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Abstract
Linear regression that employs the assumption of normality for the error
distribution may lead to an undesirable posterior inference of regression co-
efficients due to potential outliers. A finite mixture of two components, one
with thin and one with heavy tails, is considered as the error distribution in
this study. For the heavily-tailed component, the novel class of distributions
is introduced; their densities are log-regularly varying and have heavier tails
than the Cauchy distribution. Yet, they are expressed as a scale mixture of
normals which enables the efficient posterior inference when using a Gibbs
sampler. The robustness of the posterior distributions is proved under the
proposed models using a minimal set of assumptions, which justifies the use
of shrinkage priors with unbounded densities for the coefficient vector in the
presence of outliers. An extensive comparison with the existing methods via
simulation study shows the improved performance of the proposed model in
point and interval estimation, as well as its computational efficiency. Fur-
ther, the posterior robustness of the proposed method is confirmed in an
empirical study with shrinkage priors for regression coefficients.
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1. Introduction

The robustness of outliers in linear regression models has been studied
extensively for its importance, and the research on theory and methodol-
ogy for robust statistics has been accumulated in the past years. In the full
posterior inference, the concept of robustness is not limited to point estima-5

tion but targets the posterior distributions of parameters of interest. Also
known as outlier-proneness or outlier-rejection, posterior robustness defines
the property of posterior distributions in which the difference of posteriors
with and without outliers diminishes as the values of outliers become extreme
(O’Hagan, 1979). A series of studies on posterior robustness has revealed suf-10

ficient conditions for error distributions in order to achieve robustness and
has provided the specific error distributions that meet such conditions (see
the detailed review by O’Hagan and Pericchi 2012). Specifically, the error
distribution must be sufficiently heavily-tailed to account for outliers (An-
drade and O’Hagan, 2006, 2011). Recent studies have identified the necessity15

of log-regularly varying error density functions for the full posterior robust-
ness (Desgagné, 2015; Desgagné and Gagnon, 2019). In the context of linear
models, Gagnon et al. (2019) show that full robustness is obtained if the
error distribution is log-regularly varying and proposed the use of the log-
Pareto-tailed normal (LPTN) distribution as a log-regularly varying error20

distribution that has been practically non-existent. Therefore, the main ob-
jective of this study is to propose a new log-regularly varying alternative to
the LPTN distribution. The robustness concept of our interest in this study
is limited to the full posterior robustness (See Theorem 1).

In contrast to the truncation approach, we model the error distribution25

using a finite mixture of two components: one with thinner tails, such as
normal distributions, and the other with super heavy tails to accommodate
potential outliers (Box and Tiao, 1968). This simple, intuitive approach to
modeling outliers has received less attention in the methodological literature
but is routinely practiced in applied statistics (see Carter and Kohn 1994;30

West 1997; Frühwirth-Schnatter 2006; Tak et al. 2019; Silva et al. 2020).
The heavy-tailed component of the mixture remains in the general class of
a scale mixture of normals (West, 1984), which allows conditional conjugacy
for efficient posterior computation. The aforementioned LPTN distribution
can also be cast as the two-component mixture (Desgagné, 2021), but does35
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not allow the scale mixture representation. In this study, we propose a super
heavy-tailed distribution that is represented as a scale mixture of normals.

For the super heavy-tailed distribution that comprises the finite mixture,
the Student’s t-distribution is still regarded as thin-tailed for its outlier sen-
sitivity. We propose the use of distributions that have been utilized in the40

robust inference for high-dimensional count data (Hamura et al., 2019) for
their super heavy tails. This is the log-Pareto mixture of normals (LPMN),
and has another mixture representation by using the gamma distribution
with the hierarchical structure on shape parameters, which enables posterior
inference by a simple but efficient Gibbs sampler. The tails of these distri-45

butions are heavier than those of Cauchy distributions. In fact, the density
of the proposed error distribution is log-regularly varying, similar to those
of other super heavy-tailed distributions considered for posterior robustness,
including LPTN distributions.

The proposed error distribution is the finite mixture of the standard nor-50

mal and LPMN distributions, or the N-LPNM distribution for short. We
provide a set of sufficient conditions for the posterior robustness under the
linear regression models with the N-LPMN distribution, that is different from
the conditions used in Gagnon et al. (2019). The conditions we use in proving
the posterior robustness restrict the available priors for the regression coef-55

ficients and observational scale, but do not exclude the use of unbounded
prior densities, including shrinkage priors (e.g., horseshoe priors, Carvalho
et al. 2009, 2010). As a result, the robustness under shrinkage, or variable
selection, is within the scope of our research. In empirical studies, we prac-
tice robust posterior inference for linear regression models with the horseshoe60

prior for illustration.
The reminder of this paper is organized as follows. In Section 2, we

introduce the new error distribution and describe its use in linear regression
models, followed by the theoretical results on posterior robustness. The
algorithm for posterior computation is provided in Section 3, followed by65

a discussion on its computational efficiency. In Section 4, we conduct out
simulation studies to compare the proposed method to existing models. In
Section 5, we illustrate the proposed method using two famous datasets:
the Boston housing data and diabetes data. The paper is concluded, with
a discussion on future works, in Section 6. The R code implementing the70

proposed method is available at the GitHub repository (https://github.
com/sshonosuke/EHE).
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2. A new error distribution for robust regression

2.1. Linear models and error distributions
Let yi be a response variable and xi be an associated p-dimensional vector75

of covariates, for i = 1, . . . , n. We consider a linear regression model, yi =
x⊤i β + σεi, where β is a p-dimensional vector of regression coefficients and
σ is an unknown scale parameter. The error terms, ε1, . . . , εn, are directly
linked to the posterior robustness. Modeling these errors simply by Gaussian
distributions makes the posterior inference very sensitive to outliers.80

To define the error distribution, we introduce a latent variable, ui, and as-
sume that the error distribution is conditionally Gaussian, as εi|ui ∼ N(0, ui).
A typical choice of the distribution of ui is the inverse-gamma distribution,
which leads to the marginal distribution of εi being the t-distribution. How-
ever, as shown in Gagnon et al. (2019) and in our main theorem, this choice85

does not hold the desirable robustness properties for posterior distributions,
even when the distribution of εi is a Cauchy distribution.

As an error distribution whose density function is log-regularly varying,
Gagnon et al. (2019) proposes the LPTN distribution, which replaces the
thin tails of the standard normal distribution by the super heavy tails of90

a log-Pareto distribution. Despite its desirable robustness, this truncation
approach complicates the likelihood function, making the posterior infer-
ence under the LPTN error distribution challenging. Several parameters,
including the regression coefficients, cannot be directly sampled from the
conditional posteriors. In addition, the class of LPTN distributions has a95

hyperparameter, for which a conditionally conjugate prior is not available.
These challenges may require the use of the Metropolis-Hastings algorithm
and lead to an increased computational cost under the LPTN models. Con-
sequently, the LPTN distribution is not readily available in the context of
more structured linear models with random effects.100

2.2. Log-Pareto mixture of normals
As stated in the introduction, the error distribution in this study is not

a single continuous mixture of normals. Instead, it is a mixture of two
components. We introduce latent binary variable zi and model it using
Pr[zi = 1] = 1 − Pr[zi = 0] = s with weight s ∈ (0, 1). If zi = 0, then105

the error distribution is simply the standard normal distribution, that is,
ϵi|(ui, zi = 0) ∼ N(0, 1). If zi = 1, then we consider the scale mixture of
normals with latent variable ui as εi|(ui, zi = 1) ∼ N(0, ui), where ui follows
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some (super) heavy-tailed distribution on (0,∞) with density H. Preparing
two distributions in modeling of the error distribution is based on the work110

of Box and Tiao (1968); the first component generates non-outlying errors
and the second component is intended to absorb outlying errors. We require
the mixing distribution of ui to be log-regularly varying (Desgagné, 2015),
or H(u; γ) ≈ u−1(log u)−1−γ as u→ ∞ with some parameter γ > 0.

