1	Potential confounders in association between PFAS expo	osure and diabetes.
---	--	---------------------

2

3 Kouji H. Harada, Mariko Harada Sassa

4 Department of Health and Environmental Sciences, Kyoto University Graduate School of

- 5 Medicine, Kyoto, Japan
- 6 ORCID ID
- 7 Kouji H. Harada https://orcid.org/0000-0001-7319-123X
- 8

9 Kouji H. Harada, Department of Health and Environmental Sciences, Kyoto University

- 10 Graduate School of Medicine, kharada-hes@umin.ac.jp
- 11 Mariko Harada Sassa, Department of Health and Environmental Sciences, Kyoto University
- 12 Graduate School of Medicine, marikohs@kuhp.kyoto-u.ac.jp
- 13
- 14 **Corresponding author**: Correspondence to Kouji H. Harada.
- 15
- 16 Word count: 521 words
- 17 Keywords: per- and poly-fluoroalkyl substances, confounders, estimated glomerular
- 18 filtration rate, breastfeeding
- 19

20	To the Editor: We read with interest the recent article by Park et al. in Diabetologia [1]. Per-
21	and poly-fluoroalkyl substances (PFASs) are a class of contaminants of concern in public
22	health due to their widespread contamination. Its chemical structure is similar to fatty acids,
23	which has been suggested to affect metabolic diseases. In this context, the authors investigated
24	the association between PFAS exposure and the risk of developing diabetes in a cohort study
25	[1]. This is an important study that examined the impact of PFAS in a study design with a
26	higher level of evidence than in previous case-control and cross-sectional studies.
27	In their statistical analysis, the authors adjusted for potential confounding factors in the
28	regression model. However, we wonder if there are other important variables besides those
29	included there. As the authors pointed out, previous studies have shown that blood PFAS
30	concentrations are affected by renal function, including diabetic nephropathy. The authors'
31	study was a cohort study, and blood PFAS concentrations were assessed before the onset of
32	diabetes, which may reduce the influence of potential biases. However, the baseline
33	characteristics of the cohort were not fully provided. Even before the onset of diabetes, there
34	may be bias regarding the risks of developing diabetes, and biases from these variables might
35	affect blood PFAS concentrations. For example, eGFR, history of hypertension or
36	dyslipidemia, and fasting blood glucose were not given. eGFR influences blood PFAS
37	concentrations because renal clearance is an important excretion pathway of PFAS [2], and
38	eGFR can be related to insulin resistance [3]. Decreased eGFR would increase blood PFAS

39	level and insulin resistance, and the association between PFAS and diabetes onset could be
40	overestimated. eGFR is not only influenced by diabetes but also by many lifestyle-related
41	diseases, and hypertension is one of them [4]. In the study, short-chain, and branched-chain
42	PFASs showed associations with diabetes risks, whose blood levels are predominantly affected
43	by renal function. Hence, potential confounding with eGFR is possible to overestimate the
44	risks.
45	In addition, even in normal fasting plasma glucose (FPG) levels (<5.5 mmol/L), higher FPG
46	levels have been reported to be associated with higher diabetes risk [5,6]; it would be
47	necessary to check for the differences between PFAS concentration groups. Of course, if this
48	is an intermediate variable for diabetes onset, there may be no need to adjust for it as a total
49	effect, since some studies have shown that PFAS affected FPG levels. However, if there was
50	a difference in FPG at baseline by potential differences in background variables, confounding
51	must be considered.
52	The authors adjusted for the history of delivery and menopause. This is because blood PFAS
53	levels are affected by these variables and they also affect the risk of developing diabetes. In
54	addition, breastfeeding, not included in the statistical model, decreases blood PFAS levels [7]
55	and also diabetes risk [8], implying that the adjustment may show a weaker association than
56	the original analysis.

