On universality in penalisation problems with
multiplicative weights
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Abstract

We give a general framework for the universality classes of o-finite measures in
penalisation problems with multiplicative weights. We discuss penalisation problems
for Brownian motions, Lévy processes and Langevin processes in our framework.
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1 Introduction

For a measure p and a non-negative measurable function f, we write u[f] for the integral

J fdp.

For a probability space (2, F, P) equipped with a filtration (F;)s>0, and for a non-
negative process I' = (I';)i>o called a weight, we mean by a penalisation a problem of
finding a limit probability P' on (Q, F) called the penalised probability such that

P[F,T] r
P, IH—O;P [Fy] (1.1)

is satisfied for all s > 0 and all bounded F,-measurable functional F,. Under the pe-
nalised probability P, the process (I';)i>o is prevented from taking small values; this is
why Roynette—Vallois—Yor [14] (see also [15]) called this problem the penalisation. Con-
ditioning a process to stay in a domain D may be regarded as a special case of the
penalisation, as we take the weight I'; = 17 -4} where 7p denotes the exit time of D.

Although the penalised probability P' depends upon the weight I', we can often find
a o-finite measure & on (), F) independent of a particular weight such that

Pl Al

Pr(A) = e

AeF (1.2)

holds with a suitable limit I'y, of I'; in a certain class of weights I". In this case we say
that T' belongs to the universality class of &7. The aim of this paper is to gain a clear
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insight into the universality classes in penalisation problems. For this purpose, we confine
ourselves to multiplicative weights.

Let {B = (By)i>0, W} denote the canonical representation of the one-dimensional
Brownian motion with W,(By = z) = 1 and let FP = o(B, : s < t) denote the natural
filtration of the coordinate process B. Let 7p = inf{t > 0: B; = 0} denote the exit time
of B from the non-zero real D = R\ {0}. Let € D be fixed. It is then well-known that

1
W lFs|mp > 1] b~ WPlR] = me [Fs‘Bs|1{m>s}] (1.3)

for all bounded FP-measurable functional Fy, where W3 denotes the law of + times
3-dimensional Bessel process starting from x. This conditioning to avoid zero may be
regarded as a special case of the penalisation with the weight being given by I'; = 1¢-,-4.
Note that WF3B is locally absolutely continuous with respect to W,, i.e. WZE3B| FB 18
absolutely continuous with respect to W,|zs for all s > 0. But WEB and W, are
mutually singular on F2 := o(B), because WFB(7p = 00) = W,(7p < o0) = 1. While
the original process {B, W, } is recurrent, the penalised process { B, W38} is transient.

Roynette—Vallois—Yor ([13] and [12]) have studied the penalisation problems for the
one-dimensional Brownian motion. They determined the penalised probabilities for I'; =
f(X}), a function of a supremum, Iy = f(L;), a function of a local time at 0, and
[y = exp(— f(f v(B,)ds), a Kac killing weight. For the special case I'; = e~%*, we have

WO [Fse_Lt] T

WER] = ——

Wo | Fy(1+ |Bg|)e T 1.4
Wole &) =00 © L+ || 0[ (L+1Bl)e ] 14

for all s > 0 and all bounded FZ-measurable functional F,. Although W[} is locally
absolutely continuous with respect to Wy, the two measures W3 and W, are mutually
singular on F2 | because W} (Ly < 00) = Wy(La = 00) = 1. While the original process
{B, Wy} is recurrent, the penalised process {B, W{ } is transient.

Najnudel-Roynette—Yor ([8]) have introduced the o-finite measure #; defined by

> du
V2 :/ 1™ e WS3B, 1.5
0 0 \/ﬁ 0 ( )
where I1") stands for the law of the Brownian bridge from 0 to 0 of length u, W for
the law of the symmetrised Bessel process, and e for the law of the concatenated path of
two independent paths. They proved that the penalised probability W for any weight T
in the previous paragraph is absolutely continuous on F2 with respect to #4:
Wo[FT ]
WIF) = = ——2>= 1.6

for all bounded FZ-measurable functional F. Moreover, if we define #,(-) = #y(z+ B €
-), we have

(1.7)



for all z > 0 and all bounded FZ-measurable functional F. In other words, all the weights
belong to the universality class of 7.