For the H-distribution, we consider a log-Pareto distribution whose den-
sity is given by

H(u; γ) =
γ

1 + u

1

{1 + log(1 + u)}1+γ
, u > 0. (1)

The log-Pareto distribution can be obtained from the Pareto distribution via
change of variables and has some variations. The version (1) is found in
Cormann and Reiss (2009). Under this choice for H, the super heavy-tailed
component of the finite mixture is:

fLPMN(εi; γ) =

∫ ∞

0

ϕ(εi; 0, ui)H(ui; γ)dui, (2)

and the marginal distribution of εi is obtained as:

fN-LPMN(εi; s, γ) = (1− s)ϕ(εi; 0, 1) + sfLPMN(εi; γ), (3)

where ϕ(εi; 0, u) is the normal density with a mean of zero and variance u.115

The new error distribution in (3) is the mixture of the standard normal and
LPMN distributions, or the N-LPMN distribution. The second component,
or the LPMN distribution, is a scale mixture of normals but does not admit
any closed form expression. To handle this component in posterior compu-
tation, as we see later in Section 3.1, we utilize the augmentation of the120

H-distribution using several gamma-distributed state variables. Through
this augmentation, the posterior inference for this model becomes straight-
forward.

A notable property of this new error distribution is its super heavy tails,
as shown in the following proposition. The relevant proof is presented in the125

Supplementary Materials.

Proposition 1. The densities (1), (2) and (3) satisfy,

H(|x|; γ) ≈ fLPMN(x; γ) ≈ fN-LPMN(x; s, γ) ≈ |x|−1(log |x|)−1−γ,
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for large |x|, and for any γ > 0 and s > 0.

The above proposition shows that the super heavy tail of theH-distribution
is inherited to the LPMN distribution, then to the N-LPMN distribution. As
a result, the density of the N-LPMN distribution belongs to a family of log-130

regularly varying functions. Notably, the tails of the N-LPMN density are
heavier than those of the Cauchy distribution, fC(x) ≈ |x|−2.

Figure 1 shows the cumulative distribution functions (CDFs) of the H
and LPMN distributions for γ = 0.5, 1 and 2. The tails of LPMN distri-
butions are heavier than those of the Cauchy distribution, as shown in the135

right panel. This fact is also confirmed by comparing the CDFs of the H
and inverse-gamma distributions in the left panel. The property of the super
heavy tails of the H and LPMN densities leads to posterior robustness in
Theorem 1. The density function of the N-LPMN distribution in (3) is plot-
ted on Figure 2 for s = 0.05, 0.1 and 0.2. We observe that the shape of the140

N-LPMN distribution is similar to the standard normal distribution around
the origin. The tails become heavier as the mixture weight s increases.

2.3. Definition of outliers
We first specify the structure of the outliers, based on the definition

by Desgagné and Gagnon (2019). The set of indices for n observations,145

{1, . . . , n}, is split into two disjoint subsets, K and L, which represent those
of the non-outlying and outlying values, respectively. Note that K ∪ L =
{1, . . . , n} and K∩L = ∅. Let D = {y1, . . . , yn} be the set of observed data.
The set of non-outlying observations is defined by D∗ = {yi|i ∈ K}.

The concept of (non-)outliers is defined by the observed values specified
as,

yi =

{
ai, if i ∈ K,
ai + biω, if i ∈ L,

where ai ∈ R, bi ̸= 0 and ω > 0. We assume that ω is sufficiently large,150

such that the value of yi for i ∈ L becomes extremely large, either positively
or negatively. We define posterior robustness as the limiting behavior of the
posterior of (β, σ2) when ω tends to infinity. That is, the model is robust
if the two posteriors, one of which is conditioned by the full dataset D and
the other of which is conditioned by the dataset without the outliers D∗,155

are equivalent when ω → ∞. In other words, when considering posterior
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Figure 1: (Left): Cumulative distribution functions of H(u; γ) for γ ∈ {0.5, 1.0, 2.0}, and
the inverse gamma distribution with shape and scale 0.5. (Right): The empirical cumu-
lative distributions of the LPMN distributions with γ ∈ {0.5, 1.0, 2.0}, using the Monte
Carlo integration and compared with the distribution function of Cauchy distribution.

robustness, the outlying values are automatically discarded in the posterior
inference without knowing which observations are outliers.

2.4. Robustness for the N-LPMN distribution
The class of prior distributions for (β, σ) for which we prove the posterior

robustness is, for k = 1, . . . , p,

βk|σ ∼ 1

σ
πβ

(βk
σ

)
and σ ∼ πσ(σ), (4)

where β1, . . . , βp are conditionally independent given σ, and πβ and πσ are160

the probability density functions on R and (0,∞), respectively. We limit
our focus to the class of proper priors. This is because improper priors,
such as the constant prior for β, have already been considered in Gagnon
et al. (2019). Let p(β, σ|D) be the posterior distribution of (β, σ) under the
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Figure 2: Densities of the proposed error distribution with γ = 1, s ∈ {0.05, 0.1, 0.2},
and standard normal error distribution. The intractable integral of the second component
is computed using the Monte Carlo integration.

linear regression model with the N-LPMN distribution. Under this prior, the165

following theorem provides sufficient conditions for the posterior with the
outliers converging toward that without the outliers as ω → ∞. Our proof
is provided in the Supplementary Materials.

Theorem 1. Assume that there exists c > 0 such that

(A.1) |K| ≥ |L|+ p, i.e., #non-outliers ≥ #outliers + #predictors,170

(A.2) supt∈R{|t|cπβ(t)} <∞, and

(A.3) the prior moments of σ−|K|, σc−1, and σc−n are all finite.

Then the linear regression model with the error distribution in (3) and the
prior in (4) is posterior robust, that is,

lim
ω→∞

p(β, σ|D) = p(β, σ|D∗)
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for all (β, σ) ∈ Rp × (0,∞).

The three assumptions above are met in many examples encountered in
practice. Assumption (A.1) is the requirement for the number of non-outlying175

observations to be sufficiently large. Similar assumptions can be found in the
literature (e.g., Theorem 2.1 (ii), Gagnon et al. 2019); however, (A.1) is of a
simpler form and less restrictive. Frequently, many non-outlying observations
comprise the majority of the dataset, thereby satisfying Assumption (A.1).

Assumption (A.2) limits the choice of priors for β, but still covers the wide180

class of probability distributions. For example, this assumption is always
satisfied when πβ(t) is bounded and O(1/|t|) as |t| → ∞. Examples of such a
prior include the normal and t-distributions. However, note that (A.2) does
not force the prior density πβ to be bounded, unlike the settings of Gagnon et
al. (2019). An important example of this is the horseshoe prior, whose density185

is unbounded at the origin (Theorem 1, Carvalho et al. 2010). Subsequently,
the horseshoe prior satisfies (A.2) for any c ∈ (0, 2]. As evident in this
example, Theorem 1 can be a useful device to check the posterior robustness
for the broader class of statistical problems, including the variable selection
by the shrinkage priors.190

Assumption (A.3) is the moment conditions for observational scale σ.
When the sample size n is large enough and c ≤ 1, then (A.3) is summarized
as the existence of negative moments of σ. In this case, the inverse-gamma
distribution for σ2, which is a typical choice of priors in many applications,
satisfies (A.3).195

2.5. Tail heaviness for robustness
Theorem 1 proves the posterior robustness of the linear regression mod-

els with the N-LPMN distributions, whose density tails are evaluated as
fN-LPMN(x) ≈ |x|−1(log |x|)−1−γ, as shown in Proposition 1. These super
heavy tails are, in fact, necessary conditions for posterior robustness. To
clarify the relationship between the posterior robustness and the tail behav-
ior of the error distributions, we study a wider class of error distributions
that includes the proposed distribution as a special case. This is defined by
replacing H(u; γ) in (3) with

H(u; γ, δ) = C(δ, γ)
1

(1 + u)1+δ

1

{1 + log(1 + u)}1+γ
, u > 0, (5)
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where C(δ, γ) is a normalizing constant, and δ ≥ 0 is an additional shape
parameter. Similar to the degree of freedom of t-distributions, the shape pa-
rameter δ is related to the decay of the density tail of (5); that is, H(u; γ, b) ≈
u−δ−1(log u)−1−γ. Thus, this class of distributions covers the error distribu-200

tions whose density tails are lighter than those of the proposed N-LPMN
distribution in (3) and includes the N-LPMN distribution with the heaviest
tails under δ = 0. Note that the density tails become heavier than those of
the Cauchy distribution if δ < 1.

