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QUANTUM LANGLANDS DUALITY OF REPRESENTATIONS

OF W-ALGEBRAS

TOMOYUKI ARAKAWA AND EDWARD FRENKEL

Abstract. We prove duality isomorphisms of certain representations of W-

algebras which play an essential role in the quantum geometric Langlands

Program and some related results.

1. Introduction

Let G be a connected, simply-connected simple algebraic group over C, LG its

Langlands dual group, g = Lie(G), Lg = Lie(LG). By a level κ we will mean a

choice of a symmetric invariant bilinear form on g. We will denote by κ̌ the level

for Lg whose restriction to the Cartan subalgebra Lh ⊂ Lg is dual to the restriction

of κ to its Cartan subalgebra h ⊂ g under the canonical isomorphism h∗ ∼= Lh.

Let X be a smooth projective curve over C. Denote by BunG the moduli stack of

principal G-bundles on X , and by Dκ -mod(BunG) the derived category of (κ+κc)-

twisted D-modules on BunG. Here κc corresponds to the critical level of G (and

square root of the canonical line bundle on BunG); that is, κc = κg/2, where κg is

the Killing form of g.

In what follows, we call κ irrational if κ/κg ∈ C\Q, and generic if κ/κg ∈ C\S

for some countable subset S ⊂ C.

The global quantum geometric Langlands correspondence [Sto, Gai1, FG] states

that for irrational κ there should be an equivalence of derived categories1

Lκ : Dκ -mod(BunG)
∼→ D−κ̌ -mod(BunLG).(1.1)

In recent works [Gai1, CG, FG, Gai2], various constructions of the equivalence Lκ

have been proposed that use representations of the W-algebras Wκ(g) and W κ̌(Lg)

and the isomorphism [FF91, FF92]

Wκ(g) ∼= W κ̌(Lg).

In particular, in D. Gaitsgory’s construction [Gai2] an essential role is played by

the duality isomorphisms

(1.2) T κ
λ,µ̌

∼= Ť κ̌
µ̌,λ.

Here λ (resp., µ̌) is a dominant integral weight of g (resp., Lg); T κ
λ,µ̌ and Ť κ̌

µ̌,λ are

certain representations of Wκ(g) and W κ̌(Lg) (see Section 2.2 for the definition).

These isomorphisms also appeared in [CG, FG] in a similar context.

1A similar, but more subtle, equivalence is expected for rational values of κ as well.
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The goal of this paper is to prove the isomorphisms (1.2) for irrational κ (see

Theorem 2.2 below) and some closely related results.

The paper is organized as follows. In Section 2, we introduce the functor

H•
DS,µ̌(?) of quantum Drinfeld–Sokolov reduction twisted by µ̌ ∈ P̌+ and the family

of modules T κ
λ,µ̌ = H0

DS,µ̌(Vλ,κ), where Vλ,κ is the Weyl module over ĝ of highest

weight λ ∈ P+ and level κ+ κc. We then state our main results: Hj
DS,µ̌(Vλ,κ) = 0

if j 6= 0 for any κ ∈ C (Theorem 2.1); the isomorphisms (1.2) for irrational κ

(Theorem 2.2); and irreducibility of T κ
λ,µ̌ for irrational κ (Theorem 2.3).

In Section 3 we prove Theorem 2.2 using a realization of T κ
λ,µ̌ for irrational κ

as the intersection of the kernels of powers of screening operators. In Section 4.1,

using the results of [Ara04, Ara07], we prove that T κ
λ,µ̌ is irreducible for irrational

κ and to identify its highest weight as a W-algebra module. Using this fact, we

give another proof of Theorem 2.2. Then we prove the vanishing Theorem 2.1 in

Section 4.2 and compute the characters of T κ
λ,µ̌ in Section 4.3. In Section 4.4 we

show that the statement of Theorem 2.2 with rational κ is false already for g = sl2.

Finally, in Section 5 we construct a BGG-type resolution of the modules for T κ
λ,µ̌

with irrational κ and discuss the κ→ ∞ limit of this resolution, following [FF96].
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2. Statement of the main results

Let g be a simple Lie algebra over C of rank r, {ei, hi, fi} its standard generators,

g = n− ⊕ h⊕ n+ its triangular decomposition. Let ∆ be the set of roots of g,

∆+ ⊂ ∆ the set of positive roots, Π the set of simple roots, P the weight lattice,

P̌ the coweight lattice. In what follows, we will use the notation eα (resp., fα)

for a non-zero element of n+ (resp., n−) corresponding to a root α ∈ ∆+ (resp.,

−α ∈ ∆−).

Let ĝκ = g((t))⊕C1 be the affine Kac–Moody Lie algebra associated with g and

level κ+ κc, defined by the commutation relation

[xf, yg] = [x, y]fg + (κ+ κc)(x, y)Rest=0(gdf)1,

[1, ĝ] = 0. Let

V κ(g) = U(ĝκ)⊗U(g[[t]]⊗C1)C,

where C is the regarded as a one-dimensional representation of g[[t]]⊗C1 on which

g[[t]] acts trivially and 1 acts as the identity. V κ(g) is naturally a vertex algebra,

and is called the universal affine vertex algebra associated to g at level κ + κc. A

V κ(g)-module is the same as a smooth ĝκ-module.

Let H•
DS(M) be the functor of quantum Drinfeld–Sokolov reduction with coef-

ficients in a ĝ-module M [FF90a, FF92] (see Chapter 15 of [FBZ04] for a survey).
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By definition, we have

H•
DS(M) = H∞/2+•(n+((t)),M⊗CΨ),

where H∞/2+•(n+((t)), ?) denotes the functor of Feigin’s semi-infinite cohomology

of n+((t)) and CΨ is the one-dimensional representation of n+((t)) corresponding to

a non-degenerate character Ψ : n+((t)) → C. The latter is defined by the formula

(2.1) Ψ(x f(t)) = ψ(x) · Rest=0 f(t)dt, x ∈ n+, f(t) ∈ C((t)),

where ψ is a character of n+ given by the formulas

(2.2) ψ(eα) =

{
1, if α is simple

0, otherwise

Formula (2.1) shows that if we identify the dual space to n+((t)) with n∗+((t))dt using

the non-degenerate pairing between the latter and n+((t)) defined by the formula

〈ϕ g(t), x f〉 = 〈ϕ, x〉 · Rest=0 f(t)g(t)dt, ϕ ∈ n∗+, x ∈ n+,

then Ψ corresponds to the element ψ dt ∈ n∗+((t))dt.

Let
∧∞/2+•(n+) be the fermionic ghosts vertex algebra associated with n+. As

a vector space, it is an irreducible module over the Clifford algebra Cln+ associated

to the vector space

n+((t)) ⊕ n∗+((t))dt

with a non-degenerate bilinear form induced by the above pairing. The algebra

Cln+ is topologically generated by ψα,n = eαt
n, ψ∗

α,n = e∗αt
n−1dt, α ∈ ∆+, n ∈ Z

with the relations

[ψα,n, ψ
∗
β,m]+ = δα,βδn,−m, [ψα,n, ψb,m]+ = [ψ∗

α,n, ψ
∗
β,m]+ = 0.

The module
∧∞/2+•

(n+) is generated by a vector |0〉 such that

(2.3) ψα,n|0〉 = 0, n > 0, ψ∗
α,m|0〉 = 0, m > 0.

We define a Z-grading on
∧∞/2+•(n+) by the formulas deg |0〉 = 0, degψα,n =

−1, degψ∗
α,n = 1.

The graded space H•
DS(M) is the cohomology of the complex (C(M), d), where

C(M) =M ⊗
∧

∞/2+•(n+).

with respect to the differential

(2.4) d = dst + Ψ̂,

where dst is the standard differential computing semi-infinite cohomology

H∞/2+•(n+((t)),M)

(see formula (15.1.5) of [FBZ04]) and Ψ̂ stands for the contraction operator on∧∞/2+•
(n+) corresponding to Ψ viewed as an element of n∗+((t))dt. In other words,

Ψ̂ =

r∑

i=1

ψ∗
αi,1.
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It is known that Hi
DS(V

κ(g)) = 0 for i 6= 0 (see Theorem 15.1.9 of [FBZ04]).

The vertex algebra H0
DS(V

κ(g)) is called the (principal) W-algebra associated with

g at level κ+ κc. We denote it by W
κ(g).

We have the Feigin–Frenkel duality isomorphism [FF91, FF92]

W
κ(g) ∼= W

κ̌(Lg),(2.5)

where Lg is the Langlands dual Lie algebra to g and κ̌ is the invariant bilinear form

on Lg that is dual to κ (see the Introduction).

2.1. Twist. For µ̌ ∈ P̌ , we define a character Ψµ̌ of n+((t)) by the formula

(2.6) Ψµ̌(eαf(t)) = ψ(eα) ·Rest=0 f(t)t
〈µ̌,α〉dt, f(t) ∈ C((t)).

Given a V κ(g)-module M , we define a new differential on the complex C(M):

(2.7) dµ̌ = dst + Ψ̂µ̌

where dst is the standard differential appearing in (2.4) and Ψ̂µ̌ is the contraction

operator corresponding to the character Ψµ̌, viewed as an element of n∗+((t))dt:

Ψ̂µ̌ =
r∑

i=1

ψ∗
αi,〈µ̌,αi〉+1.

We then define the functor H•
DS,µ̌(?) by the formula

H•
DS,µ̌(M) = H∞/2+•(n+((t)),M⊗CΨµ̌

),

where CΨµ̌
is the one-dimensional representation of n((t)) corresponding to the

character Ψµ̌. We note that the functor H•
DS,µ̌(?) has been studied in [FG], Sect.

18 (mostly, in the critical level case κ = 0).

We define the structure of a W
κ(g)-module on Hi

DS,µ̌(M), i ∈ Z, as follows.

For every µ̌ ∈ P̌ , let σµ̌ be the following “spectral flow” automorphism of ĝκ:

eit
n 7→ eit

n−µ̌i ,

fit
n 7→ fit

n+µ̌i ,

hit
n 7→ hit

n − (κ+ κc)(ei, fi)µ̌iδn,0,

where

µ̌i = 〈µ̌, αi〉.

Note that if µ̌ ∈ LP = Hom(C×, H) ⊂ P̌ , then σµ̌ = Ad−µ̌(t), where −µ̌(t) ∈

H((t)) ⊂ G((t)). For general µ̌ ∈ P̌ , σµ̌ ∈ Aut(ĝκ) is a Tits lifting of the element of

the extended affine Weyl group corresponding to µ̌.