K.Yano-Y.Yano—Yor [20, 21], Y.Yano [22] and recently Takeda—K.Yano [16] studied
the penalisation problems for one-dimensional stable Lévy processes and found out that
there are two different universality classes. In this paper, we would like to give a general
framework to characterise universality classes, where we will give some new results.

Groeneboom—Jongbloed—Wellner [6] studied the conditioning to stay positive for the
Langevin process. Profeta [10] studied penalisation problems with several kinds of weights.
In this paper, we shall also discuss universality classes for those penalisation problems.

This paper is organized as follows. In Section 2 we develop a general study on penalised
probabilities with multiplicative weights. In Section 3 we define the unweighted measures
and discuss the subsequent Markov property of them. In Section 4 we state and prove
our main theorems on universality classes. In Section 5 we give a general discussion on
penalisation problems with multiplicative weights. In Sections 6, 7 and 8, we look at
some known results of penalisation problems for Brownian motions, Lévy processes and
Langevin processes in our framework. In Section 9 as an appendix, we discuss extension
of the transformed probability measures given by local absolute continuity.

2 Penalised probability

For a measure i and a non-negative measurable function f, we write f - u for the trans-
formed measure defined by (f-u)(A) = [, fdu for all measurable set A. Let (F;)s>0 be a
filtration. For two measures p and v, we say that u is locally absolutely continuous with
respect to v if u|z, is absolutely continuous with respect to v|z, for all s > 0. We say the
two measures are locally equivalent if they are locally absolutely continuous with respect
to each other. For a parameterised family (u,), of finite measures and a finite measure
1, we say that

limy pox = p along (Fs)s>o0 (2.1)
if
limy, p[Fs] = plF] (2.2)

holds for all s > 0 and all bounded measurable functional F.

Let S be a locally compact separable metric space and let ID denote the space of cadlag
paths from [0,00) to S. Let X = (X})t>0 denote the coordinate process: X;(w) = w(t)
for t > 0 and w € D. Let FX = o(X, : s < t) denote the natural filtration of X
and set F, = ﬂ8>0 fﬁre so that (F;)i>o is a right-continuous filtration. We write Fo, =
0(U;s Fit) = 0(X). For t > 0, let 6, denote the shift operator of D: §,w(s) = w(t+ s) for
s> 0.

Let {X, Fuo, (Py)zes} denote the canonical representation of a strong Markov process
taking values in S with respect to the augmented filtration (G;)i>o of (F)i>0. A process



' = (T'y)>0 is called a weight if it is a non-negative cadlag process. A weight I' is called
multiplicative if T' is adapted to (F;)¢>0 and

[y=Ts - (I'4_s500s), Pras. foral 0 < s <t <ooandall z €S. (2.3)
Let T' be a multiplicative weight. Since I'y = T’y - (I'g 0 6) = I'z, we note that
for any x € S we have either P,(I'y=1) =1 or P,(I'y =0) = 1. (2.4)
We set
St ={zeS:P(Ty=1)=1}. (2.5)

It is easy to see that
Hi=inf{t>0:X,¢ S} =inf{t >0:T;, =0} Py-as. forallz € S, (2.6)
since [I';, = 0 implies T'; = 0 for all ¢ > t,] because of the multiplicativity.

We introduce the following assumptions:

(A1) There is a Borel function ¢! on S such that ¢! >0 on ST and
P,Two" (X)) = ¢"(z) forallz e Sandt>0. (2.7)

(A2) It holds that
P[Te) = 0asq|0forallxe S, (2.8)
where we abuse P, for the extended probability measure of P, supporting a standard

exponential variable e independent of F., and we set e(q) = e/q for ¢ > 0.

Note that, by the dominated convergence theorem, the condition (A2) follows from
the following condition:

(A2') It holds that
P,Iy] — 0ast— ocoforallze S, (2.9)

By the multiplicativity, the condition (2.7) is equivalent to the condition that
(Ty0" (X;))i>0 is a right-continuous ((G;);o, Pr)-martingale for all z € S (2.10)

(for right-continuity, see, e.g., [5, Theorem 5.8]). Under (A1), for z € ST, we may define
a probability measure Pl on (D, F,,), which we call the penalised probability of P, for T,
by the following (see Section 9):

ol (X
Pmr‘ft: tgpp( t)
o (z)

It is then immediate that the penalised process {X, Foo, (P!)zes} is a Markov process
with respect to (F)>o0.

