 8.2. Let g be a simple Lie algebra and g the associated untwisted affine Kac-Moody algebra.

(1) [2, Theorem 7.6.1] For any level k ∈ C and module M ∈ Ok, one has Hi
−(M) = 0 for all i 6= 0.

(2) [2, Corollary 7.6.4] For k an admissible number, and λ ∈ (Co)Pr
k
nondeg, one has

H0
−(L(λ))

∼= L(γ−w0(λ)),

where w0 is the longest element in the finite Weyl group W . If λ ∈ (Co)Pr
k \ (Co)Prknondeg, then

H0
−(L(λ)) = 0.

(3) [5, Theorem 10.4] For k a nondegenerate admissible number (i.e., one for which (Co)Pr
k
nondeg is

nonempty), the set of irreducible Wk(g)-modules is precisely

{LW(γ)|γ ∈ (Co)Pr
k
W
}.

(4) For k ∈ Q a nondegenerate admissible number, the vertex algebra Wk(g) is rational [5, Theorem
10.10] and C2-cofinite [4, Theorem 5.10.2].
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Following the lead of [15] we use the Euler-Poincaré principle to relate the character of C•
−(M) to that of

its cohomology H0
−(M), and thereby to compute the modular transformations of characters of the latter

modules. The principle states that if C• is a complex with finite dimensional components and U is a degree
0 endomorphism of C• commuting with the differential then

STrC• U = STrH•(C•) U.

Now let k be an admissible number, and λ ∈ (Co)Pr
k
. Although the components of C•

−(L(λ)) are infinite
dimensional, they are bigraded by L0 and x̃0 with finite dimensional pieces. It is thus valid to write

TrH0
−(L(λ)) u0e

2πix̃0qL0 = STrC•
−(L(λ)) u0e

2πix̃0qL0

(for u ∈ C•
+ a chain). Let

ψλ(τ |u) = TrH0
−(L(λ)) u0q

L0−c(k)/24.

Then limx→0 Ψλ(τ, x|u) = ψλ(τ |u) and passing to the x→ 0 limit of the relation (8.5) yields the following.

Corollary 8.3. The functions ψλ(τ |u) satisfy

ψλ(−1/τ |τ−L[0]u) =
∑

µ∈(Co)Prk

(−i)|∆+|a(λ, µ)ψµ(τ |u),

where a(λ, µ) is the S-matrix of Theorem 3.8 (resp. Theorem 4.3) for k principal (resp. coprincipal).

The special case u = |0〉 of Corollary 8.3 was obtained as [26, Proposition 4.4].

8.3. Parametrisation of Irreducible Wk(g)-modules. Let k ∈ Q be a principal admissible number for
g. We define p, q ∈ Z by k + h∨ = p/q, q > 0, and (p, q) = 1. Let

Ip,q =
P p−h∨

+ × P∨,q−h
+

W̃+

,

where the action of W̃+ is w(λ, λ′) = (wλ,wλ′). There is a bijection

W × Ip,q → Prknondeg

(w, (λ, λ′)) 7→ w.
(
λ− (k + h∨)(λ′ + ρ∨) + (k + h∨)Λ0

)
.

(8.6)

This descends to a bijection

Ip,q → Prk
W
.(8.7)

For (λ, λ′) ∈ Ip,q, we define L(λ, λ′) = L(γ), where γ ∈ Prk
W

is the central character associated with (λ, λ′)
via (8.7). Let

ϕλ,λ′(τ |u) = TrL(λ,λ′) u0q
L0−c(k)/24.

If (w, (λ′, λ′′)) 7→ λ under the bijection above then ϕλ′,λ′′ = ψλ.

The modular S-transformation of the functions ϕλ,λ′(τ |u) can be derived from Corollary 8.3. For u = |0〉
this derivation was carried out in [26, Proposition 4.4]. The same calculation yields the general result

Corollary 8.4. The trace functions ϕλ,λ′(τ |u) satisfy

ϕλ,λ′ (−1/τ |(τ)−L[0]u) =
∑

(µ,µ′)∈Ip,q

S(λ,λ′),(µ,µ′)ϕµ,µ′ (τ |u),

where

S(λ,λ′),(µ,µ′) = (pq)−ℓ/2|J |−1/2e2πi[(λ
′
+ρ,µ+ρ)+(λ+ρ,µ′+ρ)]

×
∑

y∈W

ǫ(y)e−
2πip

q (λ
′
+ρ,y(µ′+ρ))

∑

w∈W

ǫ(w)e−
2πiq

p (λ+ρ,w(µ+ρ)).
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8.4. Fusion Rules. There is a notion of ‘fusion’ tensor product ⊗̇ on the category of V -modules over a
suitably well-behaved vertex algebra V (defined at this level of generality by Huang and Lepowsky in [20]).
Let Irr(V ) denote the set of isomorphism classes of irreducible V -modules. The Verlinde formula posits a
relationship between the fusion rules N defined by

A⊗̇B ∼=
⊕

C∈Irr(V )

N
C
A,BC,

for A,B ∈ Irr(V ), and the coefficients SA,B of the S-matrix of the trace functions on irreducible V -modules.
Namely

N
C
A,B =

∑

X∈Irr(V )

SA,LSB,LSL,C′

SV,L
.(8.8)

Here M ′ denotes the adjoint module of M [7, Section 5]. Formula (8.8) was proved (for suitably regular
vertex algebras) by Huang in [19].

The irreducible modules of the simple affine vertex algebra Vk(g) at nonnegative integer level k ∈ Z+ are
indexed by P k

+. The S-matrix in this case is known since [23], and the fusion rules Nν
λ,µ may thereby be

determined via the Verlinde formula. Substantial effort has been devoted to efficient calculation of these
coefficients in the physics literature [8, Chapter 16].

Huang’s proof of the Verlinde formula also applies to Wk(g). The chief technical conditions on Wk(g) that
need to be verified are supplied by Theorem 8.2 part (4). Using the Verlinde formula and Corollary 8.4 it is
possible to express the fusion rules of Wk(g) in terms of the fusion rules Nν

λ,µ above. This calculation was

done in [15] for a simply laced g. We quote the answer.

Theorem 8.5 ([15, Theorem 4.3]). Let g be simply laced and let k = p/q − h∨ as above be a principal
admissible number for g. Assume that (q, |J |) = 1. Choose the representatives (λ, λ′), (µ, µ′), (ν, ν′) ∈ Ip,q
such that λ′, µ′, ν′ ∈ Q. Then one has the following expression for the fusion rules between irreducible
Wk(g)-modules:

N
(ν,ν′)
(λ,λ′),(µ,µ′) = N

ν
λ,µN

ν′

λ′,µ′ .

References
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