Given a V κ(g)-module (equivalently, a ĝκ-module) M , let σ∗
µ̌M be the vector

space M with the action of ĝκ twisted by the automorphism σµ̌, i.e. x ∈ ĝκ acts as

σµ̌(x). We will use the same notation σ∗
µ̌M for the corresponding V κ(g)-module.

We also define an automorphism similar to σµ̌ on the Clifford algebra Cln+ :

ψα,n 7→ ψα,n−µ̌i
,

ψ∗
α,n 7→ ψ∗

α,n+µ̌i
.
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Let σ∗
µ̌

∧
∞/2+•(n+) be the twist of

∧
∞/2+•(n+), considered as a Cln+ -module, by

this automorphism.

Combining these two automorphisms, we obtain an automorphism ofC(V κ(g)) =

C(V κ(g)) ⊗
∧

∞/2+•(n+) which we will also denote by σµ̌. For any V κ(g)-module

M , let σ∗
µ̌C(V

κ(g)) be the corresponding twist of C(M) =M⊗
∧

∞/2+•(n+) viewed

as a module over the tensor product of the enveloping algebra of ĝκ and Cln+ , or

equivalently, as a module over the vertex algebra C(V κ(g)).

According to [Li], the action of all fields from C(V κ(g)) on σ∗
µ̌C(V

κ(g)) can be

described explicitly by the formula

(2.8) A ∈ C(V κ(g)) 7→ YC(M)(∆(µ̌, z)A, z),

where ∆(µ̌, z) is Li’s delta operator (see [Li], Section 3) corresponding to the field

(2.9) µ̌i(z) +
∑

α∈∆+

〈αi, µ̌〉 :ψα(z)ψ
∗
α(z) :

in C(V κ(g)), where µ̌ is viewed as an element of h = P̌ ⊗
Z

C.

The Z-grading on C(V κ(g)) and the differential d given by formula (2.4) endow

(C(V κ(g)), d) with the structure of a differential graded vertex superalgebra. Its

0th cohomology is Wκ(g) and all other cohomologies vanish. Furthermore, Wκ(g)

can be embedded into the vertex subalgebra of C(V κ(g)) generated by the fields

(2.9) with µ̌ ∈ P̌ [FF92, FBZ04]. This vertex subalgebra is in fact isomorphic to

the Heisenberg vertex algebra πκ and this embedding is equivalent to the Miura

map, see Section 3 below for more details.

For any ĝκ-module M , the complex C(M) = M ⊗
∧

∞/2+•(n+) is naturally

a C(V κ(g))-module. The W-algebra W
κ(g), viewed as a subalgebra of πκ ⊂

C(V κ(g)), acts on C(M) and therefore on the cohomology of d on C(M), which

is H•
DS(M). This gives us a more explicit description of the action of Wκ(g) on

H•
DS(M).

Now take the C(V κ(g))-module σ∗
µ̌C(M). As a vector space, it is C(M), but it is

equipped with a modified structure of C(V κ(g))-module; namely, the one obtained

by twisting the action by σµ̌ (see formula (2.8)). Since πκ is a vertex subalgebra

of C(V κ(g)), we obtain that σ∗
µ̌C(M) is a πκ-module, and hence a W

κ(g)-module.

However, the action of Wκ(g) now commutes not with d but with σµ̌(d) = dµ̌.

Indeed, we have

σµ̌(dst) = dst, σµ̌(Ψ̂) = Ψ̂µ̌.

Hence, under the σµ̌-twisted action, Wκ(g) naturally acts on the cohomologies of

the complex C(M) with respect to the differential dµ̌. Thus, we obtain the structure

of a W
κ(g)-module on Hi

DS,µ̌(M), i ∈ Z.

2.2. Family of modules. We define a family of modules over Wκ(g) parametrized

by λ ∈ P+, µ̌ ∈ P̌+.

For λ ∈ h∗, let Vκ
λ denote the irreducible highest weight representation of ĝκ

with highest weight λ.
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If λ ∈ P+, we also denote by Vλ,κ the Weyl module induced from the irreducible

finite-dimensional representation Vλ of g. If κ is irrational and λ ∈ P+, then

Vκ
λ = Vλ,κ.

In Section 4.2 we will prove the following:

Theorem 2.1. For any κ ∈ C and any λ ∈ P+, µ̌ ∈ P̌ , we have Hj
DS,µ̌(Vλ,κ) = 0

for all j 6= 0.

It is easy to see that if µ̌ ∈ P̌\P̌+, then H
0
DS,µ̌(V

κ
λ) = 0 as well (see Sect. 18 of

[FG]). However, if µ̌ ∈ P̌+, then the W
κ(g)-module H0

DS,µ̌(V
κ
λ) is non-zero.

Now we introduce our main objects of study in this paper, the modules

T κ
λ,µ̌ = H0

DS,µ̌(Vλ,κ), λ ∈ P+, µ̌ ∈ P̌+.(2.10)

Theorem 2.1 implies a character formula for T κ
λ,µ̌ which is independent of κ (see

Section 4.3). Because of that, the modules T κ
λ,µ̌ may be viewed as specializations

to different values of κ of a single free C[κ]-module.

Switching from g to Lg, we also have the W
κ̌(Lg)-modules

Ť κ̌
µ̌,λ = H0

DS,λ(Vµ̌,κ̌).

The following theorem is the main result of this paper:

Theorem 2.2. Let κ be irrational. Then for any λ ∈ P+ and µ̌ ∈ P̌+ there is an

isomorphism

(2.11) T κ
λ,µ̌

∼= Ť κ̌
µ̌,λ

of modules over W
κ(g) ∼= W

κ̌(Lg).

We will also prove the following result:

Theorem 2.3. Let κ be irrational. Then T κ
λ,µ̌ is irreducible for any λ ∈ P+ and

µ̌ ∈ P̌+.

A natural extension of the isomorphism (2.11) with λ = 0 and arbitrary µ̌ ∈ P̌+

to the case of the critical level (i.e. κ = 0) has been proved in [FG], Theorem

18.3.1(2), and it is likely to hold for other λ ∈ P+ as well. For other rational values

of κ, the isomorphism (2.11) does not hold for general λ and µ̌, even though the

modules T κ
λ,µ̌ and Ť κ̌

µ̌,λ have equal characters for all κ, according to the character

formula of Section 4.3. The reason is that for rational values of κ these two modules

are usually reducible and have different composition series.

Let us comment on the role of Theorem 2.2 in Gaitsgory’s work on the quantum

geometric Langlands correspondence.

Let KL(G)κ be the category of ĝκ-modules on which g[[t]] acts locally finitely

and tg[t] acts locally nilpotently, and let Whit(G)κ be the category of (κ + κc)-

twisted Whittaker D-modules on the affine Grassmannian GrG = G((t))/G[[t]].

The fundamental local equivalence that was conjectured by Gaitsgory and Lurie

and proved by Gaitsgory for irrational κ states that there is an equivalence

FLEκ→κ̌ : KL(G)κ
∼→ Whit(LG)κ̌
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of chiral categories. It follows that there are two functors

KL(G)κ ⊗KL(LG)κ̌ → W
κ(g) -mod

given by

M ⊗N 7→ H0
DS(M ⋆ FLEκ̌→κ(N)), M ⊗N 7→ H0

DS(FLEκ→κ̌(M) ⋆ N),

where ⋆ denotes the convolution product (see e.g. [FG]). Theorem 2.2 implies that

these two functors coincide. According to Gaitsgory [Gai2], a Ran space version of

this statement can be used to prove the existence of the quantum geometric Lang-

lands correspondence Lκ discussed in the Introduction. The isomorphism (2.11)

also appeared in a similar context in [CG, FG].

3. Proof of Theorem 2.2

Our proof uses a BGG-type resolution of the Weyl module Vλ,κ with irrational κ

in terms of the Wakimoto modules. This resolution allows us to express T κ
λ,µ̌ with

irrational κ as the intersection of the kernels of powers of the screening operators

acting on particular Fock representations of the Heisenberg vertex algebra πκ ∼= π̌κ̌.

More precisely, we obtain

T κ
λ,µ̌ =

r⋂

i=1

Kerπκ
λ−κµ̌

SW
i (λi + 1), Ť κ̌

µ̌,λ =

r⋂

i=1

Kerπ̌κ̌
µ̌−κ̌λ

ŠW
i (µ̌i + 1),

where r = rank g and SW
i (λi + 1) and ŠW

i (µ̌i + 1) are the operators introduced

below. We then show that

Kerπκ
λ−κµ̌

SW
i (λi + 1) = Kerπ̌κ̌

µ̌−κ̌λ
ŠW
i (µ̌i + 1)

for each i = 1, . . . , r. The latter statements are independent from each other for

different i, and each of them reduces to the rank 1 case, i.e. the case of g = sl2. In

that case the kernels on both sides are in fact known to be isomorphic to the same

irreducible representation of the Virasoro algebra [K, FFu, TK86]. This completes

the proof of Theorem 2.2. The details are given in the rest of this section.

In the next two sections we then present some further results. In Section 4, we

use the results of [Ara04, Ara07] to prove that T κ
λ,µ̌ is irreducible for all irrational κ

and to identify its highest weight as a W-algebra module. We use this fact to give

a different proof of Theorem 2.2, bypassing the information about representations

of the Virasoro algebra. Then we prove Theorem 2.1 and compute the characters

of T κ
λ,µ̌. In Section 5, we construct a BGG-type resolution of the modules for T κ

λ,µ̌

with irrational κ and discuss the κ → ∞ limit of this resolution, along the lines of

[FF96].

3.1. Heisenberg subalgebra. Let κ0 be the invariant bilinear form normalized so

that the square length of the maximal root of g is equal to 2; that is, κ0 = κg/2h
∨,

where h∨ is the dual Coxeter number of g. From now on, we will view κ as a

complex number by identifying it with the ratio κ/κ0. Then the complex numbers

κ and κ̌ are related by the standard formula:

κ̌ =
1

mκ
,
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where m is the lacing number of g, i.e. the maximal number of the edges in the

Dynkin diagram of g.

In what follows, we will use the notation (α|β) for κ0(α, β).

Let πκ be the Heisenberg vertex algebra of level κ. It is generated by fields bi(z),

i = 1, . . . , r = rank g, with the OPEs

bi(z)bj(w) ∼
κ(αi|αj)

(z − w)2
.(3.1)

Let πκ
λ be the irreducible highest weight representation of πκ with highest weight

λ ∈ h∗.