- Plg, forallt > 0. (2.11)

We write —— for convergence in probability. In addition to (A1) and (A2), we also

introduce the following assumptions:



(A3) There is a non-negative finite F.,-measurable functional I', such that

Pr (rt — T > 0) —1forall z € ST. (2.12)

Note that in many examples we have (A3) and P,(liminf, ...y = 0) = 1, which
implies that the two measures P! and P, are mutually singular on F.

The following is a routine argument.

Proposition 2.1. Let I' be a multiplicative weight. Then the following hold.

(i) Under (A1), it holds that
PY (" =o0) =1 for allz € S*. (2.13)
(ii) Under (A1), (A2) and (A3), it holds that

P (ch(Xt) — oo) =1 forallzeS". (2.14)

Proof. (i) We apply the optional stopping theorem to the ((G;)i>o, Pr)-martingale M; =
[0 (X)) /b (z) (by (A1)) to see that

Pr(r" > t) =P, [My; 7" > t] (2.15)
Py [Myprr] — |:Mt/\7'r <t (2.16)
AM] P [Mr;r" <t] =1, (2.17)

which implies that PI'(7T = 00) = 1.

(ii) Let 0 < s <t < oo and A; € F,. We then have

1 1
pr {7;As] = Po(As, T8 >t
1 1 '
< P.(A,, ™' > s :Pfli;fls].
BT )= P T Xy

This shows that N; := 1/{Ty0"(X;)} is a non-negative P!-supermartingale with respect
I

to the completed filtration (?f “)i0 of (F)i>0, and consequently it converges Pl-a.s. as
t — 0o to some random variable N. By (A3), we see that

1

— =T\, Ny Pl-as., 2.19
o7 (X;) et — z -8 (2.19)

N
which implies 1/¢" (Xe(q) % I'ewNo. Using Fatou’s lemma, we obtain
q

1 1
PIPoNy) < liminf PF = lim P, [Ton] =0 2.20
Nl S it P s = s i P )] (220)
by (A2). Hence we obtain (2.14). O



3 Subsequent Markov property

Let T' be a multiplicative weight satisfying (A1), (A2) and (A3). For z € S¥, we may
define a measure 2! on (D, F,,), which we call the unweighted measure of PX, by

P = ()PP on Fu. (3.1)

T

Note that 2. is o-finite on Fu, because D = |, (y{T > 1/n}, P1-a.e. and
P (T > 1/n) < ne'(z) < oo forall n € N. (3.2)
The family of the unweighted measures satisfies the following property.

Theorem 3.1. Let I' be a multiplicative weight satisfying (A1)-(A3). Then, for any x €
ST, any non-negative Fy-measurable functional Fy and any non-negative Fa.-measurable
functional G, it holds that

P F(Gob,)] = P, [F, 2%, |Gl 7" > t]. (3.3)

Proof. By definition of 2! we have

P |(FT)((GTw) 0 0)] =P [Fi(G 0 )T o] (3-4)
=¢" () Py [Fi(G 0 6,)] .

By the Markov property for X under P!, by the local equivalence between PI and P,,
and by the global equivalence between PI and 2! we obtain

(3.5) =¢" (2) Py [F, Py, [G]]
=P, [Fy" (X¢)I' Py, [G]] .

where we used the fact obtained from Proposition 2.1 that X; € S', P,-a.s. on {I'; > 0}.
Thus we obtain

P, [FTy(GT ) 0 0,) =P, [F,T, 2%, [GT&]] - (3.9)

Replacing F; by F,I';'1 (rr>¢y and G by G M. >0}, we obtain the desired identity, since
' =00 and Ty, > 0, Pl-a.e. The proof is now complete. O

Theorem 3.1 asserts that, the process under 22! behaves until a fixed time ¢ as the
process under P, killed upon leaving ST, and it starts afresh at time ¢ to behave as the
process under 3%2. In this sense, we may call this property (3.3) the subsequent Markov

property.



4 Universality class

Let £ be a particular multiplicative weight satisfying (A1)-(A3). We would like to give
a sufficient condition for existence of a positive function ¢(z) such that

St cS¢ and LI =c(a)lgp w0y - PE forallz € ST (4.1)

We note that [Z2) = c(z)1ir >0y - P25] yields [T belongs to the universality class of 97¢]
in the sense we mentioned in Introduction.