It is shown that the choice of a hyperparameter that can achieve poste-205

rior robustness is δ = 0 (and arbitrary γ > 0). This is exactly the model
considered in Theorem 1. From this observation, we conclude that the tails
of the error distribution that are heavier than those of Cauchy distributions
are essential for posterior robustness. For details, see the Supplementary
Materials.210

2.6. Existence of posterior moments
The N-LPMN distribution is too heavily tailed to have finite moments.

However, the posterior of (β, σ2) has finite means and variances in most
situations. We verify this result for the inverse-gamma prior for σ2.

Proposition 2. Consider the linear regression model with the N-LPMN dis-215

tribution in (3) and the prior for (β, σ) given in (4). Furthermore, suppose
that the prior for σ2 is an inverse-gamma distribution.

(a) If (A.2) holds for some c > 0 and c ≤ n, then E[|βk|c|D] < ∞ for
k = 1, . . . , p.

(b) If d ≤ n, then E[σd|D] <∞.220

It is immediately apparent from (a) that the posterior means and vari-
ances of coefficients β exist under the horseshoe prior for β, which is given
later in (6).

Corollary 1. If the prior for β is horseshoe and n ≥ 2, then E[|βk|2|y] <∞.

In fact, the existence of posterior moments of (β, σ2) can be discussed for225

a broad class of error distributions and priors for (β, σ), not being limited to
the linear regression model considered in this paper. Proposition 2 is proved
with such a generality in the Supplementary Materials.
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3. Posterior Computation

3.1. Gibbs sampler by augmentation230

An important property of the proposed N-LPMN distribution (3) is its
computational tractability, that is, we can easily construct a simple Gibbs
sampler for posterior inference. Note that the error distribution contains
two unknown parameters, s and γ. We can adopt conditionally conjugate
priors given by s ∼ Beta(as, bs) and γ ∼ Ga(aγ, bγ). The conditionally235

conjugate priors can also be found for main parameters, β and σ2, and we
use β ∼ N(Aβ, Bβ) and σ−2 ∼ Ga(aσ, bσ). The multivariate normal prior
for β can be replaced with a scale mixture of normals, including shrinkage
priors, which is discussed in Section 3.2.

To derive the tractable conditional posteriors, we need to keep the like-240

lihood conditionally Gaussian with the latent variable ui. This can be done
easily by conditioning a set of latent variables (zi, ui). Consequently, the
model is conditionally conjugate for our choice of priors for (β, σ2) .

The full conditional distributions of the other parameters and latent vari-
ables in the LPMN distribution are not any standard distribution. However,
we can augment the model with another set of latent variables by utilizing
the following integral expression of density H(ui; γ):

H(ui; γ) =

∫∫
(0,∞)2

Ga(ui; 1, vi)Ga(vi;wi, 1)Ga(wi; γ, 1)dvidwi.

The random variable ui, following the density H(ui; γ), admits the mixture
representation: ui|(vi, wi) ∼ Ga(1, vi), vi|wi ∼ Ga(wi, 1), and wi ∼ Ga(γ, 1),245

which enables us to easily generate samples from the full conditional distri-
bution of (ui|vi, wi) and (vi, wi|ui).

The introduction of the two latent states, (vi, wi), is useful in deriving the
conditional posterior of ui, and the algorithm of the Gibbs sampler immedi-
ately follows with latent (vi, wi) as the part of the Markov chain. However,250

(vi, wi) is redundant in the posterior sampling of the other parameters. We
marginalize (vi, wi) out when sampling γ from its conditional posterior. This
modification of the original Gibbs sampler simplifies the sampling procedure,
and facilitates mixing, while targeting the same stationary distribution of the
original Markov chain. The algorithm for posterior sampling is summarized255

as follows.
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Summary of the posterior sampling

- Sample β from the full conditional distribution N(B̃Ã, B̃), where

B̃−1 = B−1
β + σ−2X⊤DX and Ã = B−1

β Aβ + σ−2X⊤DY

with D = diag(u−z1
1 , . . . , u−zn

n ).

- Sample σ−2 from Ga(ãσ, b̃σ), where

ãσ = aσ + n/2 and b̃σ = bσ +
n∑

i=1

(yi − x⊤i β)
2/2uzii .

- Sample zi from the Bernoulli distribution; the probabilities of zi = 0
and zi = 1 are proportional to (1−s)ϕ(yi;x⊤i β, σ2) and sϕ(yi;x⊤i β, σ2ui),260

respectively.

- The full conditional distribution of s is given by Beta(ãs, b̃s), where
ãs = as +

∑n
i=1 zi and b̃s = bs + n−

∑n
i=1 zi.

- The full conditional distribution of (γ, v1:n, w1:n) is decomposed into
those of γ and (v1:n, w1:n|γ).265

- The full conditional distribution of γ (with v1:n and w1:n marginal-
ized out) is given by Ga(ãγ, b̃γ), where ãγ = aγ + n and b̃γ =
bγ +

∑n
i=1 log{1 + log(1 + ui)}.

- The full conditional distributions of (v1, w1), . . . , (vn, wn) are mu-
tually independent. For each i, (vi, wi) can be sampled in a com-270

positional manner. Sample wi from Ga(1+γ, 1+log(1+ui)), then
sample (vi|wi) as Ga(1 + wi, 1 + ui).

- The full conditional distribution of ui is GIG(1/2, 2vi, (yi − x⊤i β)
2/σ2)

if zi = 1, or Ga(1, vi) if zi = 0.

Finally, we remark on the choice of hyperparameters in the priors for275

s and γ. Although the LPMN distribution is log-regularly varying under
arbitrary γ > 0, the use of a large value of γ is not suitable for capturing
potential outliers. This is because the tail of the LPMN distribution becomes
lighter as γ increases. Moreover, the use of different values of γ would not
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considerably affect the posterior result, given that γ is not large. Hence,280

instead of using a diffuse prior for γ, we recommend simply using a fixed
value. We adopt γ = 1 as the default choice, and the sensitivity of this
choice is investigated in Section 4. As a more data-dependent method, we
also recommend employing an informative prior that prevents large values
of γ by setting, for example, aγ = bγ = 100, which is considered in Section285

4. Regarding the mixing proportion s, we adopt as = bs = 1, resulting in a
uniform prior for s as the default choice.

3.2. Robust Bayesian variable selection with shrinkage priors
When the dimension of xi is moderate or large, it is desirable to select

a suitable subset of xi to achieve an efficient estimation. This procedure
of variable selection is also seriously affected by possible outliers, by which
we may fail to select suitable subsets of covariates. For a robust Bayesian
variable selection procedure, we introduce shrinkage priors for the regression
coefficients. Here, we rewrite the regression model to explicitly express an
intercept term as yi = α+xtiβ+εi, and consider a normal prior α ∼ N(0, Aα)
with a fixed hyperparameter Aα > 0. For the regression coefficients β, we
consider a class of independent priors expressed as a scale mixture of normals,
given by:

π(β) =

p∏
k=1

∫ ∞

0

ϕ(βk; 0, σ
2τ 2ξk)πξ(ξk)dξk, (6)

where πξ(·) is a mixing distribution, and τ 2 is an unknown global param-
eter that controls the strength of the shrinkage effects. Examples of the290

mixing distribution πξ(·) include the exponential distribution leading to the
Laplace prior of β (Bayesian lasso, Park and Casella 2008), and the half-
Cauchy distribution for ξ1/2k which results in the horseshoe prior (Carvalho
et al., 2009, 2010). The robustness property of the resulting posterior distri-
butions is guaranteed for those shrinkage priors because Assumption (A.2)295

of Theorem 1 is satisfied.
In terms of posterior computation, the key property is that the condi-

tional distribution of βk given ξk under (6) is a normal distribution, so the
sampling algorithm given in Section 3.1 is still valid with minor modifica-
tions. Specifically, the sampling from the full conditional distributions of α,300

β, σ2, and ξ1, . . . , ξp is modified or newly added as follows:
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- Sample α from N(Ã−1
α B̃α, Ã

−1
α ), where

Ãα = Aα + σ−2

n∑
i=1

u−1
i and B̃α = σ−2

n∑
i=1

u−1
i (yi − x⊤i β).