Let Wκ
λ =Mg⊗π

κ
λ be the Wakimoto module of highest weight λ and level κ+κc

([FF90b, Fre05]), whereMg is the tensor product of dim n+ copies of the βγ system.

The vacuum Wakimoto module Wκ
0 is naturally a vertex algebra and there is an

injective vertex algebra homomorphism V κ(g) →֒ Wκ
0 [Fre05].

We can compute H•
DS(W

κ
ν ) by using a spectral sequence in which the 0th dif-

ferential is dst. It follows from the construction of Wκ
ν that the 0th cohomology of

dst is isomorphic to πκ and all other cohomologies vanish. Therefore the spectral

sequences collapses and we obtain

H0
DS(W

κ
0 )

∼= πκ.

In fact, we can write down explicitly the fields in the complex (C(Wκ
ν ), dst) corre-

sponding to the generating fields bi(z) of πκ [FF92] (the factor (αi|αi)
2 in front of

hi(z) is due to the fact that bi(z) corresponds to the ith simple root rather than

coroot):

(3.2) bi(z) =
∑

n∈Z

bi,nz
−n−1 =

(αi|αi)

2
hi(z) +

∑

α∈∆+

(α|αi) :ψα(z)ψ
∗
α(z) :

The first term contributes κ+κc to the level, and the second term contributes −κc,

so the total level is κ, which is indeed the level of πκ. Note that the field bi(z) is

nothing but the field µ̌(z) given by formula (2.9) with µ̌ = αi (we identify h∗ with h

using the inner product κ0). We have already mentioned the fact that these fields

generate the Heisenberg vertex algebra πκ in Section 2.1.

By applying the functor H0
DS(?) to the embedding V κ(g) →֒ Wκ

0 , we obtain a

vertex algebra homomorphism [FF90a, FF92]

Υ : Wκ(g) → H0
DS(W

κ
0 )

∼= πκ(3.3)

called the Miura map, which is injective for all κ (see e.g. [Ara17]). In particular,

W
κ(g) may be identified with the image of the Miura map inside the Heisenberg

vertex algebra πκ. The latter can be described for generic κ as the intersection

of kernels of the screening operators [FF92]. This fact can actually be taken as a

definition of Wκ(g), see [FF96].

The n+((t))-module Mg admits a right action x 7→ xR of n+((t)) on Mg that

commutes with the left action of n+((t)) [Fre05]. As a U(n+((t)))-bimodule, Mg is

isomorphic to the semi-regular bimodule of n+((t)) [Vor99, Ara14], and hence we

have the following assertion.
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Proposition 3.1 ([Ara14, Proposition 2.1]). Let M be a n+((t))-module that is

integrable over n+[[t]]. There is a linear isomorphism

Φ : Wκ
λ⊗M

∼→ Wκ
λ⊗M

such that

Φ ◦∆(x) = (x⊗1) ◦ Φ, Φ ◦ (xR⊗1) = (xR⊗1− 1⊗x) ◦ Φ for x ∈ n+((t)).

Here xR denotes the right action of x ∈ n+((t)) on Wκ
µ̌ and ∆ denotes the coproduct:

∆(x) = x⊗1 + 1⊗x.

Now we can describe the W
κ(g)-modules Hi

DS,µ̌(W
κ
ν ).

Lemma 3.2. For any ν ∈ h∗, we have

(3.4) Hi
DS,µ̌(W

κ
ν )

∼= δi,0π
κ
ν−κµ̌

as W
κ(g)-modules.

Proof. By applying Proposition 3.1 forM = CΨµ̌
, we obtain a vector space isomor-

phism

H∞/2+i(n+((t)),W
κ
ν⊗CΨµ̌

)
Φ
∼→ H∞/2+i(n+((t)),W

κ
ν )⊗CΨµ̌

∼= H∞/2+it(n+((t)),W
κ
ν )

∼= δi,0π
κ
ν .

According to the definition of the action of Wκ(g) on Hi
DS,µ̌(?) given in Section 2.1,

to obtain the structure of a module overWκ(g) we need to apply the automorphism

σµ̌ to the fields bi(z) defined by formula (3.2). Under σµ̌, all bi,n with n 6= 0 are

invariant but bi,0 gets shifted by −κµ̌i, where µ̌i = 〈µ̌, α∨
i 〉. Indeed, hi,0 gets shifted

by −(κ+ κc)µ̌i, and the z−1-Fourier coefficient of the fermionic term of (3.2) gets

shifted by κcµ̌i. As the result, we obtain that H0
DS,µ̌(W

κ
ν )

∼= πκ
ν−κµ̌. �

3.2. Screening operators. For each i = 1, . . . , r, the screening operator

Si(z) : W
κ
ν → Wκ

ν−αi

is defined in [FF99, Fre05] by the formula

Si(z) = eRi (z) : e
∫
− 1

κ
bi(z)dz :,(3.5)

where

:e
∫
− 1

κ
bi(z)dz : =(3.6)

T−αi
z−

bi,0
κ exp

(
−
1

κ

∑

n<0

bi,n
n
z−n

)
exp

(
−
1

κ

∑

n>0

bi,n
n
z−n

)
.

Here z−
bi,0
κ = exp(−

bi,0
κ log z) and T−αi

is the translation operator πκ
ν → πκ

ν−αi

sending the highest weight vector to the highest weight vector and commuting with

all bj,n, n 6= 0.

Let ν ∈ P be such that

(ν|αi) +mκ =
(αi|αi)

2
(n− 1)(3.7)
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for some n ∈ Z>0 and m ∈ Z. We have

Si(z1)Si(z2) . . . Si(zn)|Wκ
ν

=

n∏

i=1

z
−

(ν|αi)

κ

i

∏

16i<j6n

(zi − zj)
(αi|αi)

κ :Si(z1)Si(z2) . . . Si(zn) :

Let L∗
n(ν, κ) be the local system with coefficients in C associated to the monodromy

group of the multi-valued function
n∏

i=1

z
−

(ν|αi)

κ

i

∏

16i<j6n

(zi − zj)
(αi|αi)

κ

on the manifold Yn = {(z1, . . . , zn) ∈ (C∗)n | zi 6= zj}, and denote by Ln(ν, κ) the

dual local system of L∗(ν, κ) ([AK11]). Then, for an element Γ ∈ Hn(Yn,Ln(ν, κ)),

Si(n,Γ) :=

∫

Γ

Si(z1)Si(z2) . . . Si(zn)dz1 . . . dzn : Wκ
ν → Wκ

ν−nαi
(3.8)

defines a ĝ-module homomorphism.

Theorem 3.3 ([TK86]). Suppose that

2d(d+ 1)

κ(αi|αi)
6∈ Z,

2d(d− n)

κ(αi|αi)
6∈ Z,

for all 1 6 d 6 n − 1. Then there exits a cycle Γ ∈ Hn(Yn,Ln(ν, κ)) such that

Si(n,Γ) is non-zero.

In fact, it follows from more general results in [SV91, Var95] (see [FF96] for a sur-

vey) that for irrational κ the cohomology groupHn(Yn,Ln(ν, κ)) is one-dimensional.

We will choose once and for all its generator Γ and will write Si(n) for the corre-

sponding operator Si(n,Γ).

The following theorem was proved for λ = 0 in [FF92], and for general λ ∈ P+

in [ACL].

Proposition 3.4. Let κ be irrational and λ ∈ P+. Then there exists a resolution

C•
λ of the Weyl module Vκ

λ = Vλ,κ of the form

0 → Vκ
λ → C0

λ

d0
λ→ C1 → . . .→ Cn → 0,(3.9)

Cj
λ =

⊕

w∈W
ℓ(w)=j

Wκ
w◦λ, w ◦ λ = w(λ+ ρ)− ρ,

with the differential d0λ given by

(3.10) d0λ =

r∑

i=1

ciSi(λi + 1)

for some ci ∈ C with λi = 〈λ, α∨
i 〉.

Proof. We recall the proof for completeness. Let M∗
ν be the contragradient Verma

module over g with highest weight ν ∈ h∗. LetM∗κ
ν be the corresponding induced ĝ-

module of level κ. From the explicit construction of the Wakimoto module Wκ
ν (see

[Fre05]) it follows that the degree 0 subspace of Wκ
ν (with respect to the Sugawara
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operator L0 shifted by a scalar so that the highest weight vector has degree 0), is

isomorphic to M∗
ν as a g-module. Therefore we have a canonical homomorphism

M∗κ
ν → Wκ

ν which is an isomorphism on the degree 0 subspaces.

If this homomorphism were not injective, then its kernel would contain a singular

vector of strictly positive degree. Consider then the canonical homomorphism from

M∗κ
ν to the contragradient module of the Verma ĝ-module Mκ

ν , which induces an

isomorphism of degree 0 subspaces. The presence of such a singular vector in M∗κ
ν

implies that the Verma module Mκ
ν would also contain a singular vector of positive

degree. However, if ν ∈ P and κ is irrational, it is known that there are no such

singular vectors in Mκ
ν . Therefore we find that in this case the homomorphism

M∗κ
ν → Wκ

ν is injective. Since these two ĝ-modules have the same character, we

obtain that M∗κ
ν

∼= Wκ
ν if ν ∈ P and κ is irrational.

Now let λ ∈ P+. Then we have the contragradient BGG resolution C•
λ(g) of the

irreducible g-module Vλ with highest weight λ such that

Cj
λ(g) =

⊕

w∈W
ℓ(w)=j

M∗
w◦λ.

Let Cj
λ(ĝ) be the induced resolution of ĝ-modules of level κ. Then for irrational κ

we have

Cj
λ(ĝ) =

⊕

w∈W

ℓ(w)=j

M∗κ
w◦λ ≃

⊕

w∈W

ℓ(w)=j

Wκ
w◦λ.

In particular, the 0th differential d0λ : C0
λ(ĝ) → C1

λ(ĝ) is the sum of non-zero

homomorphisms φi : M∗κ
λ → M∗κ

λ−(λi+1)αi
, or equivalently, Wκ

λ → Wκ
−(λi+1)αi

.

Since Homĝ(M
∗κ
λ ,M∗κ

λ−(λi+1)αi
) ∼= Homg(M

∗κ
λ ,M∗κ

λ−(λi+1)αi
) is one-dimensional,

and Si(λi+1) is a non-zero homomorphism Wκ
λ → Wκ

−(λi+1)αi
by Theorem 3.3, we

find that d0λ is given by formula (3.10). �

The ĝ-homomorphism Si(λi + 1) : Wκ
λ → Wκ

λ−(λi+1)αi
induces a linear map

H0
DS,µ̌(W

κ
λ) → H0

DS,µ̌(W
κ
λ−(λi+1)αi

)(3.11)

for λ ∈ P+.