Theorem 4.1 (Universality theorem). Let £ and I be two multiplicative weights sat-
isfying (A1)-(A3). Suppose there exists a positive function c(x) such that

(X)) Pt
PE(Ty — To) =1 LA C.ONE r 4.2
(T — () c(x) forallzeS (4.2)
and
o' (Xy) Pr

P <5t - Eoo > 0) =1, c(x) forallz e S*. (4.3)

—
PF(Xy) tooo
(Notice that these assumptions do not follow from (A3).) Then (4.1) holds.

Proof. Let x € ST be fixed. Since P, = P on Fy, we have

P& =1)=P (& =1)> PY (&, > 0) =1, (4.4)
which shows z € S€. By the assumptions, we have
P PE o Tt (X _
Rt ;)o Roo and Rt So Roo with Rt = W and Roo = C(.’I’)FOO (45)
Let s > 0 and let F, be a non-negative F,-measurable functional. For ¢t > s, we have
Rt 1 Rt
P|F,- = P\ Fy ———— &5 (X 4.6
x[ 1+Rt+€t:| ©* () { 14+ R+ & " t)] (4.6)
r £ X
_ @) pr {F B G t)} (4.7)
QO(‘:(.T) 1 + Rt + gt th0F<Xt)
r
¢ () ,r [ & }
= P |F,- ) 4.8
& (x) * 1+ R+ & (48)
Letting ¢ — oo and applying the dominated convergence theorem, we obtain
R o' () E
PE|F,- = = PHF - ——=——|. 4.9
v 1+Roo+£oo] o (z) * 14+ R + € (4.9)
Since s > 0 and Fj are arbitrary, we obtain
c(@)¢® (1)l oo - Py = @' ()€ - Py s (4.10)
which yields
A(2)Lras0) - P = Ligws0y - Py = P, (4.11)
since PI (€, > 0) = 1. We thus obtain the desired result. O



5 Penalisation problems

We give two systematic methods of ensuring the conditions (A1) and (A2) in penalisation
problems.

5.1 Constant clock

We give a general framework for penalisation problems with constant clock.

Proposition 5.1. Let I' be a multiplicative weight. Let p(t) be a function such that

p(t) — X and =) — 1 forall s >0, (5.1)

or in other words, p(logt) is divergent and slowly varying at t = co. Suppose there exists
a process (Ms)s>o such that P,(My > 0) = P,(I'o = 1) for allz € S and

p(t) P[4 F] — M, in LY(P,) for allz € S and all s > 0. (5.2)

Then the weight T satisfies (A1) and (A2") with

o' () = lim p(t) Po[T], (5-3)

t—o0

and the following penalisation limit with constant clock holds:

ry-P
Pl;[l“j P~ Py along (Fy)sso for all z € S'. (5.4)

Proof. The convergence (5.2) for s = 0 becomes (5.3). By the multiplicativity 'y =
[y - (I'y_s 0 05) and by the Markov property, we have

p(t) P[4 | Fs] = p(f(f)s)rs - p(t — s)Px,[I't—s] — " (X,) in P-as.. (5.5)

which yields M, = I';o"(X,). Hence we have

Py[Th" (X)) = lim p(u) Po[Po[Lu| Fl] = lim p(u) Po[Lu] = o' (2), (5.6)

which shows that (A1) is satisfied. As p(t) — oo, we obtain (A2’). For s > 0 and for a
bounded F,-measurable functional Fy, we obtain

p(t)Po[FTy] = Po[Fop(t) Po[To| F]| — Po[FM,] = o' (2) Py [FY). (5.7)

t—o0

This shows (5.4). O



5.2 Exponential clock

Conditioning and penalisation problems with exponential clock have been widely studied;
see [3], [4], [9], [19] and [11]. We give a general framework for them.

Proposition 5.2. Let r(q) be a function defined for small ¢ > 0 such that r(q) — oo
as q | 0. We abuse P, for the extended probability measure of P, supporting a standard
exponential variable e independent of (Fi)i>0 and set e(q) = e/q for ¢ > 0. Suppose there
exists a process (Mj)s>o such that P,(My > 0) = P,(I'g = 1) for allx € S and

lqlfgr(q)Pm[Fe(q)‘fs] = lqiﬁ;l,r(cnpx[re(q)1{e(q)>s}|fs] =M, n L1<Pm>

forall x € S and all s > 0.