57 Taken together, the possible directed acyclic graph between PFAS exposure and diabetes risk

58	is shown	(Figure 1)	. This information	nay not be	all-inclusive	but should	l be considered as
----	----------	------------	--------------------	------------	---------------	------------	--------------------

- 59 background information in future studies and help evaluate previous studies.
- 60

61 Abbreviations

- 62 PFAS: per- and poly-fluoroalkyl substances
- 63 eGFR: estimated glomerular filtration rate
- 64 FPG: fasting plasma glucose
- 65
- 66 Data availability
- 67 Not applicable
- 68

69 Funding

- 70 This letter was partly supported by the Japan Society for the Promotion of Science (grant
- numbers 22K10509; 20K23224). The funder was not involved in this work.
- 72
- 73 Authors' relationships and activities
- 74
- 75 Author information
- 76 Affiliations

78	Department of Health and Environmental Sciences, Kyoto University Graduate School
79	of Medicine, Kyoto, Japan
80	
81	Mariko Harada Sassa & Kouji H. Harada
82	
83	Ethics declarations
84	Duality of interest
85	The authors declare that there is no duality of interest associated with this manuscript.
86	
87	Contributions
88	
89	MH and KHH were responsible for drafting the article. All authors approved the version to
90	be submitted.
91	
92	References
93	1. Park SK, Wang X, Ding N, et al Per- and polyfluoroalkyl substances and incident
94	diabetes in midlife women: the Study of Women's Health Across the Nation (SWAN).
95	Diabetologia. 2022 Apr 11. doi: 10.1007/s00125-022-05695-5. Epub ahead of print.

77

5

96 PMID: 35399113.


97	2.	Harada K, Inoue K, Morikawa A, Yoshinaga T, Saito N, Koizumi A. Renal clearance of
98		perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific
99		excretion. Environ Res. 2005 Oct;99(2):253-61. doi: 10.1016/j.envres.2004.12.003. Epub
100		2005 Jan 18. PMID: 16194675.
101	3.	Pham H, Robinson-Cohen C, Biggs ML, et al Chronic kidney disease, insulin resistance,
102		and incident diabetes in older adults. Clin J Am Soc Nephrol. 2012 Apr;7(4):588-94. doi:
103		10.2215/CJN.11861111. Epub 2012 Mar 1. PMID: 22383749; PMCID: PMC3315343.
104	4.	Yoshida T, Takei T, Shirota S, et al Risk factors for progression in patients with early-
105		stage chronic kidney disease in the Japanese population. Intern Med. 2008;47(21):1859-
106		64. doi: 10.2169/internalmedicine.47.1171. Epub 2008 Nov 4. PMID: 18981628.
107	5.	Nichols GA, Hillier TA, Brown JB. Normal fasting plasma glucose and risk of type 2
108		diabetes diagnosis. Am J Med. 2008 Jun;121(6):519-24. doi:
109		10.1016/j.amjmed.2008.02.026. PMID: 18501234.
110	6.	Dowse GK, Zimmet PZ, Collins VR. Insulin levels and the natural history of glucose
111		intolerance in Nauruans. Diabetes. 1996 Oct;45(10):1367-72. doi:
112		10.2337/diab.45.10.1367. PMID: 8826973.
113	7.	Kato K, Wong LY, Chen A, et al Changes in serum concentrations of maternal poly- and
114		perfluoroalkyl substances over the course of pregnancy and predictors of exposure in a

6

- 115 multiethnic cohort of Cincinnati, Ohio pregnant women during 2003-2006. Environ Sci
- 116 Technol. 2014 Aug 19;48(16):9600-8. doi: 10.1021/es501811k. Epub 2014 Jul 29. PMID:
- 117 25026485; PMCID: PMC4140533.
- 118 8. Stuebe AM, Rich-Edwards JW, Willett WC, Manson JE, Michels KB. Duration of lactation
- 119 and incidence of type 2 diabetes. JAMA. 2005 Nov 23;294(20):2601-10. doi:
- 120 10.1001/jama.294.20.2601. PMID: 16304074.
- 121
- 122

123 Figure legend

124	Figure 1. Possible directed acyclic graph of the causal network between PFAS exposure and
125	diabetes risk with potential confounders. PFAS: exposure; Diabetes: outcome; Blue circles:
126	ancestor of outcome; Pink circles: ancestor of exposure and outcome. Green arrows: causal
127	paths; Pink arrows: biasing paths. This graph is made by 'dagitty' (<u>http://www.dagitty.net/</u>).
128	