For a positive integer n satisfying (3.7) for some m ∈ Z, let

(3.12) SW
i (n) =

∫

Γ

SW
i (z1)S

W
i (z2) . . . S

W
i (zn)dz1 . . . dzn : πκ

ν → πκ
ν−nαi

where

(3.13) SW
i (z) = :e

∫
− 1

κ
bi(z)dz : : πκ

ν → πκ
ν−αi

and Γ ∈ Hn(Yn,Ln(ν, κ)).

Next, we find the action of the screening operators on the cohomologies.

Lemma 3.5. Under the isomorphism (3.4), the map (3.11) is identified with the

operator

SW
i (λi + 1) : πκ

λ−κµ̌ → πκ
λ−κµ̌−(λi+1)αi

.
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Proof. Let Φ′ denote the isomorphism (3.4). It follows from Proposition 3.1 that

Φ′ ◦ Si(z) = (Si(z)+ :e
∫
− 1

κ
bi(z)dz :) ◦ Φ′.

This implies that the the operator

Si(λi + 1) : Wκ
λ → Wκ

λ−(λi+1)αi

induces on the cohomologies a map

πκ
λ−κµ̌ → πκ

λ−κµ̌−(λi+1)αi

equal to the operator SW
i (λi + 1) plus the sum of operators with non-zero weight

with respect to the Cartan subalgebra. The latter sum gives rise to the zero map on

the cohomologies since both Fock representations πκ
λ−κµ̌ and πκ

λ−κµ̌−(λi+1)αi
have

zero weight. �

Now we are ready to prove Theorem 2.2.

3.3. Completion of the proof of Theorem 2.2. By Lemmas 3.4 and 3.5, Waki-

moto modules are acyclic with respect to the cohomology functor Hi
DS,µ̌(?) and

T κ
λ,µ̌ is identified with the 0th cohomology of a complex C

•

λ which starts as follows:

(3.14) 0 → πκ
λ−κµ̌

d
0
λ→

r⊕

i=1

πκ
λ−κµ̌−(λi+1)αi

→ . . .

with

(3.15) d
0

λ =

r∑

i=1

ciS
W
i (λi + 1)

obtained by applying the functor H0
DS,µ̌(?) to each term of the resolution of Propo-

sition 4.5 and using Lemma 3.5. In Section 5 we will prove that the higher coho-

mologies of the complex (3.14) vanish for irrational κ. For now, we just focus on

its 0th cohomology:

(3.16) T κ
λ,µ̌

∼=

r⋂

i=1

Kerπκ
λ−κµ̌

SW
i (λi + 1).

Let π̌κ̌ be the Heisenberg vertex algebra of Lh of level κ̌. It is generated by the

fields Lbi(z), i = 1, . . . , rankLg, with the OPEs

Lbi(z)
Lbj(w) ∼

κ̌(Lαi|
Lαj)

(z − w)2
,(3.17)

where Lαi is the ith simple root of Lg and κ̌ = 1/mκ. Note that (·|·) now stands

for the inner product on (Lh)∗ such that the square length of its maximal root is

equal to 2.
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According to [FF92] (see also [Fre05, FBZ04]), the duality (2.5) is induced by

the vertex algebra isomorphism

πκ ∼→ π̌κ̌,

bi(z) 7→ −m
κ(αi|αi)

2
Lbi(z),(3.18)

κ 7→ κ̌ =
1

mκ
,

where m is the lacing number of g, that is, the maximal number of the edges in the

Dynkin diagram of g.

In the same way as above, we obtain in the case of Lg that

Ť κ
µ̌,λ

∼=

r⋂

i=1

Kerπκ̌
µ̌−κ̌λ

ŠW
i (µ̌i + 1).

Therefore in order to prove Theorem 2.2 it is sufficient to establish the isomorphisms

(3.19) Kerπκ
λ−κµ̌

SW
i (λi + 1) ∼= Kerπ̌κ̌

µ̌−κ̌λ
ŠW
i (µ̌i + 1), i = 1, . . . , r

(for irrational κ).

To prove the latter, observe that we have tensor product decompositions

πκ = πκ
i ⊗ πκ⊥

i , πκ
ν = πκ

i,νi ⊗ πκ⊥
i,ν⊥ ,

where πκ
i is the Heisenberg vertex subalgebra generated by the field bi(z) and

πκ⊥
i is its centralizer, which is a Heisenberg vertex algebra generated by the fields

orthogonal to bi(z). We denote by πκ
i,νi

and πκ⊥
i,ν⊥ the corresponding modules. By

construction, the operator SW
i (λi + 1) commutes with πκ⊥

i ⊂ πκ. Therefore

Kerπκ
λ−κµ̌

SW
i (λi + 1) = πκ⊥

i,(λ−κµ̌)⊥ ⊗Kerπκ
i,λi−κµ̌i

SW
i (λi + 1).

We have a similar decomposition in the case of Lg. Furthermore, under the

identification of the Heisenberg vertex algebras πκ and π̌κ̌, the subalgebras πκ
i and

πκ⊥
i are identified with the corresponding subalgebras π̌κ̌

i and π̌κ̌⊥
i of π̌κ̌. We also

have

Kerπ̌κ̌
µ̌−κ̌λ

ŠW
i (µ̌i + 1) = π̌κ̌⊥

i,(µ̌−κ̌λ)⊥ ⊗Kerπκ̌
i,µ̌i−κ̌λi

ŠW
i (µ̌i + 1)

Since πκ⊥
i,(λ−κµ̌)⊥

∼= π̌κ̌⊥
i,(µ̌−κ̌λ)⊥ , the isomorphism (3.19) is equivalent to the isomor-

phism

(3.20) Kerπκ
i,λi−κµ̌i

SW
i (λi + 1) ∼= Kerπκ̌

i,µ̌i−κ̌λi

ŠW
i (µ̌i + 1).

The left hand side of (3.20) is the kernel of the map

(3.21) SW
i (λi + 1) : πκ

i,λi−κµ̌i
→ πκ

i,−2−λi−κµ̌i
.

As shown in [FF92] (see the proof of Proposition 5, where the notation ν corresponds

to our κ1/2), it commutes with the Virasoro algebra Virκi generated by the field

(3.22) Ti(z) =
1

2κ(αi|αi)
:bi(z)

2 : +

(
1

(αi|αi)
−

1

2κ

)
∂zbi(z).

with central charge c = 13− 6γ − 6γ−1 where γ = 2κ
(αi|αi)

.
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According to the results of [K, FFu, TK86], for irrational κ (and hence γ),

the kernel of the operator (3.21) is isomorphic to the irreducible module over the

Virasoro algebra (3.22) with lowest weight (lowest eigenvalue of L0)

(3.23) ∆γ
λi,µ̌i

= γ−1 λi(λi + 2)

4
+ γ

µ̌i(µ̌i + 2)

4
−
λiµ̌i + λi + µ̌i

2
,

and the same is true for the kernel on the right hand side of (3.20).

Thus, for irrational κ the isomorphisms (3.20) hold for all i = 1, . . . , r, and hence

so do the isomorphisms (3.19). This completes the proof. �

4. Irreducibility and vanishing of higher cohomologies

The Miura map Υ induces an injective homomorphism

ΥZhu : Zhu(Wκ(g)) →֒ Zhu(π) = S(h),(4.1)

where Zhu(V ) is Zhu’s algebra of V ([ACL]). For λ ∈ h∗

χ(λ) : (evaluation at λ) ◦ΥZhu : Zhu(Wκ(g)) → C.

Then

χ(λ) = χ(µ̌) ⇐⇒ λ+ ρ− κρ̌ ∈W (µ̌+ ρ− κρ̌).(4.2)

Here, ρ and ρ̌ are the half sum of the positive roots and the positive coroots of g,

respectively.

4.1. Irreducibility and vanishing for irrational κ. Let Lκ
χ(λ) be the irreducible

representation of W
κ(g) with highest weight χ(λ). Recall that Vκ

ν denotes the

irreducible highest weight representation of ĝκ with highest weight ν.

The following assertion follows from [Ara04] and [Ara07, Theorem 9.14].

Proposition 4.1. Let κ be irrational, λ ∈ P+, µ̌ ∈ P∨
+ . Then Hi

DS(V
κ
λ−κµ̌) = 0

for i 6= 0 and H0
DS(V

κ
λ−κµ̌)

∼= Lκ
χ(λ−κµ̌).

Recall the isomorphism (3.18) between the Heisenberg algebras π and π̌ which

induces the duality isomorphism (2.5). It implies the following statement.

Lemma 4.2. Let λ ∈ P , µ̌ ∈ P∨. Under the duality isomorphism (2.5), we have

Lκ
χ(λ−κµ̌)

∼= Lκ̌
χ(µ̌−κ̌λ).

The following assertion was conjectured by Creutzig and Gaiotto [CG].

Theorem 4.3. Let κ be irrational. For any λ ∈ P+, µ̌ ∈ P̌+, we have

T κ
λ,µ̌

∼= Lκ
χ(λ−κµ̌).

Corollary 4.4. The modules T κ
λ,µ̌, λ ∈ P+, µ̌ ∈ P̌+ are irreducible for irrational κ.

This is the statement of Theorem 2.3.

In order to prove Theorem 4.3, we will need the following generalization of Propo-

sition 3.4 which has been proved in [ACL].
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Proposition 4.5. Let κ be irrational, λ ∈ P+, µ̌ ∈ P̌+. There exists a resolution

C•
λ−κµ̌ of the ĝ-module Vκ

λ−κµ̌ of the form

0 → Vκ
λ−κµ̌ → C0

λ−κµ̌

d0
λ−κµ̌
→ C1

λ−κµ̌ → . . .→ Cn
λ−κµ̌ → 0,

Ci
λ−κµ̌ =

⊕

w∈W

ℓ(w)=i

Wκ
w◦λ−κµ̌.

The differential d0λ−κµ̌ is given by

d0λ−κµ̌ =
r∑

i=1

ciSi(λi + 1)

for some ci ∈ C, with λi = 〈λ, α∨
i 〉.