Then the weight T satisfies (A1) and (A2) with

o' (z) = limr(q)Ps[Te(o) (5.9)

and the following penalisation limit with exponential clock holds:

Fe * P{L’ Fe 1 e S : P:B
lim — @ — iy — @ He(@>s} _

B P, along (F,)s HzesS'. (510
a0 Py[Te)]  al0 PolTeqie(q) >s] 7 along (Fs)szo for all x (5.10)

Proof. The convergence (5.8) for s = 0 becomes (5.9). By the multiplicativity I'; =
[y« (I'y_s 0 0), by the Markov property and by the memoryless property

. law
e(q) — s given {e(q) > s} = e(q), (5.11)
we have
(@) Pu[Le(q) Le(q)>s3 | Fs] =e™1(q) Pr[Le(g)+s|Fs] (5.12)
=e *Tor(q) Px.[Feqo)] — Top' (Xs) - Pr-s, (5.13)
q

which yields M, = I',o" (X,). Hence we obtain
P Io" (X))] = P.[M,] = 1qifg () Po[PuLe() | F2]] = 1%1 () Pe[Teq)) = ¢" (z), (5.14)

which shows that (A1) is satisfied. As r(¢) — oo, we obtain (A2). For s > 0 and for a
bounded F,-measurable functional F,, we obtain

T(Q)Px[FsPe(q)] = Px[FsT(Q)Px[Pe(CI)|~7:SH ﬁ Py [FM] = SOF(ZE)PE[FS]' (5.15)

This shows (5.10). O



6 Brownian penalisation revisited

Let us look at some results of Roynette—Vallois—Yor [13, 12] and Najnudel-Roynette—Yor
[8] in our framework.

Let { B = (Bi)i>0, (Wa)zer} denote the canonical representation of the one-dimensional
Brownian motion with W (By = x) = 1. Set By = sup,<; Bs and let L; denote the local
time of B at 0. For the shift operator on the path space, we have

Bt+s = By o b, §t+s = Es Vv (Et o 95), Lt+s =L+ (Lt © 95)- (6-1)

For a technical reason, we set
S={(z,y,l) ER*:y > 2, | >0} (6.2)

as the state space and consider the coordinate process X = (X;)>0 = (XP, X;", X[%)i>0
on the space of cadlag paths from [0, c0) to S. Writing a Vb = max{a, b}, we define P, 4
by the law on D of (B,y V B,l + L) under W,, and adopt the notation of Section 2. By
the identities (6.1), we see that the process {X, Fuo, (Pay))(zypes ) 15 a strong Markov
process with respect to the augmented filtration.

(1) Supremum penalisation. For an integrable function f : R — [0, 00) such that for
some —o0 < yg < oo we have f(y) > 0 for y < yo and f(y) = 0 for y > yo, we set

FX™)

s — s Ly xsur ,
t f( : p) {X;"P<yo}

S = {(z,y,0) € Sy <o} (6.3)

Then we see that """/ is a multiplicative weight with ST wl— gsup.f (in what follows
we will omit similar remarks). By Roynette—Vallois—Yor [12, Theorem 3.6], we see that
all the assumptions of Proposition 5.1 are satisfied with p(t) = y/7t/2 and

sup, R T o sup,
© (x,y,l) =y x+f(y)/y fw)du, (x,y,l)€S , (6.4)

so that (A1) and (AZ2') are satisfied. By the discussion of Roynette—Vallois—Yor [12,
Subsection 1.4], we can derive that

J." fu)du
(y—2)f(y)+ [° flu)du’

and hence that [X"P = X% for large ¢] and [[5"" — D5/ > () P

(A3). By (ii) of Proposition 2.1, we obtain the following known results:

su 7f X
sup, f B ' P ( t) .
Pt <Xt = =00, St = 1) =1 (6.6)

sup, f su o
P(xz’l)(Xoop >a) =

y <a< oo, (6.5)

Sup’{ -a.s., which shows
z,y,0)

10



(2) Local time penalisation. For an integrable function f : [0,00) — [0, c0) such that
for some 0 < Iy < 0o we have f(I) > 0 for I <y and f(I) =0 for [ > [, we set

Xlt
P}ttJ = Ml{Xitﬁlo}a Slt’f - {(ZL‘,y,l) €5:1< lO} (67)