- Sample β from N(Ã−1
β X⊤DỸ , σ2Ã−1

β ), where

Ỹ = Y − α1n and Ãβ = Λ−1 +X⊤DX with Λ = τ 2diag(ξ1, . . . , ξp).

- Sample σ−2 from Ga(ãσ, b̃σ), where

ãσ = aσ + (n+ p)/2 and b̃σ = bσ +
n∑

i=1

(yi − x⊤i β)
2/2uzii + β⊤Λ−1β.

- Sample ξk and τ 2 from their full conditionals. Their densities are pro-
portional to ϕ(βk; 0, σ2τ 2ξk)πξ(ξk) and πτ2(τ 2)

∏p
k=1 ϕ(βk; 0, σ

2τ 2ξk), re-
spectively, where πτ2(τ 2) is the prior density for τ 2.

The normal mixture representation of the N-LPMN distribution and305

shrinkage priors makes the full conditional distributions of α and β com-
putationally tractable. The sampling of ξk and τ 2 depends on the choice of
shrinkage priors, but the existing algorithms in the literature can be directly
imported to our method.

In Section 5, we adopt the horseshoe prior for the regression coefficients310

with the N-LPMN distribution for the error terms. Here, we provide de-
tails of the sampling algorithm under the horseshoe model. The horseshoe
prior assumes that

√
ξk ∼ C+(0, 1) independently for k = 1, . . . , p and

τ ∼ C+(0, 1), where C+(0, 1) is the standard half-Cauchy distribution with
probability density function given by p(x) = 2/π(1+x2) for x > 0. Note that315

they admit the hierarchical expressions given by ξk|λk ∼ IG(1/2, 1/λk) and
λk ∼ IG(1/2, 1/2) for ξk, and τ 2|ν ∼ IG(1/2, 1/ν) and ν ∼ IG(1/2, 1/2) for
τ 2. Then, we can sample from each full conditional distribution as follows:

- Sample ξk from IG(1, 1/λk + β2
k/2τ

2σ2).

- Sample λk from IG(1, 1 + 1/ξk).320

- Sample τ 2 from IG((p+ 1)/2, 1/ν +
∑p

k=1 β
2
k/2ξkσ

2).
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- Sample ν from IG(1, 1 + 1/τ 2).

These sampling steps can be directly incorporated into the Gibbs sampling
algorithm described in Section 3.1.

3.3. Hierarchical linear regression325

The proposed error distribution can be adopted in more general linear
regression models. As an example, we consider a hierarchical model given by

yi = x⊤i β + g⊤i b+ εi, i = 1, . . . , n, (7)
where gi is an r-vector of additional covariates and b is a vector of ran-
dom effects distributed as b ∼ N(0, H(ψ)) with r×r covariance matrix H(ψ)
parametrized by ψ. To absorb the potential effects of outliers, we use the
N-LPMN distribution for εi. The model structure described in (7) is gen-
eral enough to represent a wide variety of useful models, as discussed in330

later sections. Even under model (7), the robustness properties for β, as
discussed in Section 2.4, can be proven by checking whether the prior for
b satisfies Assumption (A.2). Moreover, the augmentation strategy for the
efficient posterior computation algorithm can still be employed, and the full
conditional distribution of b is normal. We adopt a random intercept model335

for longitudinal data in our simulation study in Section 4.3 and a linear
regression with spatial effects in our application in Section 5.1.

4. Simulation studies

4.1. Linear regression with small n and p
In this study, we carry out simulation studies to investigate the perfor-

mance of the proposed method together with existing methods. We first
consider n = 50 observations from the linear regression model with p = 3
covariates, given by

yi = β0 +

p∑
k=1

βkxik + σεi, i = 1, . . . , n, (8)

where β0 = 0.5, β1 = 0.3, β2 = 0, β3 = 0.3 and σ = 0.5. Here the vector of
covariates (xi1, . . . , xip) is generated from a multivariate normal distribution
with zero mean vector and variance-covariance matrix whose (k, ℓ)-entry has
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(0.2)|k−ℓ| for k, ℓ ∈ {1, . . . , p}. Regarding the contamination structure of the
error term, we adopt the location-shift model (Abraham and Box, 1978):

εi ∼ (1− ω)N(0, 1) + ωN(µ, 1), i = 1, . . . , n,

where ω is the contamination ratio and µ is the location of the outliers. We340

consider all combinations of ω ∈ {0.05, 0.1, 0.2} and µ ∈ {10, 20}, in addition
to the case of no contamination (ω = 0), which leads to seven scenarios in
total. In this setting, we replicate 20000 datasets independently.

The error distributions we consider include the N-LPMN distribution, the
LPTN distribution (Gagnon et al., 2019), and t-distribution with ν degrees345

of freedom. For the hyperparameter γ in the N-LPMN distribution, we fix
γ = 1 (denoted by N-LP in the tables) and estimated γ adaptively (aN-LP)
by assigning a Ga(100, 100) prior distribution. In both N-LPMN models, the
mixture weight s follows the uniform distribution on [0, 1], as explained in
Section 3.1. For the LPTN distribution, the tuning parameter ρ ∈ (2Φ(1)−350

1, 1) ≈ (0.6827, 1) is specified as ρ = 0.95 and ρ = 0.8 (LP1 and LP2,
respectively). Regarding the degree of freedom ν in the t-distribution, we
select the results of ν = 1 (Cauchy distribution, denoted by C) and ν =
3 (T3). Similarly, we consider an adaptive version (aT) that employs a
discrete uniform prior on ν ∈ {1, 2, 3, 4, 5, 8, 10, 15, 20, 30, 50}. In addition,355

the two-component mixture of the standard normal distribution and the t-
distribution with ν = 1/2 is considered (MT), with the uniform prior for the
mixture weight as in the N-LPMN models. For comparison, we also adopt the
normal distribution as the error distribution (denoted by N), which should
perform best in the absence of outliers. Note that all the error distributions360

listed here are “misspecified” because they do not include the location shift
of the error term in the data generating process. This setting emphasizes
that the posterior robustness verified in this research is valid regardless of
the structure of the outliers.

The priors for the regression coefficients and observational scale are set365

as βk ∼ N(0, 1000) and σ−2 ∼ Ga(0.1, 0.1) for all the models. To employ
the posterior inference, we generated the posterior samples of (β, σ) using
a Gibbs sampler under the N-LPMN, t and normal error distributions. For
the LPTN distribution, the random-walk Metropolis-Hastings algorithm is
adopted, as in Gagnon et al. (2019), in which the step sizes are set to 0.05. For370

each of the nine models, we generate 1000 posterior samples after discarding
the first 500 samples.
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Based on the posterior samples, we compute the posterior means and 95%
credible intervals of βk for k = 1, . . . , p. The performance of the point and
interval estimation is assessed by the square root of the mean squared errors375

(RMSE), coverage probabilities (CP), and average length (AL) as based on
20000 replications of the simulation. These values are then averaged over
β0, . . . , βp. We also evaluate the RMSE of σ. To measure the efficiency of
the sampling schemes, we compute the average of the inefficiency factors
(IF) of the posterior samples, defined as, 1 + 2

∑∞
k=1 ρk, where ρk is the lag-380

k autocorrelation of the posterior samples. We used the numEff function
available in the R package “bayesm”.