Proof of Theorem 4.3. Let us apply the quantum Drinfeld–Sokolov reduction func-

tor (without twist by µ̌) to each term of the resolution of Proposition 4.5. Then we

find that H0
DS(V

κ
λ−κµ̌) is the 0th cohomology of the complex obtained by applying

the functor Hi
DS(?) to the resolution in Proposition 4.5. In the same way as in the

proof of Lemma 3.5 we then obtain that

(4.3) H0
DS(V

κ
λ−κµ̌)

∼=

r⋂

i=1

Kerπλ−κµ̌
SW
i (λi + 1).

Combining the isomorphisms (3.16) and (4.3), we obtain an isomorphism

(4.4) T κ
λ,µ̌

∼= H0
DS(V

κ
λ−κµ̌).

According to Proposition 4.1, Lκ
χ(λ−κµ̌)

∼= H0
DS(V

κ
λ−κµ̌). Together with (4.4), this

completes the proof of Theorem 4.3. �

Note that Theorem 2.2 also follows from Lemma 4.2 and Theorem 4.3. Thus, we

obtain an alternative proof of Theorem 2.2. Both proofs rely on resolutions of irre-

ducible ĝ-modules in terms of Wakimoto modules. The proof given in the previous

section uses in addition to that an isomorphism of kernels of screening operators

in the rank 1 case, which boils down to some properties of representations of the

Virasoro algebras. The proof presented in this section does not use representations

of the Virasoro algebra, but uses instead Proposition 4.1 stating that H0
DS(V

κ
λ−κµ̌)

is irreducible.

4.2. Cohomology vanishing for arbitrary κ. In this subsection we prove The-

orem 2.1 by generalizing the proof in the case λ = µ̌ = 0 given in Sect. 15.2 of

[FBZ04] (which followed [dBT]).

We start by representing the complex C(Vλ,κ) as a tensor product of two sub-

complexes. Let {Ja} be a basis of g which is the union of the basis {Jα}α∈∆+ of

n+ (where Jα = eα) and a basis {Ja}a∈∆−∪I of b− = n− ⊕ h consisting of root

vectors fα, α ∈ ∆+, in n− and vectors hi, i ∈ I = {1, . . . , ℓ}, in h. Thus, we use

Latin upper indices to denote arbitrary basis elements, Latin indices with a bar to

denote elements of b−, and Greek indices to denote basis elements of n+.

Denote by cabd the structure constants of g with respect to the basis {Ja}.
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Define the following currents:

(4.5) Ĵa(z) =
∑

n∈Z

Ĵa
nz

−n−1 = Ja(z) +
∑

β,γ∈∆+

caβγ :ψγ(z)ψ
∗
β(z) : .

Now, the first complex, denoted by C(Vλ,κ)0, is spanned by all monomials of

the form

(4.6) Ĵa(1)
n1

. . . Ĵa(r)
nr

ψ∗
α(1),m1

. . . ψ∗
α(s),ms

v, v ∈ Vλ

(recall that Ja ∈ b−). The second complex, denoted by C(Vλ,κ)
′, is spanned by all

monomials of the form

Ĵα(1)
n1

. . . Ĵα(r)
nr

ψα(1),m1
. . . ψα(s),ms

(recall that Jα ∈ n+). We have an analogue of formula (15.2.3) of [FBZ04]: the

natural map

(4.7) C(Vλ,κ)
′ ⊗ C(Vλ,κ)0

∼
−→ C(Vλ,κ)

sending A⊗B to A ·B is an isomorphism of graded vector spaces.

We then have an analogue of Lemma 15.2.5 of [FBZ04]: the cohomology of

(C(Vλ,κ), dµ̌) is isomorphic to the tensor product of the cohomologies of the two

complexes in (4.7): (C(Vλ,κ)0, dµ̌) and (C(Vλ,κ)
′, dµ̌). This is proved in the same

way as in [FBZ04], using the commutation relations established in Sect. 15.2.4, in

which we set χ = Ψµ̌.

In the same way as in Sect. 15.2.6, we prove that the cohomology of the complex

(C(Vλ,κ)
′, dµ̌) is one-dimensional, in cohomological degree 0. Thus, we have an

analogue of Lemma 15.2.7: the cohomology of (C(Vλ,κ), dµ̌) is isomorphic to the

cohomology of its subcomplex (C(Vλ,κ)0, dµ̌).

To compute H•(C(Vλ,κ)0, dµ̌), we introduce a double complex as in Sect. 15.2.8

of [FBZ04]. The convergence of the resulting spectral sequence is guaranteed by the

fact that (C(Vλ,κ)0, dµ̌) is a direct sum of finite-dimensional subcomplexes obtained

via the Z-grading introduced below in Section 4.3. The 0th differential is Ψ̂µ̌. We

have an analogue of formula (15.2.4) from [FBZ04]:

(4.8) [Ψ̂µ̌, Ĵ
a
n ] =

∑

β∈∆+
k∈Z

([σµ̌(p−), J
ā
n ]|J

β
−k)ψ

∗
β,k+1,

where

p− =
ℓ∑

i=1

(αi, αi)

2
fi,

(here fi = fi ·1), σµ̌ is the automorphism introduced in Section 2.1, and we use the

notation

(Atn|Btm) = κ0(A,B)δn,−m.

In [FBZ04], formula (15.2.4) (to which our formula (4.8) specializes when µ̌ = 0)

was used to show that b−t
−1C[t−1] has a basis consisting of the elements P

(n)
i , n <

0, i = 1, . . . , r, forming a basis of the Lie subalgebra

â− = Ker ad(p−) ⊂ b−t
−1C[t−1]
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and elements Iαn , α ∈ ∆+, n < 0, such that ad(p−)·I
α
n = fαt

n (here fα is a generator

of the one-dimensional subspace of n− corresponding to the root −α).

The existence of this basis is equivalent to the surjectivity of the map

(4.9) ad p− : b−t
−1C[t−1] → n−[t

−1]

which implies the following direct sum decomposition (as a vector space)

(4.10) b−t
−1C[t−1] = â− ⊕ (ad p−)

−1(n−[t
−1]),

where the second vector space on the right hand side denotes a particular choice of

a subspace of b−t
−1C[t−1] that isomorphically maps onto n−[t

−1] under the map

ad p−. This decomposition, in turn, implies that the complex C(Vκ
0 )0 is isomorphic,

as a vector space, to the tensor product

(4.11) C(Vκ
0 )0 = U(â−)⊗ C[Îαn ]α∈∆+,n<0 ⊗

∧
(ψ∗

α,n)α∈∆+,n<0,

where C[Îαn ]α∈∆+,n<0 stands for the linear span of lexicographically ordered mono-

mials in the Îαn . The differential χ = Ψ̂0 acts as follows:

(4.12) [Ψ̂0, P̂
(i)
n ] = 0, [Ψ̂0, Î

α
n ] = ψ∗

α,n+1, [Ψ̂0, ψ
∗
α,n]+ = 0.

In Sect. 15.2.9 of [FBZ04], the decomposition (4.11) and formulas (4.12) were used

to show that the higher cohomologies of the complex C(Vκ
0 )0 vanish and the 0th

cohomology is isomorphic to U(â−). This proves the vanishing of Hj
DS,0(V

κ
0 ) for all

j 6= 0.

We want to apply this argument for arbitrary λ ∈ P+, µ̌ ∈ P̌+. In order to do

that, we need to prove that the linear map

(4.13) ad(σµ̌(p−)) : b−t
−1C[t−1] → n−[t, t

−1] → n−[t, t
−1]/n−[t] ∼= n−t

−1C[t−1],

(which is the analogue of the map (4.9) for general µ̌) is surjective. To see that, let

(4.14) Iαn,µ̌ = σµ̌(I
α
n−〈α,µ̌〉), n < 0.

Then the formula ad(p−) · I
α
n,µ̌ = fαt

n implies that

ad(σµ̌(p−)) · I
α
n,µ̌ = σµ̌(fαt

n−〈α,µ̌〉) = fαt
n.

Moreover, Iαm has the form

Iαm =

r∑

i=1

bifα−αi
tm, bi ∈ C

(in this formula, if α = αi, then fα−αi
stands for the Cartan generator hi). There-

fore

σµ̌(I
α
m) =

r∑

i=1

bifα−αi
tm+〈α−αi,µ̌〉.

Since µ̌ ∈ P̌+, it follows that the elements

Iαn,µ̌ = σµ̌(I
α
n−〈α,µ̌〉) =

r∑

i=1

bifα−αi
tn−〈αi,µ̌〉

with n < 0 belong to b−t
−1C[t−1], and so the map (4.13) is indeed surjective.
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Therefore, we have the following analogue of the decomposition (4.10)

(4.15) b−t
−1C[t−1] = â

µ̌
− ⊕ (adσµ̌(p−))

−1(n−t
−1C[t−1]),

where â
µ̌
− is the kernel of the map (4.13). This implies an analogue of the tensor

product decomposition (4.11):

(4.16) C(Vλ,κ)0 = U(âµ̌−)⊗ C[Îαn,µ̌]α∈∆+,n<0 ⊗
∧

(ψ∗
α,n)α∈∆+,n<0 ⊗ Vλ

where Iαn,µ̌, α ∈ ∆+, n < 0, is defined by the formula (4.14) and C[Îαn,µ̌]α∈∆+,n<0

stands for the linear span of lexicographically ordered monomials in the Îαn,µ̌. The

differential Ψ̂µ̌ acts as follows:

(4.17) [Ψ̂µ̌, P̂ ] = 0, ∀P ∈ â
µ̌
−, [Ψ̂µ̌, Î

α
n,µ̌] = ψ∗

α,n+1,

(4.18) [Ψ̂µ̌, ψ
∗
α,n]+ = 0, Ψ̂µ̌ · v = 0, ∀v ∈ Vλ.

In the same way as in Sect. 15.2.9 of [FBZ04], we then use the decomposition (4.16)

and formulas (4.17), (4.18) to show that the higher cohomologies of the complex

(C(Vλ,κ)0, Ψ̂µ̌) vanish and the 0th cohomology is isomorphic to U(âµ̌−)⊗ Vλ. This

implies the statement of Theorem 2.1. �

4.3. Character formula. We define a Z+-grading on the complex C(Vλ,κ) as

follows: deg vλ,κ = 0, where vλ is the highest weight vector of Vλ,κ,

deg eαt
n = degψα,n = −n− 〈α, µ̌+ ρ̌〉, deg fαt

n = degψ∗
α,n = −n+ 〈α, µ̌+ ρ̌〉,

deg hi,n = −n.

We find that deg dst = deg Ψ̂µ̌ = 0, so the differential dµ̌ preserves the grading

and the complex (C(Vλ,κ), dµ̌) decomposes into a direct sum of homogeneous sub-

complexes corresponding to all non-negative degrees. The same is true for the

subcomplex (C(Vλ,κ)0, dµ̌).