F(X5)

By Roynette—Vallois—Yor [12, Theorem 3.13 and Lemma 3.15], we see that all the as-
sumptions of Proposition 5.1 are satisfied with p(t) = /7t/2 and

1 [P
P (@, ,1) = |z] + 0} flw)du, (z,y,1) € S, (6.8)
!
so that (A1) and (A2') are satisfied. Moreover, (A3) is also satisfied and
R+ L0 fu)d
P(l;’chl)(Xfﬁj:oo):x f()+2{i) f(u)du (6.9)
. 2l (@) + f,° f(u)du
with 2% = max{+x,0}. It is then obvious that
It,f
It, ¥ (Xt)
P(;J;,l)(\)(ﬂ 00, TR = 1) = 1. (6.10)

Note that the conditioning to avoid zero, which we have mentioned in Introduction, can
be regarded as a special case of the local time penalisation with the weight 1;yi_g, = rf

for f(I) = 1y=o}.

(3) Kac killing penalisation with integrable potential. For an integrable function v :
R — [0, 00) satisfying

0< /R(l + |z|)v(z)dz < oo, (6.11)

we set
¢
Ffac’v = exp (—/ v(Xf)ds) . SRacv _ g (6.12)
0

By Roynette—Vallois—Yor [13, Theorem 4.1], we see that all the assumptions of Proposition
5.1 are satisfied with p(t) = /7t/2 and **(z,y,1) = ¢,(x) where ¢, is the unique
solution to the Sturm-Liouville equation

1d*p,
2 dz?

() =v(x)py,(x), lim (x) = £1. (6.13)

so that (A1) and (A2') are satisfied. Moreover, (A3) is also satisfied and

1 [ dy 1 [ dy
PKac,v XB . — _/ PKaC’U XB = —/ 6.14
(@:0) ( v OO) Cv z Yo (y)2 ’ (@v.d) ( v OO) Cv —oo va(y)Q ( )

11



with C, = [, ﬁ. By (6.13) it is obvious that

Kac,v

ac,v SO ’ (X)

Pge <|XB| 0 B LA, 1) = 1. (6.15)
t

(4) Kac killing penalisation with Heviside potential. For A > 0, we set

t
Iy = exp(—)\ / 1{X§>O}ds) , Sfeev=g. (6.16)
0

By Roynette-Vallois—Yor [13, Theorem 5.1 and Example 5.4], we see that all the assump-
tions of Proposition 5.1 are satisfied with p(t) = y/7t/2 and

L V2 (2> ,
1A (@, y,1) = { VA @2 0) (6.17)
ﬁ — X (l' < 0),

so that (A1) and (A2') are satisfied. Moreover, (A3) is also satisfied and

Hev,\
Hev, A B PN Xy)

(%) The universality class of Brownian penalisation. Take & = exp(—X}*) as a special
case of (2) with f(I) = e7!. (Note that, by Najnudel-Roynette-Yor [8, Theorem 1.1.2],
the corresponding unweighted measure Z¢ coincides with %, given in Introduction.) By
the above argument, we see that all the assumptions of Theorem 4.1 are satisfied with &£
and I' = [supo/ TS TKacw op THeVA g6 that we obtain the following known result:

@&yl) Lir.>o} - @xyl) for all (z,y,1) € S*. (6.19)
We remark the following obvious facts: It holds up to @ null sets that
D={X? — ooor X — —oc0}, (6.20)
and that the event {I"y, > 0} becomes

{r3P) > 0} ={X/ — —oo and X3P < o}, (6.21)

I > 0} ={[XP — o0 or X} — —oco] and X <}, (6.22)
{r¥ev > 0} ={XF — oo or X — —oc}, (6.23)
{T7 > 0} ={X — —oo}. (6.24)

7 Lévy penalisation revisited

Let us look at some results of K.Yano—Y.Yano—Yor [20, 21], Y.Yano [22] and Takeda—
K.Yano [16] in our framework.
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Let {Z = (Z)i>0, (P?)ser} denote the canonical representation of one-dimensional

strictly a-stable process of index 1 < a < 2, skewness —1 < 3 < 1 and scaling parameter
cg > 0:
YARIVA o - Ta
P e"*] = exp(—cew (1 — i@ sgn(A) tan 7)) , AER. (7.1)