In Table 1, we report the values of these performance measures for seven
scenarios. When ω = 0 (no outlier), the normal error distribution provides
the smallest RMSE and IF. While the other methods are slightly inefficient,385

the proposed method (N-LP and aN-LP in the table) performs almost in
the same way as the normal distribution. This is empirical evidence that the
efficiency loss of the N-LPMN distribution is negligible owing to the structure
of the two-component mixture. In the other robust methods, the RMSEs are
slightly higher than that of the normal distribution, and the CPs are smaller390

than the nominal level.
In the other scenarios, where outliers are incorporated in the data gen-

erating process, the performance of the normal distribution is significantly
lowered, and the robustness property of the other models becomes evident
in the performance measures. In particular, the N-LPMN distribution with395

a fixed γ (N-LP) performs quite stably in both point and interval estima-
tions. The adaptive version (aN-LP) also works reasonably well, and the
performance is comparable to that of the N-LPMN. The LPTN model with
ρ = 0.95 (LP1) shows reasonable performance in point estimation, but its
CPs tend to be smaller than the nominal level. The other LPTN model400

with ρ = 0.8 (LP2) worsens the accuracy of point estimation, implying the
sensitivity of the choice of hyperparameter ρ to the posteriors. The T3 and
aT models also suffer from larger RMSE values, especially in the scenarios
of large ω and µ, which emphasizes the lack of posterior robustness under
the t-distribution family. In addition, the interval estimation under the t-405

distributions depends on the degree-of-freedom parameter. This is also seen
in the results of the Cauchy and t3-distributions, where the credible intervals
are too wide and narrow, respectively. The MT model is competitive with
the N-LPMN and LP1 models in most scenarios, but its performance mea-
sures significantly deteriorate when the contamination level is high (ω = 0.2).410
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Interestingly, the Cauchy model (C) provides the smallest RMSE in both β
and σ when ω = 0.2. We give discussions on this issue in the Supplementary
Material.

In terms of computational efficiency, the IF values of the N-LPMN models
are small and comparable with those of the t-distribution methods, as ex-415

pected from its simple Gibbs sampling algorithm. Meanwhile, the IFs of the
LPTN models are very large because of the use of the Metropolis-Hastings
algorithm. This result empirically shows that for a reliable posterior analysis
under the LPTN models, the number of iterations in the computation by
MCMC must be increased. In this context, more effort is needed to tune the420

step-size parameter. Furthermore, we measure the raw computation time of
five methods (N-LP, LP1, T3, MT and N) for several sample sizes n, which
are reported in the Supplementary Materials. The robust models (N-LP
and LP1) require a longer computational time than the simpler models (T3,
MT, and N) due to the complexity of their models. Hence, the lower IFs425

of the N-LPMN model confirmed in this simulation study are important to
complement the longer computational time per iteration.

4.2. Moderately large n and p
We consider a setting with a larger sample size and many predictors,

n = 300 and p = 20. In doing so, we employ model (8), where β0 = 0.5, β1 =430

β4 = 0.3, β7 = β10 = 2, σ = 0.5 and the other coefficients are set to 0. We
consider all combinations of ω ∈ {0.05, 0.1, 0.2} and µ ∈ {10, 20}, in addition
to the case of no contamination (ω = 0), which leads to 7 scenarios in total.
In this setting, we replicate 1000 independent datasets.

In Table 2, we report the values of these performance measures for nine435

scenarios. The increased sample size highlights the robustness of the N-
LPMN model more clearly. The RMSE (β) of N-LPMN is smaller than
that of C, and the RMSE (β) of N-LPMN is smaller than that of MT in
all scenarios. The coefficient vector β is now p = 20 dimensional, which
becomes the computational burden for the LP1 and LP2 models that use the440

Metropolis-Hastings algorithm in posterior sampling, as seen in the higher
values of IFs.

Finally, we evaluate the predictive performance. We generate m = 20
additional covariates xj∗ (j = 1, . . . ,m) from the same multivariate normal
distribution, and then generated the true response value yj∗ based on the
linear regression with εi ∼ N(0, 1). In other words, the predicted response
is not contaminated with outliers. Accordingly, in the prediction using the
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Table 1: Average values of RMSEs, CPs, ALs and IFs of the proposed N-LPMN distri-
bution with γ fixed (N-LP) and estimated (aN-LP), log-Pareto-tailed normal distribution
with ρ = 0.95 (LP1) and ρ = 0.8 (LP2), Cauchy distribution (C), t-distribution with three
degrees of freedom (T3) and estimated degrees of freedom (aT), two-component mixture
of normal and t-distribution with 1/2 degrees of freedom (MT), and normal linear regres-
sion (N), based on 20000 replications in seven combinations of (100ω, µ) with n = 50 and
p = 3. RMSE and AL are multiplied by 10. The best RMSE values are highlighted in
bold.

(100ω, µ) N-LP aN-LP LP1 LP2 C T3 aT MT N
(0, –) 0.76 0.76 0.77 0.80 0.91 0.81 0.78 0.76 0.76
(5, 10) 0.80 0.81 0.83 0.82 0.93 0.84 0.92 0.80 2.20
(10, 10) 0.87 0.87 1.70 0.86 0.94 0.97 1.42 1.11 3.47

RMSE (20, 10) 1.72 1.81 5.62 2.07 1.10 2.72 3.67 4.53 5.90
(β) (5, 20) 0.80 0.80 0.80 0.82 0.92 0.82 0.93 0.80 4.23

(10, 20) 0.86 0.86 0.91 0.84 0.93 0.91 1.79 1.50 6.80
(20, 20) 1.26 1.28 5.30 0.98 1.02 4.34 6.48 8.71 11.7
(0, –) 0.53 0.53 0.58 1.04 1.92 1.05 0.81 0.53 0.53
(5, 10) 0.57 0.58 1.06 1.20 1.67 0.81 1.69 0.62 7.48
(10, 10) 0.73 0.75 4.29 1.45 1.37 1.85 4.11 2.03 11.2

RMSE (20, 10) 3.44 3.77 14.5 4.93 1.16 7.19 9.96 11.3 16.0
(σ) (5, 20) 0.57 0.57 0.77 1.15 1.67 0.86 2.84 0.65 18.0

(10, 20) 0.63 0.64 1.69 1.31 1.37 2.40 7.67 3.83 25.9
(20, 20) 2.07 2.22 15.8 1.98 1.21 14.3 21.5 24.4 35.9
(0, –) 95.0 95.0 93.9 92.7 89.7 93.5 94.7 95.0 95.1
(5, 10) 94.7 94.6 94.9 93.3 91.2 95.7 97.5 94.8 91.3
(10, 10) 94.3 94.2 93.8 93.8 92.8 97.2 98.0 94.5 81.7

CP (20, 10) 93.3 93.3 74.8 93.7 95.3 92.5 90.3 85.2 71.8
(%) (5, 20) 94.7 94.6 94.7 93.1 91.3 96.0 98.3 94.9 91.0

(10, 20) 94.2 94.1 95.7 93.6 92.9 97.8 99.3 94.6 80.3
(20, 20) 93.9 93.8 91.2 94.7 95.9 95.7 94.2 86.3 71.7
(0, –) 3.02 3.02 3.00 2.98 3.03 3.03 3.07 3.02 3.02
(5, 10) 3.18 3.18 3.34 3.15 3.22 3.48 4.35 3.17 6.99
(10, 10) 3.37 3.38 4.29 3.37 3.48 4.30 6.36 3.52 9.38

AL (20, 10) 4.25 4.33 8.98 4.39 4.31 8.18 11.0 8.18 12.3
(5, 20) 3.16 3.16 3.24 3.13 3.22 3.49 5.12 3.17 12.8
(10, 20) 3.33 3.33 3.62 3.30 3.47 4.39 9.30 3.68 17.9
(20, 20) 3.83 3.84 6.91 3.80 4.24 11.8 20.3 13.6 24.2
(0, –) 1.20 1.22 16.1 17.0 4.32 2.11 1.85 1.07 1.02
(5, 10) 2.24 2.37 17.4 17.7 3.99 1.92 1.86 1.43 1.02
(10, 10) 3.33 3.51 20.4 18.5 3.68 1.82 2.11 2.00 1.02

IF (20, 10) 4.87 4.95 31.5 21.6 3.17 2.17 2.44 3.13 1.02
(5, 20) 2.25 2.36 17.1 17.6 3.97 1.89 1.91 1.42 1.02
(10, 20) 3.35 3.50 18.5 18.2 3.65 1.73 2.41 1.99 1.02
(20, 20) 4.86 4.89 25.3 20.0 3.00 2.25 2.99 3.27 1.02
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N-LPMN and MT distributions, we construct the sampling model of yj∗
conditional on zj = 0 as

f(yj∗|D, zj = 0) =

∫
ϕ(yj∗;x

⊤
j∗β, σ

2)π(β, σ|D)dβdσ.