It is easy to see that the homogeneous subcomplexes of (C(Vλ,κ)0, dµ̌) are finite-

dimensional. Hence we can use this Z+-grading and the vanishing Theorem 2.1 to

find the character of T κ
λ,µ̌, which appears as the 0th cohomology of (C(Vλ,κ)0, dµ̌),

by the taking the alternating sum of characters of the jth terms of C(Vλ,κ)0:

charT κ
λ,µ̌ =

∑

j>0

(−1)j charCj(Vλ,κ)0

= charµ̌ Vλ ·
∏

α∈∆+
n>〈α,µ̌+ρ̌〉

(1 − qn)
∏

α∈∆+
n>〈α,µ̌+ρ̌〉

(1− qn)−1
∏

n>0

(1− qn)−r

= charµ̌ Vλ ·
∏

α∈∆+

(1 − q〈α,µ̌+ρ̌〉)
∏

n>0

(1 − qn)−r.

Here charµ̌ Vλ is the character of the finite-dimensional representation Vλ with re-

spect to the Z+-grading defined by the formulas deg vλ = 0, where vλ is the highest

weight vector of Vλ, and deg fα = 〈α, µ̌+ ρ̌〉.

By the Weyl character formula,

charµ̌ Vλ = q〈λ+ρ,µ̌+ρ̌〉
∑

w∈W

(−1)ℓ(w)q−〈w(λ+ρ),µ̌+ρ̌〉
∏

α∈∆+

(1− q〈α,µ̌+ρ̌〉)−1.
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Therefore we obtain the following character formula for T κ
λ,µ̌ (for any κ ∈ C):

(4.19) charT κ
λ,µ̌ = q〈λ+ρ,µ̌+ρ̌〉

∑

w∈W

(−1)ℓ(w)q−〈w(λ+ρ),µ̌+ρ̌〉
∏

n>0

(1− qn)−r.

It is independent of κ and clearly symmetrical under the exchange of λ and µ̌ (as

well as ρ and ρ̌).

4.4. Failure of Theorem 2.2 for rational κ. In this subsection we show that

the statement of Theorem 2.2 with rational κ is false already for g = sl2. In

this case, we will use the parameter γ = κ/κ0 ∈ C (then κ̌ corresponds to γ−1,

κc to γ = −2 and κsl2 to γ = 4), and will identity weights λ ∈ P with the

integers 〈α̌, λ〉 ∈ Z, coweights µ̌ ∈ P̌ with the integers 〈µ̌, α〉 ∈ Z. It is proved in

[Ara05] that for any complex γ 6= −2, the cohomology H0
DS(?) defines an exact

functor from the category Oκ of ĝκ-modules to the category O of modules over

the Virasoro algebra with the central charge 13 − 6γ − 6γ−1. It sends the Verma

module Mκ
λ over ĝκ with highest weight λ (resp. the contragradient dual D(Mκ

λ) of

Mκ
λ; resp. the unique simple quotient Lκ

λ of Mκ
λ) to the Verma module (resp. the

contragradient dual of the Verma module; resp. a simple module or zero module)

over the Virasoro algebra with lowest weight (i.e. the lowest eigenvalue of the

element L0) ∆
γ
λ,0 = λ(λ + 2)/4κ− λ/2 (compare with formula (3.23)).

In particular, T κ
λ,0 = HDS(V

κ
λ) is a quotient of the Verma module H0

DS(M
κ
λ) and

hence is a cyclic module over the Virasoro algebra, generated by its lowest weight

vector.

Now suppose that γ < 0. It is proved in [Fre92b] that in this case the Wakimoto

module Wκ
λ with λ ∈ Z+ is isomorphic to the contradradient dual D(Mκ

λ) of the

Verma module Mκ
λ over ĝκ with highest weight λ, and that H0

DS,0(W
κ
λ)

∼= πκ
λ is

isomorphic to the contradradient dual of the corresponding Verma module over the

Virasoro algebra. Thus, πκ
λ is a cocyclic module over the Virasoro algebra for any

λ ∈ Z+.

In our counterexample, we will set γ = −2, λ = 2, µ̌ = 0. (Similar counterexam-

ples can also be obtained for any negative integer γ 6 −2 and λ from an infinite

subset of Z+ depending on γ.) Then we have Vκ
0

∼= Lκ
0 and there is an exact

sequence

0 → Lκ
0 → Vκ

2 → Lκ
2 → 0

(see e.g. [M, KT]). Applying the functor H0
DS(?), we get an exact sequence

(4.20) 0 → Lκ
χ(0) → T κ

2,0 → Lκ
χ(2) → 0.

The L0-lowest weights of Lκ
χ(0) and Lκ

χ(2) are 0 and −2, respectively. Therefore

the image of Lκ
χ(0) in T κ

2,0 is generated by a singular vector of weight 2. Thus,

the module T κ
2,0 is a cyclic module over the Virasoro algebra, generated by its

lowest weight vector, which is an extension of the irreducible module Lκ
χ(2) by the

irreducible module Lκ
χ(0).

Next, consider T κ̌
0,2 = H0

DS,2(V
κ̌
0 ). Our character formula (4.19) shows that T κ̌

0,2

and T κ
2,0 have the same characters. Therefore, their irreducible subquotients are also
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the same. However, we will now show that these two modules are not isomorphic

to each other.

The embedding Vκ̌
0 →֒ Wκ̌

λ induces a map

(4.21) T κ̌
0,2 = H0

DS,2(V
κ̌
0 ) → H0

DS,2(W
κ̌
λ) = πκ̌

−2κ̌.

With our choice of κ, it follows from [Fre92b] that πκ̌
−2κ̌ is a cocyclic module over

the Virasoro algebra, generated by its lowest weight vector. Its character coincides

with the character of πκ
2 , and hence it is isomorphic to πκ

2 .

We claim that the map (4.21) is injective. This does not follow immediately since

we don’t know whether H0
DS,2(?) is an exact functor. However, we know from the

character formula (4.19) that the weight 2 subspace of T κ̌
0,2 is 2-dimensional. Fur-

thermore, it is clear that the images of ĥ−2v and ĥ2−1v (where {e, h, f} is the stan-

dard basis of sl2 and v is the highest weight vector of C(Vκ̌
0 )) in T

κ̌
0,2 = H0

DS,2(V
κ̌
0 )

are linearly independent. Hence they form a basis of this weight 2 subspace. But the

map (4.21) sends these vectors to non-zero scalar multiples of the vectors b−2v−2κ̌

and b2−1v−2κ̌, which form a basis in the weight 2 subspace of πκ̌
−2κ̌. Therefore, the

map (4.21) is injective on the weight 2 subspaces. But T κ̌
0,2 has the same irreducible

subquotients as T κ
2,0, i.e. the ones with lowest weights 0 and 2 (see the exact se-

quence (4.20)). From the injectivity on the weight 2 subspaces, it then follows that

the map (4.21) itself is injective.

Recalling that πκ̌
−2κ̌ is a cocyclic module over the Virasoro algebra, we then find

that T κ̌
0,2 is cocyclic as well. Therefore, we have a non-trivial extension

(4.22) 0 → Lκ
χ(2) → T κ̌

0,2 → Lκ
χ(0) → 0.

Comparing the extensions (4.20) and (4.22), we conclude that T κ̌
0,2 is not isomorphic

to T κ
2,0. Rather, T κ̌

0,2 is isomorphic to a different module: the contragradient dual

of T κ
2,0. Thus, we obtain a counterexample to the statement of Theorem 2.2 with

rational κ.

5. Resolutions and vanishing

In this section, we will give a more detailed description of the complexes ob-

tained by applying the µ̌-twisted Drinfeld–Sokolov reduction functor H•
DS,µ̌(?) to

the resolution of the Weyl module Vκ
λ described in Proposition 4.5. In our proof

of Theorem 2.2, we focused on the 0th differential and the 0th cohomology of this

complex, which is the module T κ
λ,µ̌. Here, we will give formulas for the higher

differentials and will explain the connection to the BGG resolutions of irreducible

finite-dimensional representations of the corresponding quantum groups, following

[FF96, FF99]. This works for all irrational values of κ.

Theorem 2.1 then implies that for irrational κ this complex is a resolution of the

Wκ(g)-module T κ
λ,µ̌ by Fock representations. As an application, we will write in

Section 5.4 the character of the module T κ
λ,µ̌ as an alternating sum of characters of

the Fock representations appearing in the resolution. This reproduces the character

formula from Section 4.3.
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Finally, in Section 5.5 we will give an alternative proof, for generic κ, that the

higher cohomologies of this complex (and hence Hj
DS,µ̌(V

κ
λ) with j 6= 0) vanish. It

relies on the vanishing of the higher cohomologies in the classical limit κ → ∞. In

this limit, the screening operators satisfy the Serre relations of the Lie algebra g,

i.e. they generate an action of the Lie subalgebra n− ⊂ g. The cohomologies of our

complex in the limit κ → ∞ are therefore the cohomologies of n− acting on the

κ→ ∞ limit of the Fock representation πκ
λ. It is easy to show that this action is co-

free, so that higher cohomologies vanish. The vanishing of higher cohomologies in

the limit κ→ ∞ implies the vanishing for generic κ as well. This is a generalization

of the argument that was used in [FF96], which corresponds to the case λ = 0, µ̌ = 0.

5.1. Recollections from [FF96]. Using the results of the earlier works [BMP,

SV91, Var95], Feigin and one of the authors showed in [FF96] how to associate

linear operators between Fock representations to singular vectors in Verma modules

over the quantum group. Let us briefly recall this construction.

Let q = eπi/κ and Uq(g) the Drinfeld–Jimbo quantum group with generators

ei,Ki, fi, i = 1, . . . , r and standard relations (see, e.g., [FF96], Sect. 4.5.1). Let

Uq(n−) (resp., Uq(b+)) be the lower nilpotent (resp., upper Borel) subalgebra of

Uq(g), generated by fi (resp, Ki, ei) where i = 1, . . . , r. The generators fi satisfy

the q-Serre relations

(5.1) (adq fi)
−aij+1 · fj = 0,

where (aij) is the Cartan matrix of g. The notation adq fi means the following:

introduce a grading on the free algebra with generators ei, i = 1, . . . , l, with respect

to the root lattice Q of g, by putting deg fi = −αi. If x is a homogeneous element

of this algebra of weight γ ∈ Q, put

adq fi · x = fix− q(αi|γ)xfi.