(For the facts in this paragraph, see e.g. [2, Section VIII].) We assume that 1 < o < 2
so as to exclude the Brownian case and to assure that zero is regular for itself: Writing
Ty = inf{t > 0: Z, = 0} for the hitting time of zero, we have

P/ (Ty > 0) =1. (7.2)

Set Z; = sup,<; Zs and let L; denote the local time of Z at 0. Let

1 1
p:=PE(Z >0) = 5t — arctan(ﬁtan %) ell—1/a,1/a] (7.3)

and let k denote the positive constant such that

lim y*PZ(Z > y) = k. (7.4)
Yy—00
We set
S={(z,y,) eER*:yy >, | >0} (7.5)

as the state space and consider the coordinate process X = (X;)i>0 = (X7, X;", X[')i>0
on the space of cadlag paths from [0,00) to S. We define P, by the law on I of
(Z,yV Z,l+ L) under PZ, and adopt the notation of Section 2.

(1) Supremum penalisation. For a non-increasing function f : R — [0, 00) such that
for some —oo < yy < 0o we have f(y) > 0 for y < yo and f(y) = 0 for y > yo, and

/yo P71 f(y)dy < oo, (7.6)
0

we set

sup, f — f(Xsup)

P = i Lo, S = () € Sy < w (77)
0

By K.Yano—Y.Yano—Yor [21, Theorem 5.1], we see that all the assumptions of Propo-
sition 5.1 are satisfied with p(¢) = t*/k and

(psup’f(l‘, Y, l) _ (y _ l,)ozp + % /yyo f(u)(u — ;L')Oép—ldu, (l‘, Y, l) € Ssupaf’ (78)

so that (A1) and (A2') are satisfied. In the same way as that of deducing (6.5), we see

that [X" = X5 for large ¢] and [[5"Pf — Tsu.f > (] P(S;I;’{)—a.s., which shows (A3). By

13



(ii) of Proposition 2.1 and by the dominated convergence theorem, we obtain the following
known results:

su 7f
sup, f 2 P (Xt) o
P (Xzﬁ —00, X7 —1) =1 (7.9)

Note that the special case of the supremum penalisation with the weight 1gysw_g =
5 for f(1) = 1;y=0y corresponds to the conditioning to stay negative.

(2) Local time penalisation. For an integrable function f : [0,00) — [0, c0) such that
for some 0 < Iy < 0o we have f(I) > 0 for I <y and f(I) =0 for [ > [, we set

rits _ X
IO
By Takeda—K.Yano [16] and by certain computation in [18, Section 5|, we see that all the

assumptions of Proposition 5.2 are satisfied with r(q) = c,qY/* ! for a certain constant
¢ > 0 and

Lixiay, S ={(z,y,0) € S:1<lp}. (7.10)

1
(plt7f(xaya l) = Ca,ﬁ(l - ﬁsgn( ))|w|a ! + m f( ) u, (ZL‘,y,l) S Slt’f (711)
with a certain constant C, 3 > 0, so that (A1) and (A2) are satisfied. In the same
Way as that of deducing (6.5), we see that [X}* = X! for large ¢] and [[}"/ — Tt/ > 0]
-a.s., which shows (A3). By (ii) of Proposmon 2.1, we obtain

It, f
2 (Xt) )
—1)=1; (7.12
Cos(1 = Bogn(XE))XZ (7.12)

pls ((1 _ Bsgn(X7DIXZP — oo,

(z,y,0)

in particular,

&.f X)
Plt,f XZ . SO 200{ —1 8 =1 713
(:B,yl)( t ’ ( XtZ) )1 (1 B )7 ( )
1t, f
1t f Z ' (Xt) . . B
Pyt (Xt — 00, (XZ)a1 — 20,1 | =1 (i p=-1). (7.14)

In the case of —1 < < 1, we have a stronger convergence result in Takeda—K.Yano [16]:

P(li’,{/,l) (lim X = limsup X/ = limsup(—X/) =o00) =1 if-1<g<1. (7.15)

Note that the special case of the local time penalisation with the weight 1;yi_qy = i
for f(I) = 1q—0y corresponds to the conditioning to avoid zero. See [17] for comparison of
two types of conditionings for Lévy processes.