This predictive distribution reflects our belief that prediction should be con-
sidered only for non-outlying observations. If one believes that the predicted
response might also be outlying, then the model in (3) can be used for pre-445

diction without conditioning zj at the cost of inflated predictive uncertainty.
To handle the outlying predictive values, however, the models for outlier de-
tection should be more appropriate. For the LPTN and t-distributions, it is
difficult to separate the non-outliers and outliers. For these models, we use
the same error distributions for prediction. We report the result of the T3450

model only; the 95% predictive intervals of yj∗ under the LPTN and other t
models are extremely wide due to their (super) heavy tails.

To evaluate the predictive performance, we compute the MSE of the pos-
terior predictive mean and CP and AL of 95% predictive intervals of yj∗.
These values are averaged over 1000 replications, as shown in Table 3. It can455

be seen that the model with the Gaussian errors produces worse point predic-
tions and wider interval estimates as more and larger outliers are generated,
which is clearly due to the lack of posterior robustness. The other robust
methods are equally performative in terms of point prediction, but they show
a significant difference in uncertainty quantification. The T3 method tends460

to be too conservative, in the sense that the predictive intervals are too
wide and show almost 100% coverage. The N-LPMN and MT models have
similar predictive results, whereas the coverage rates suggest the potential
under-coverage of the MT model. This result shows the importance of pos-
terior robustness and the use of error distributions with super heavy tails in465

estimation for both posterior inference and predictive analysis.

4.3. Random intercept models
Next, we consider simulation studies using the following random intercept

model:

yjt = β0 +

p∑
k=1

βkxjtk + vj + σεjt, t = 1, . . . , T, j = 1, . . . ,m, (9)
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Table 2: Average values of RMSEs, CPs, ALs and IFs under larger scale simulation
studies (n = 300 and p = 20). The methods to be compared are the proposed N-LPMN
distribution with γ fixed (N-LP) and estimated (aN-LP), log-Pareto-tailed normal distri-
bution with ρ = 0.95 (LP1) and ρ = 0.8 (LP2), Cauchy distribution (C), t-distribution
with three degrees of freedom (T3) and estimated degrees of freedom (aT), two-component
mixture of normal and t-distribution with 1/2 degrees of freedom (MT), and normal linear
regression (N), based on 1000 replications in seven combinations of (100ω, µ). The RMSE
and AL are multiplied by 10. The best RMSE values are highlighted in bold.

(100ω, µ) N-LP aN-LP LP1 LP2 C T3 aT MT N
(0, –) 0.31 0.31 0.33 0.34 0.38 0.33 0.32 0.31 0.31
(5, 10) 0.33 0.33 0.34 0.35 0.38 0.34 0.36 0.32 0.92
(10, 10) 0.35 0.36 0.37 0.37 0.39 0.37 0.50 0.41 1.47

RMSE (20, 10) 0.41 0.43 2.05 0.41 0.42 0.78 1.38 2.51 2.53
(β) (5, 20) 0.33 0.33 0.34 0.35 0.38 0.34 0.34 0.32 1.78

(10, 20) 0.35 0.35 0.36 0.37 0.39 0.35 0.52 0.42 2.88
(20, 20) 0.40 0.41 0.43 0.40 0.40 0.75 2.23 5.00 5.04
(0, –) 0.20 0.21 0.23 0.74 1.82 0.97 0.70 0.20 0.21
(5, 10) 0.22 0.22 0.45 0.87 1.57 0.41 0.93 0.26 7.02
(10, 10) 0.26 0.34 0.93 1.06 1.26 0.85 3.10 1.50 10.9

RMSE (20, 10) 0.79 1.94 14.0 1.62 0.47 5.60 9.24 15.5 15.6
(σ) (5, 20) 0.22 0.22 0.38 0.83 1.56 0.40 1.45 0.26 17.4

(10, 20) 0.25 0.27 0.67 0.99 1.25 0.93 5.34 2.01 25.4
(20, 20) 0.48 0.77 2.69 1.33 0.48 8.60 19.4 35.0 35.3
(0, –) 95.2 95.2 90.2 88.0 89.9 93.8 94.7 95.0 95.2
(5, 10) 94.7 94.8 90.9 87.9 91.4 95.7 97.7 94.8 90.1
(10, 10) 94.3 94.1 91.7 88.6 92.6 97.2 98.2 94.7 90.6

CP (20, 10) 93.8 93.0 75.0 89.4 95.3 95.1 94.4 90.3 90.3
(%) (5, 20) 94.8 94.7 90.6 88.2 91.3 95.9 98.7 95.0 90.2

(10, 20) 94.8 94.6 91.8 88.8 93.3 98.2 99.6 95.2 90.3
(20, 20) 93.6 93.2 93.0 89.3 96.1 97.8 96.4 90.1 90.0
(0, –) 1.22 1.22 1.13 1.11 1.25 1.24 1.25 1.22 1.23
(5, 10) 1.28 1.28 1.22 1.16 1.33 1.40 1.69 1.28 2.89
(10, 10) 1.35 1.36 1.36 1.23 1.41 1.64 2.46 1.38 3.84

AL (20, 10) 1.55 1.59 2.78 1.40 1.67 2.93 4.40 4.96 5.00
(5, 20) 1.28 1.28 1.21 1.16 1.32 1.40 1.86 1.28 5.40
(10, 20) 1.34 1.34 1.29 1.21 1.41 1.65 3.44 1.37 7.36
(20, 20) 1.50 1.51 1.62 1.35 1.66 3.46 8.03 9.68 9.77
(0, –) 1.00 1.00 31.1 31.9 4.10 2.02 1.78 0.97 0.97
(5, 10) 1.87 2.18 31.7 32.2 3.80 1.83 1.72 1.24 0.97
(10, 10) 2.92 3.58 32.6 32.5 3.47 1.65 1.88 1.55 0.97

IF (20, 10) 5.27 6.05 38.1 33.5 2.87 1.61 2.07 0.99 0.97
(5, 20) 1.88 2.14 31.6 32.2 3.78 1.81 1.70 1.25 0.97
(10, 20) 2.91 3.33 32.2 32.5 3.45 1.60 2.07 1.52 0.97
(20, 20) 5.36 5.86 34.2 33.2 2.80 1.42 2.54 1.04 0.97
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Table 3: Average values of RMSEs of posterior predictive means and CPs and ALs of
95% prediction intervals based on the N-LPMN method with γ = 1 (N-LP), t-distribution
with three degrees of freedom (T3), two-component mixture of normal and t-distribution
with 1/2 degrees of freedom (MT), and the standard normal linear regression (N), based
on 1000 replications in seven combinations of (100ω, µ). The RMSE and CP are multiplied
by 100. The best RMSE values are highlighted in bold.