Next, we define Verma modules over Uq(g) as follows. Let Cλ be the one-

dimensional representation of Uq(b+), which is spanned by a vector 1λ, such that

ei · 1λ = 0, Ki · 1λ = q(λ|αi)1λ, i = 1, . . . , r.

The Verma module M q
λ over Uq(g) of highest weight λ is the module induced

from the Uq(b+)-module Cλ:

M q
λ = Uq(g)⊗Uq(b+) Cλ.

It is canonically isomorphic to Uq(n−)1λ, and hence to Uq(n−).

Roughly speaking, the screening operators Qi =
∫
SW
i (z)dz, where SW

i (z) is

given by formula (3.13), satisfy the q-Serre relations (5.1) and hence generate

Uq(n−). However, because of the multivalued nature of the OPEs between the

fields SW
i (z):

SW
i (z)SW

j (w) = (z − w)(αi|αj)/κ :SW
i (z)SW

j (w) :

and the factor z(λ|αi)/κ appearing in the expansion of SW
i (z) acting from πκ

λ to

πκ
λ−αi

, a general element of Uq(n−), when expressed in terms of the screening

operators Qi, is not well-defined as a linear operator between Fock representations.
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Only those elements are well-defined for which there is a non-trivial integration

cycle on the corresponding configuration space (of the variables of the currents

SW
i (z) that have to be integrated) with values in a one-dimensional local system.

Such an integration cycle, in turn, exists if and only if the element of Uq(n−), when

viewed as a vector in M q
λ (where λ is the highest weight of the Fock representation

from which we want our operator to act), is a singular vector, i.e. is annihilated by

the generators ei, i = 1, . . . , r.

Remark on notation: Our Heisenberg algebra generators bi,n correspond to

β−2bi,n of [FF96], and our κ corresponds to β−2. However, we have a different

sign in the definition of the screening currents SW
i (z) (see formula (3.13)) com-

pared to [FF96], and for this reason our πκ
ν corresponds to π−νβ of [FF96]. In

addition, our Uq(n−) corresponds to Uq(n+) of [FF96], for the same reason. Apart

from this sign change, our notation is compatible with that of [FF96].

According to Lemma 4.6.6 of [FF96], we have the following result.

Lemma 5.1. Let P ∈ Uq(n−) be such that P · 1ν is a singular vector of M q
ν of

weight ν − γ. Then for irrational κ the operator V κ
P defined by formula (4.6.1) of

[FF96] (with β = κ−1/2) is a well-defined homogeneous linear operator πκ
ν → πκ

ν−γ .

For example, let P = fn
i , where n ∈ Z+. Then P1ν is a singular vector in

M q
ν if ν satisfies equation (3.7) for some m ∈ Z. The corresponding operator

V κ
P : πκ

ν → πκ
ν−nαi

is the operator SW
i (n) given by formula (3.12).

Denote by F •
κ (g) the complex F ∗

β (g) constructed in Sect. 4.6 of [FF96], where

β = κ−1/2. It consists of Fock representations and its differentials are constructed

using the BGG resolution of the trivial representation of Uq(g) and Lemma 5.1. It

was proved in Theorem 4.6.9 of [FF96] that the 0th cohomology of F •
κ (g) is the

W-algebra Wκ(g) and all other cohomologies vanish for generic κ.

This will be our complex corresponding to λ = 0, µ̌ = 0. And now we construct

a similar complex F •
λ,µ̌,κ(g) for all λ ∈ P+, µ̌ ∈ P̌+. We will show that the 0th

cohomology of F •
λ,µ̌,κ(g) is theW

κ(g)-module T κ
λ,µ̌ and all other cohomologies vanish

for irrational κ.

5.2. Generalization to non-zero λ and µ̌. First, we generalize the complex

to an arbitrary λ ∈ P+ and µ̌ = 0. Consider the BGG resolution Bq,λ
• (g) of

the irreducible finite-dimensional representation Lq
λ of Uq(g) with highest weight

λ ∈ P+ (see Remark 4.5.7 of [FF96]). Its degree j part is

Bq,λ
j (g) =

⊕

ℓ(w)=j

M q
w◦λ, w ◦ λ = w(λ + ρ)− ρ.

The differential is constructed in the same way as in Sect. 4.5.6 of [FF96] in the case

λ = 0: For any pair w,w′ of elements of the Weyl group of g, such that w ≺ w′′, we

have the embeddings iqw′,w :M q
w′◦λ →M q

w◦λ satisfying iqw′
1,w

◦iqw′′,w′
1
= iqw′

2,s
◦iqw′′,w′

2
.

The differential dq,λj : Bq,λ
j (g) → Bq,λ

j−1(g) is given by the formula

(5.2) dq,λj =
∑

ℓ(w)=j−1,ℓ(w′)=j,w≺w′

ǫw′,w · iqw′,w.
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The embedding iqw′,w is given by the formula u1w′◦λ → uP q
w′,w1

q
w◦λ, ∀u ∈ Uq(n−),

where P q
w′,w1

q
w◦λ is a singular vector in M q

w◦λ of weight w′ ◦ λ.

Now we use this BGG resolution to construct a complex F •
λ,0,κ(g) as in Sect.

4.6.8 of [FF96]. Namely, we set

F j
λ,0,κ(g) =

⊕

ℓ(w)=j

πκ
w◦λ

and define the differential of this complex using the differential of Bq,λ
• (g) by for-

mulas analogous to formula (4.6.5) of [FF96]:

(5.3) djλ =
∑

ℓ(w)=j−1,ℓ(w′)=j,w≺w′

ǫw′,w · V κ
P q

w′,w
.

The nilpotency of this differential follows in the same way as in the case λ = 0

[FF96]. Furthermore, it follows from the construction that the 0th differential of

the complex F •
λ,κ (recall that si ◦ λ = λ− (λi + 1)αi)

(5.4) d0λ : πκ
λ →

r⊕

i=1

πκ
λ−(λi+1)αi

is equal to

(5.5) d0λ =

r∑

i=1

viS
W
i (λi + 1),

where vi ∈ C× (compare with formulas (3.14) and (3.15)). The factors vi occur

because our choice of integration cycle Γ in Theorem 3.3 is a priori different from

that of [FF96]. Since the corresponding cohomology group is one-dimensional,

the resulting integrals are proportional to each other, and vi is the corresponding

proportionality factor.

Finally, we consider arbitrary µ̌ ∈ P̌+. We define the complex F •
λ,µ̌,κ(g) as

follows:

F j
λ,µ̌,κ(g) =

⊕

ℓ(w)=j

πκ
w◦λ−κµ̌

and define the differentials by the same formula as for the complex F •
λ,κ(g).

In particular, the 0th differential d0λ,µ̌ equals the differential (3.15) (up to the

inessential scalar multiples in front of the summands), and therefore we find that

the 0th cohomology of our complex F •
λ,µ̌,κ(g) is the Wκ(g)-module T κ

λ,µ̌.

Theorem 5.2. Let κ be irrational. Then we have

(1) The jth cohomology of the complex F •
λ,µ̌,κ(g) is isomorphic to Hj

DS,µ̌(V
κ
λ).

(2) The jth cohomology of F •
λ,µ̌,κ(g) is T

κ
λ,µ̌ if j = 0 and 0 if j > 0.

5.3. Proof of Theorem 5.2. We will construct explicitly the higher differentials

of the complex (3.9), which is a resolution of the Weyl module Vκ
λ in terms of the

Wakimoto modules. This has already been done in [Fre92a, FF99] in the case λ = 0

and the construction generalizes in a straightforward fashion to arbitrary λ ∈ P+.
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Recall that

Cj
λ =

⊕

w∈W
ℓ(w)=j

Wκ
w◦λ.

Thus, the weights of the Wakimoto modules appearing in Cj
λ are the same as those

of the Verma modules appearing in the jth term Bq,λ
j (g) of the BGG resolution

of Lq
λ. We define the differentials of the complex C•

λ by the above formula (5.3),

in which we however use a different definition of V κ
P . While in the definition of

[FF96], which is used above in formula (5.3), V κ
P is constructed using the W-

algebra screening currents SW
i (z), now we use in their place the affine Kac–Moody

screening currents Si(z) given by formula (3.5). Let us denote the corresponding

operator by Ṽ κ
P .

The fact that an analogue of Lemma 5.1 holds for these screening currents was

established in Sect. 3 of [FF99]. This implies that with this definition, we indeed

obtain a complex. Furthermore, for irrational κ we have Wκ
w◦λ

∼= M∗κ
w◦λ, as shown

in the proof of Proposition 3.4. Therefore we find that the space of intertwining

operators between Wκ
w◦λ → Wκ

w′◦λ with ℓ(w) = j − 1, ℓ(w′) = j, w ≺ w′ is one-

dimensional. We also know that each operator Ṽ κ
P is non-zero because this is so

in the limit κ → ∞, as explained in Sect. 4 of [FF99]. Therefore the complex

constructed this way is indeed isomorphic to the complex from Proposition 3.4.

Now we apply to this complex the functor H•
DS,µ̌(?). According to Lemma 3.4,

we have H•
DS,µ̌(W

κ
w◦λ)

∼= πκ
w◦λ−κµ̌, so as a graded vector space, the complex we

obtain is precisely the complex F •
λ,µ̌,κ(g). Furthermore, in the same way as in the

proof of Lemma 3.5 we obtain that the corresponding differentials are given by the

same formulas as the differentials of the complex C•
λ but we have to replace the

Kac–Moody screening currents Si(z) by the W-algebra screening currents SW
i (z).

Thus, we obtain precisely the differentials (5.3) of the complex F •
λ,µ̌,κ(g).

This proves part (1) of Theorem 5.2. Part (2) now follows from Theorem 2.1

and the definition of T κ
λ,µ̌.

It is worth noting that the complex F •
λ,µ̌,κ(g) can be obtained in two ways:

by applying the functor H•
DS,µ̌(?) to the resolution C•

λ of V κ
λ (as above), and by

applying the functorH•
DS(?) to the resolution C

•
λ−κµ̌ of V κ

λ−κµ̌ from Proposition 4.5.

The second way implies that its higher cohomologies vanish because of Proposition

4.1. Hence we obtain another proof of part (2) of Theorem 5.2.

5.4. Character formula. By definition, the character of a Wκ(g)-module M is

ch(M) = TrM qL0 , where L0 is the grading operator obtained from the Virasoro

generator T (z) of Wκ(g). Theorem 5.2 implies that

ch(T κ
λ,µ̌) =

∑

w∈W

(−1)ℓ(w) ch(πκ
w◦λ−κµ̌).