(100ω, µ) N-LP T3 MT N
(0, –) 51.7 52.1 51.7 51.7
(5, 10) 52.2 52.5 52.2 65.1
(10, 10) 52.4 52.7 53.3 82.6

RMSE (20, 10) 53.5 61.6 125.8 126.8
(5, 20) 52.2 52.4 52.2 93.7
(10, 20) 52.2 52.3 54.4 139.9
(20, 20) 52.9 61.1 229.9 233.2
(0, –) 94.9 98.5 94.9 95.1
(5, 10) 94.9 99.5 94.3 100.0
(10, 10) 95.0 99.9 93.7 100.0

CP (20, 10) 96.8 100.0 99.9 100.0
(5, 20) 94.6 99.4 94.2 100.0
(10, 20) 94.9 99.9 93.9 100.0
(20, 20) 96.1 100.0 99.9 100.0
(0, –) 2.0 2.6 2.0 2.1
(5, 10) 2.0 3.0 2.0 4.8
(10, 10) 2.1 3.7 2.0 6.4

AL (20, 10) 2.3 6.6 8.3 8.4
(5, 20) 2.0 3.0 2.0 9.0
(10, 20) 2.1 3.7 2.1 12.3
(20, 20) 2.2 8.1 16.0 16.3
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where vj ∼ N(0, τ 2v ) is a random effect. This is an example of the general
model presented in Section 3.3. The model of this type is frequently used in
longitudinal data analysis (e.g. Verbeke, 2009), where m and T are the num-470

bers of subjects and repeated measurements, respectively, and vj is regarded
as a subject-specific effect. Throughout this study, we set m = 50, T = 10
and p = 10. We adopt the same values for βk, and the same generating
process for (xjt1, . . . , xjtp) and εjt, as those in the previous simulation study.
The other parameters are set as τ 2v = (0.5)2 and σ = 1.475

We model the distribution of error ϵjt in the model (9) by the N-LPMN
distribution with latent variables (zjt, ujt). The same data augmentation
strategy can be used in the posterior computation for this model, and the
full conditional distribution of vj is given by N (̃bj ãj, b̃j), where

b̃−1
j =

1

τ 2v
+

1

σ2

T∑
t=1

1

u
zjt
jt

and ãj =
1

σ2

T∑
t=1

u
−zjt
jt

(
ytj − β0 −

p∑
k=1

βkxjtk

)
.

We use an inverse-gamma prior for τ 2v , namely, τ 2v ∼ IG(av, bv) with av = bv =

1, and the full conditional distribution of τ 2v is IG(ãv, b̃v), where ãv = av+m/2

and b̃v = bv +
∑m

j=1 v
2
j/2. Given the random effect vj, other parameters and

latent variables can be easily generated from their full conditional distribu-
tions in Section 3.1, with a slight modification by replacing the response480

variable with yjt − vj. The other error distributions, such as the normal and
t-distributions and the finite mixture, can be implemented in the same way
by using its representation of scale mixture of normals. The only exception is
the LPTN distribution; it does not admit the representation of a scale mix-
ture of normals and is not directly incorporated into the random intercept485

model. In total, we employ six error distributions (N-LPMN, aN-LPMN, C,
aT, MT, and N) in this study. We evaluate the performance of point and
interval estimations by posterior means and 95% credible intervals for the
regression coefficients, using RMSE, CP, and AL, as adopted in the previous
study. The performance of the six models in predicting the random effect490

is also assessed via the square root of the mean squared prediction error
(RMSPE) based on 500 replications of the simulations, and these values are
averaged over v1, . . . , vm.

The results are listed in Table 4. Regarding the regression coefficients, a
similar tendency as found in Tables 2 can be observed. This indicates the495

usefulness of the proposed N-LPMN method under more structured models
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than linear regression. It is also observed that the N-LPMN method with
estimated γ does not necessarily work well; therefore, our recommendation in
this example is simply to use the fixed value γ = 1. In terms of the RMSPE,
the proposed N-LPMN method consistently outperforms the other methods.500

Specifically, the difference between the N-LPMN and MT methods is consid-
erable, which also suggests the importance of the posterior robustness shown
in Theorem 1, that is, the advantage of the proposed error distribution over
the conventional finite mixture approach with t-distribution.

5. Real data examples505

The posterior robustness of the proposed N-LPMN distribution is demon-
strated via the analysis of two real datasets: the Boston housing data and
diabetes data. The goal of statistical analysis here is variable selection with
p = 29 and p = 64 predictors in the presence or absence of outliers. Our ro-
bustness scheme is a prominent part of such analysis as it allows the use of un-510

bounded prior densities for strong shrinkage effect. Specifically, this relates
to the horseshoe priors discussed in Section 3.2, while protecting the posteri-
ors from the potential outliers. The Boston housing data are suspected to be
contaminated with outliers, where the difference of the proposed N-LPMN
distribution and the traditional t-distribution is emphasized. In contrast,515

the diabetes data are free from extreme outliers, and we use this dataset
to discuss the possible efficiency loss caused by the use by using N-LPMN
distributions.

In our examples, the number of covariates is not small. Hence, we con-
sider both variable selection and robust Bayesian inference using the proposed520

method. Specifically, we employed the horseshoe prior, as described in Sec-
tion 3.2. For comparison, we also apply the standard normal distribution
and the two-component mixture of normal and t-distributions as the error
distribution, while using the horseshoe prior for regression coefficients. In all
the methods, we generate 10000 posterior samples after discarding the first525

5000 posterior samples as burn-in.

5.1. Boston housing data
We first consider the famous Boston housing dataset (Harrison and Ru-

binfeld, 1978). The response variable is the corrected median value of owner-
occupied homes (1,000 USD). The covariates in the original datasets consist
of 14 continuous-valued variables regarding the information of houses, such
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Table 4: Average values of RMSEs, CPs, ALs and RMSPEs of the proposed N-LPMN
distribution with γ fixed (N-LP) and estimated (aN-LP), Cauchy distribution (C), t-
distribution with estimated degrees of freedom (aT), two-component mixture of normal
and t-distribution with 1/2 degrees of freedom (MT), and normal distribution (N) under
the random intercept models with six combinations of (100ω, µ). All values are multiplied
by 100. The best RMSE and RMSPE values are in bold.

(100ω, µ) N-LP aN-LP C aT MT N
(5, 5) 5.91 5.89 6.86 6.54 5.91 10.67
(10, 5) 8.45 8.88 7.12 9.39 8.52 17.51

RMSE (5, 10) 5.61 5.58 6.84 6.37 5.72 19.40
(fixed effects) (10, 10) 5.86 5.79 6.78 9.52 6.03 33.74

(5, 15) 5.47 5.45 6.65 6.10 5.58 28.23
(10, 15) 5.86 5.79 6.84 9.36 5.96 49.80

CP

(5, 5) 94.1 94.0 81.6 92.6 92.1 86.5
(10, 5) 92.9 93.2 84.5 90.4 91.1 85.7
(5, 10) 95.1 94.7 82.3 95.2 91.9 85.9
(10, 10) 95.2 95.2 86.0 95.3 91.8 86.0
(5, 15) 94.9 94.6 83.6 96.4 91.9 86.4
(10, 15) 95.5 95.4 84.8 97.3 92.5 86.5

AL

(5, 5) 22.0 21.8 18.4 22.7 20.3 27.7
(10, 5) 25.8 26.0 19.7 28.5 23.1 33.7
(5, 10) 21.4 21.1 18.5 25.7 19.7 44.7
(10, 10) 23.1 22.7 19.6 38.9 21.0 58.5
(5, 15) 21.3 21.0 18.5 27.2 19.7 63.3
(10, 15) 23.0 22.6 19.6 47.2 20.9 85.1
(5, 5) 29.5 29.4 33.9 31.5 35.0 40.5
(10, 5) 33.6 33.2 34.1 37.1 38.8 44.2

RMSPE (5, 10) 28.8 28.8 34.2 33.3 33.7 46.9
(random effects) (10, 10) 30.5 29.7 33.5 40.9 36.4 48.3

(5, 15) 28.8 28.8 34.0 33.9 33.6 48.3
(10, 15) 30.3 29.5 33.4 41.8 36.3 49.2
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as per capita crime rate and accessibility to radial highways, and one binary
covariate. After standardizing the 14 continuous covariates, we use them to
create squared values, which results in p = 29 covariates in our models. The
sample size is 506. The data also contain the longitude and latitude of house
i, denoted by ti. To consider spatial correlation, we consider the following
model:

yi = x⊤i β + g(ti) + εi, i = 1, . . . , n, (10)
where g(ti) is a spatial effect as an unknown function of location information
ti. We assume that g(ti) follows the standard Gaussian process, namely, η ≡
(g(t1), . . . , g(tn)) and η ∼ N(0, κ2C(h)), where C(h) is a variance-covariance
matrix whose (i, j)-entry is exp(−∥si − sj∥2/2h2) with unknown bandwidth
parameter h. The above model can be seen as a spatially varying intercept
model, or a spatially varying coefficient model (e.g. Gelfand et al., 2003).
This is another example of the general model in Section 3.3, where r = n,
b = η, gi is the i-th standard basis, and H(ψ) = κ2C(h) with ψ = (κ, h).
Under the N-LPMN distribution for εi, the full conditional distribution of η
is given by N(Ã−1

η B̃η, Ã
−1
η ), where

Ãη = κ−2C(h)−1 + σ−2diag(u−z1
1 , . . . , u−zn

n ) and B̃η = (Y −Xβ)/σ2.

A similar sampling strategy can be used for the two-component mixture of
a normal and t-distribution with 1/2 degrees of freedom (denoted by MT),
as adopted in the simulation study in Section 4. We employ the conjugate530

inverse gamma prior IG(1, 1) for κ2, and a uniform prior, U(0, hM), for h,
where hM is the median of all the pairwise distances of sampling locations.
The random-walk Metropolis-Hastings algorithm can be used for sampling
from the full conditional distribution of h.

As an exploratory analysis, we first apply model (10) with normal error,535

εi ∼ N(0, σ2), and computed the standardized residuals by using the poste-
rior mean of the model parameters to visualize the potential outliers. The
computed residuals are shown in the left panel of Figure 3. Although the
normal error model is sensitive to outliers, there are still large residuals seen
in the figure, which implies the extremity of the outliers in this dataset. In540

the proposed error distribution, the existence of extreme outliers is implied
by the posterior of the mixture weight s, that is, the proportion of the super
heavy-tailed distribution in the finite mixture. The trace plot of the posterior
samples of the mixture weight s under the N-LPMN model is presented in
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the right panel of Figure 3. As all the sampled values are bounded away from545

0, the outliers shown in the left panel are likely to be explained by the super
heavy-tailed component of the mixture. As a prior sensitivity analysis, we
apply more informative priors, Beta(1, 5) and Beta(1, 9), in addition to the
default prior s ∼ Beta(1, 1). The posteriors computed with the three beta
priors are almost identical.550

The estimated spatial effects, g(ti), under the N-LPMN and normal mod-
els, are presented in Figure 4. The N-LPMN model produces spatially
smoothed estimates, whereas the estimates of the normal model are volatile
across the sampling area. This finding also evidences the effect of outliers on
the posterior inference for the regression coefficients or, in this example, the555

random intercept terms.
The posterior means and 95% credible intervals of the regression coeffi-

cients based on the three methods are shown in Figure 5. This shows that the
results of the normal error model are quite different from those of the MT
and N-LPMN distributions. The difference in estimates becomes visually560

clear, especially for the significant covariates, if we define the significance in
the sense that the 95% credible intervals do not contain zero, like the result
of proneness/sensitivity to the representative outliers observed in Figure 3.
The difference between the posteriors of the N-LPMN and MT models exists,
but is not as visually clear as the difference from the normal error model.565

Finally, we compute the deviance information criterion (Spiegelhalter et
al., 2002, 2003; Lunn et al., 2013) of the three models. The obtained values
are 2628 for the normal error model, 2339 for the MT error model, and
2325 for the proposed N-LPMN error model. This shows the best fit of the
N-LPMN error model to the data using this criterion.570

5.2. Diabetes data
We consider another famous dataset known as Diabetes data (Efron et

al., 2004). The data contains information of 442 individuals and 10 covariates
regarding the personal information and related medical information of the
individuals. We consider the same formulation of linear regression model as575

in Efron et al. (2004); the set of predictors consists of the original 10 variables,
45 interactions, and 9 squared values, which results in p = 64 predictors in
the model. For this dataset, the regression models with the horseshoe prior
and three error distributions (N, N-LPMN, and MT) presented in Section
5.1 are adopted.580
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Figure 3: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed N-LPMN distribution (right), obtained form the Boston housing data. The
posterior mean and the 95% credible interval of s are 0.160 and (0.087, 0.249), respectively.

Similar to the analysis of the Boston housing data, we check the stan-
dardized residuals computed under the standard linear regression model. The
result is presented in the left panel of Figure 6. A few outliers are confirmed
in the dataset, as most of the residuals are contained in the 99% interval,
which strongly supports the standard normal assumption in this example.585

The right panel of Figure 6 shows the trace plot of the posterior samples of
mixture s under the N-LPMN distribution. All the sampled values are very
close to zero, implying that most error terms should be generated from the
first component of the mixture, that is, the standard normal distribution. In
this case, the super heavy-tailed component might be regarded “redundant”590

for this dataset. The same sensitivity analysis on the choice of priors is done
for s as in the previous section; however, we find no significant change in the
results.

To see the possible inefficiency of using the N-LPMN models for the
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Figure 4: Posterior means of the spatial effects based on the N-LPMN and the normal (N)
distribution.

dataset without outliers, the posterior means and 95% credible intervals of595

the regression coefficients are reported in Figure 7. The results of the three
models are comparable; the predictors selected by significance are almost the
same for the three models. The only notable difference is that the credible
intervals produced by the t-distribution model are slightly larger than those
of the other two methods. This indicates a loss of efficiency when using600

the t-distribution method wihtout outliers, as confirmed by the simulation
results in Section 4. In contrast, the difference in the credible intervals of the
Gaussian and N-LPMN models is hardly visible in the figure. That is, even
if no outlier exists, the efficiency loss in the estimation under the N-LPMN
model is minimal.605

We also compute the deviance information criterion for the three models.
The obtained values are 4794 for the normal error model and 4795 for both
the MT and N-LPMN error models, which shows a comparable fit of the
three models.

6. Discussions610

While the focus of this research is on the inference of the regression co-
efficients and scale parameters, it is of great interest to employ predictive
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Figure 5: Posterior means and 95% credible intervals of the regression coefficients in the
normal regression with normal distribution error (N), the proposed N-LPMN distribution,
and the two-component mixture of normal and t-distribution with 1/2 degrees of freedom
(MT), applied to the Boston housing data.

analysis based on the proposed model. Because the H-distribution, as well
as many log-regularly varying distributions, is too heavily-tailed to have fi-
nite moments, posterior predictive moments under the N-LPMN models do615

not exist. In practice, it is common to have predictive distributions with
no finite moments (West, 2020), and it is worth investigating the predictive
properties under the N-LPMN models, especially regarding the impact of the
super heavy tails on predictive uncertainty.

The proposed method is not limited to the analysis of the linear regres-620

sion models but can be immediately customized for any models that are
conditionally Gaussian, as we perform in the analysis of the random in-
tercept model in Section 4.3 and the spatially varying intercept model in
Section 5.1. Other examples include graphical models and dynamic linear
models, which can be topics for promising future research. The efficient pos-625

terior computation algorithm presented in this research can be used for these
highly structured models. It can also be employed when utilizing the hierar-
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Figure 6: Standardized residuals (left) and trace plot of s (mixing proportion) in the
proposed N-LPMN distribution (right), obtained form the Diabetes data. The posterior
mean and the 95% credible interval of s are 0.008 and (0.000, 0.032), respectively.

chical representation of the proposed error distribution. Similar theoretical
robustness properties might also be confirmed for these models.

Finally, we note that the assumption (A.1) in Theorem 1 misses the630

high-dimensional regression with a small sample size (n < p), which means
that posterior robustness is not necessarily achieved in this challenging sit-
uation. Therefore, substantial work is required to develop the theory and
methodology for “robust high-dimensional regression,” which we present as
an interesting future research topic.635
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the normal regression with normal distribution error (N), the proposed N-LPMN distribu-
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Supplementary Material

The proofs of all the propositions and theorems, and additional simulation640

results are provided in the online supplementary material.
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