Next, according to the formula for T (z) given in Sect. 4 of [FF92],

ch(πκ
ν−κµ̌) = q∆

κ
ν,µ̌

∏

n>0

(1− qn)−r,
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where

(5.6) ∆κ
ν,µ̌ =

1

2κ
(ν|ν + 2ρ) +

κ

2
(µ̌|µ̌+ 2ρ̌)− 〈ν + ρ, µ̌+ ρ̌〉+ 〈ρ, ρ̌〉.

We also find that for every w ∈ W ,

∆κ
w◦λ,µ̌ = ∆̃κ

λ,µ̌ − 〈w(λ + ρ), µ̌+ ρ̌〉,

where

∆̃κ
λ,µ̌ =

1

2κ
(λ|λ + 2ρ) +

κ

2
(µ̌|µ̌+ 2ρ̌) + 〈ρ, ρ̌〉.

Therefore

(5.7) ch(T κ
λ,µ̌) = q∆̃

κ
λ,µ̌

∏

n>0

(1− qn)−r
∑

w∈W

(−1)ℓ(w)q−〈w(λ+ρ),µ̌+ρ̌〉.

Note that the eigenvalues of L0 coincide with the Z+-grading introduced in Section

4.3 up to a shift by ∆κ
λ,µ̌ given by formula (5.6). Hence formula (5.7) is equivalent

to formula (4.19).

5.5. The limit κ → ∞. In order to pass to the limit κ → ∞, we redefine the

complex F •
λ,µ̌,κ(g) slightly. Define the complex F̃ •

λ,µ̌,κ(g) by the formula

F̃ j
λ,κ(g) =

⊕

ℓ(w)=j

πκ
w◦λ.

Let us identify πκ
w◦λ−κµ̌

∼= πκ
w◦λ as free modules with one generator over the negative

part of the Heisenberg Lie algebra. Then we identify F̃ •
λ,κ(g) and F •

λ,µ̌,κ(g) as

vector spaces. The differential on F •
λ,µ̌,κ(g), given by formula (5.3), gives rise to the

following differential on F̃ •
λ,µ̌,κ(g). Note that the screening current SW

i (z) acting

on πκ
ν−κµ̌ becomes, under the isomorphism πκ

ν−κµ̌
∼= πκ

ν the operator z−µ̌iSW
i (z),

where as before µ̌i = 〈µ̌, αi〉. Thus, the differential

d̃jλ,µ̌ : F̃ j
λ,µ̌,κ(g) → F̃ j+1

λ,µ̌,κ(g)

is given by the same formula (5.3) in which we replace each SW
i (z) by z−µ̌iSW

i (z).

For instance, the 0th differential

(5.8) d̃0λ,µ̌ : πκ
λ →

r⊕

i=1

πκ
λ−(λi+1)αi

is equal to

(5.9) d̃0λ,µ̌ =
r∑

i=1

viS
W
i,(µ̌i)

(λi + 1),

where

(5.10) SW
i,(m)(n) =

∫

Γ

SW
i (z1)S

W
i (z2) . . . S

W
i (zn)z

−m
1 . . . z−m

n dz1 . . . dzn :

πκ
ν → πκ

ν−nαi

(compare with formula (3.12)).
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Let us now rescale the generators of the Heisenberg Lie algebra as follows:

bin 7→ xin =
bin
κ
.

The OPEs (3.1) imply the commutation relations

[xin, x
j
m] =

1

κ
(αi|αj)nδn,−m.

We will consider the Heisenberg algebra and its modules with respect to these new

generators xin, n ∈ Z, i = 1, . . . , r. Then in the limit κ→ ∞ the Heisenberg algebra

becomes commutative, with generators xin. Let us fix once and for all the highest

weight vector in in the Fock representation πκ
ν , ν ∈ h∗. Then we can identify πκ

ν with

C[xin]n<0 (this corresponds to choosing a particular C[κ−1]-lattice in πκ
ν ⊗C[κ, κ−1];

namely, the one generated by monomials in the xin applied to the highest weight

vector). In the limit κ→ ∞, we obtain a module on which the negative subalgebra

C[xin] acts freely and all other generators xin, n > 0 act by 0. Thus, the κ → ∞

limit of πκ
ν defined in this way does not depend on ν. We will denote it simply by

π∞.

According to Lemma 4.3.4 of [FF96], the screening operator Qκ
i =

∫
SW
i (z)dz :

πκ
0 → πκ

−αi
has the following expansion in κ−1 = β2:

Qκ
i = κ−1Qi + κ−2(. . . ),

where bracketed dots represent a power series in non-negative powers in κ−1 (the

difference in sign is due to our choice of sign in the definition of the screening

currents; see Remark on notation in Section 5.1). The leading term Qi is given by

formula (2.2.4) of [FF96] (note that Qi = T−1
i Q̃i):

(5.11) Qi =
∑

n<0

Si
n+1∂

(i)
n ,

where the Si
n are the Schur polynomials given by the generating function

(5.12)
∑

n60

Si
nz

n = exp(
∑

m<0

−
xim
m
zm)

and

(5.13) ∂(i)n =

r∑

j=1

(αi|αj)
∂

∂xjn

In the same way, we obtain an analogous formula for

Qκ
i,(µ̌i)

=

∫
SW
i (z)z−µ̌idz : πκ

0 → πκ
−αi

, µ̌i > 0.

Namely,

Qκ
i,(µ̌i)

= κ−1Qi,(µ̌i) + κ−2(. . . ),

where

(5.14) Qi,(µ̌i) =
∑

n<−µ̌i

Si
n+µ̌i+1∂

(i)
n ,
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Thus, for each µ̌ ∈ P̌+ we obtain an r-tuple of operators Qi,(µ̌i) on the space π∞.

These are actually derivatives of the ring π∞ = C[xin]n<0.

Lemma 5.3. The operators Qi,(µ̌i) satisfy the Serre relations of n− ⊂ g:

(5.15) (ad fi)
−aij+1 · fj = 0.

Proof. The proof is essentially the same as the proof of Proposition 2.2.8 of [FF96],

which corresponds to the case µ̌ = 0. The crucial formula in that proof is the

commutation relation

(5.16) (adQi)
m ·Qj =

Cm(−aij −m+ 1)
∑

n1,...,nm+1<0

Si
n1+1 . . . S

i
nm+1S

j
nm+1+1

1

n1 . . . nm

·

(
m∑

l=1

nl

n1 + . . . n̂l . . .+ nm+1
∂
(i)
n1+···+nm+1

− ∂
(j)
n1+···+nm+1

)
,

where Cm is a constant (note that there is a typo in this formula in [FF96]; namely,

Si
n1
. . . Si

nm
Sj
nm+1

should be replaced with Si
n1+1 . . . S

i
nm+1S

j
nm+1+1). This formula

is proved by induction, using the relations

[∂(i)n , Sj
m] = −(αi|αj)

1

n
Sj
m−n

(where we set Sj
m = 0, if m > 0) and the identity

1

a(a+ b)
+

1

b(a+ b)
=

1

ab
.

The following formula is a straightforward generalization of formula (5.16):

(5.17) (adQi)
m ·Qj =

Cm(−aij−m+1)
∑

n1,...,nm<−µ̌i;nm+1<−µ̌j

Si
n1+µ̌i+1 . . . S

i
nm+µ̌i+1S

j
nm+1+µ̌j+1

1

n1 . . . nm

·

(
m∑

l=1

nl

n1 + . . . n̂l . . .+ nm+1
∂
(i)
n1+···+nm+1

− ∂
(j)
n1+···+nm+1

)
.

This proves our Lemma. �

According to Proposition 2.4.6 of [FF96], in the case of µ̌ = 0 the action of n−
generated by the operatorsQi, i = 1, . . . , r, on π∞ is “cofree”, i.e. π∞ ∼= U(n−)

∨⊗V

for some graded vector space V with a trivial action of n−. Here U(n−)
∨ is the

restricted dual of the free n−-module U(n−): U(n−)
∨ = ⊕γU(n−)

∗
γ , where for each

element γ in the root lattice of g, U(n−)γ stands for the corresponding component

in U(n−), which is finite-dimensional. In the same way, one can show that the

action of n− generated by Qi,(µ̌i), i = 1, . . . , r, on π∞ is cofree for all µ̌ ∈ P̌+ as

well.

Now we are ready to study the limit of the complex F̃ •
λ,µ̌,κ(g) as κ → ∞. We

identify each Fock representation appearing in it with C[xin] as above, and in the

formula for the differential rescale the screening current SW
i (z) 7→ κSW

i (z). As
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explained in Sect. 4.6 of [FF96], the complex defined this way has a well-defined

limit as κ→ ∞.

Let’s first look at the limiting complex F̃ •
λ,µ̌,∞(g) in the case λ = 0, µ̌ = 0 consid-

ered in [FF96]. It is shown in the proof of Proposition 4.3.5 of [FF96] that the com-

plex F̃ •
0,0,∞(g) computes the cohomology of the complex Homn−(B•(g), π

∞), where

B•(g) is the BGG resolution of the trivial representation L0 of g (this resolution is

the q → 1 limit of the resolution Bq,0
• (g) discussed in Section 5.1 above). Since π∞ is

a cofree n−-module, we find that the 0th cohomology is Homn−(L0, π
∞) = (π∞)n−

and all higher cohomologies vanish.

In the same way, we show that for general λ ∈ P+, µ̌ ∈ P̌+ we have

F̃ •
λ,µ̌,∞(g) ≃ Homn−(B

λ
• (g), π

∞)

where Bλ
• (g) is the BGG resolution of the irreducible finite-dimensional representa-

tion Lλ of g (the q → 1 limit of the resolution Bq,λ
• (g) discussed in Section 5.1) and

we consider the action of n− on π∞ generated by the operators Qi,(µ̌i), i = 1, . . . , r.

Since π∞ is cofree with respect to this action, we obtain

Proposition 5.4. The 0th cohomology of the complex F̃ •
λ,µ̌,∞(g) is isomorphic to

Homn−(Lλ, π
∞) and all higher cohomologies vanish.

Corollary 5.5. For generic κ, all higher cohomologies of the complex F •
λ,µ̌,∞(g)

vanish.

Note that in Theorem 5.2,(2) we have proved (by relying on Theorem 2.1) a

slightly stronger statement: All higher cohomologies of the complex F •
λ,µ̌,∞(g) van-

ish for irrational κ.
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