() The universality classes of Lévy penalisation. By (7.9), it holds that

{rswpd > 0} ={X7 — —oco and X5 <y} up to t@(sgg’j)-null sets (7.16)
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in any case of —1 < g < 1.
(1) Consider the case of —1 < 3 < 1. By (7.15), it holds that

{9 > 0} ={lim X/ = limsup X7 = limsup(—X/) = oo and X <y}

up to @l; M

(7.17)

-null sets.

This shows that the two o-finite measures @?;Z{) and (@(1;5; ) are singular to each other.
Note that (7.9) and (7.15) imply

It,g
sup, f 2 (Xt) _
Py (7@511137]0()(0 —0)=1 (7.18)

because ap > a — 1, so that the assumption of Theorem 4.1 is not satisfied.

(x2) Consider the case of § = 1, the spectrally positive case. Take & = exp(X;™ — X;"")
as a special case of (1) with f(y) = e™¥. Then, since ap = o — 1, all the assumptions of
Theorem 4.1 are satisfied with £ and I' = I'""f or I''*9, so that we conclude as a new
result that

Plowt = Wrwsy - Py Torall (z,y,1) € ST (7.19)
It holds up to @ null sets that
D= {X7? - —oc}, (7.20)
and that the event {I"y, > 0} becomes

{9 > 0} ={X7 — —oco and X < [,}. (7.21)

(%3) Consider the case of § = —1, the spectrally negative case. Then

{9 > 0} = {X? — oo and X <1y} up to ﬁltg y-null sets, (7.22)

which shows that ,@(S;Z{ and ,@(xg ) are singular to each other.

8 Langevin penalisation revisited

Let us look at some results of Profeta [10] in our framework.

Let {(B, A), (W,a))®,a)cr2 } denote the canonical representation of the two-dimensional
diffusion (B, A) = (B, At)t>0 where B is a Brownian motion starting from b and

t
A =a —i—/ B, du. (8.1)
0
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This two-dimensional diffusion is a special case of the Langevin process and the process
A is called the integrated Brownian motion. Set A; := sup,<, As.

We set
S ={(ba,y) €eR®:y >a} (8.2)
as the state space and consider the coordinate process
X = (Xp)izo = (X7, X[ X720 (8.3)

on the space of cadlag paths from [0,00) to S. We define Py, by the law on D of
(B,A,yV A) under W), and adopt the notation of Section 2.

We recall the confluent hypergeometric function (see [1, Chapter 13]):
Ula,3,2) = —/ e P (1 +uw) ™ du, a>0, BER, z>0. (8.4)
0

It is easy to see that

diz(zo‘U(a, B,2)) = —a(f—a—1)2*"U(a+1,8,2). (8.5)

The following asymptotics are taken from [1, Formulae 13.5.2 and 13.5.8]:

-1
o) (1< p<2). (8.6)

Z— 00

lim 2*U(a,8,2) = 1 (BE€R), lim=""U(a. 5,2) =

(1) Conditioning to stay negative. We write 74 = inf{t > 0 : X/ > 0} for the exit
time from (—o0,0) for the process X# and set

I} =145y, S*={0ay) €S :y<0}={(bay) eR®:a<y<0} (8.7)

By modifying Profeta [10, Theorem 5], we see that all the assumptions of Proposition 5.1
are satisfied with p(t) = c;t*/* for a certain constant ¢; > 0 and

P (b, a,y) = h(—a,~b), (b,a,y) € 8%, (8.8)
with a continuous function A : (0,00) x R — (0, 00) given as

9 V6,13 (L 4 oy — 1/2,1/67(L 4 >0
h(z,y) = (12? 1/? 1/3(6’73’42) sz 21 1/(26’1%2) 74 —z ! ’ (8.9)
5(51‘) Y 57572)6 = §|y| z U(E’g’z)e (y<0)’

P 5o that (A1) and (A2') are satisfied. Moreover, (A3) is also

for:c>0andz:§
X

satisfied and

Pihag) (X7 — —oc and X! — —o0) = 1. (8.10)
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Let us prove this fact, as the part [X” — —oo] was not mentioned in [10]. By the formulae
(8.6), we see that both 25U (%, 3, z) and 2'/SU(Z, 3, 2)e* are bounded in z > 0, we obtain
h(z,y) < coly|"/? for some constant ¢, > 0. It holds P, , -a.s. that, by (ii) of Proposition

21,

P (Xe) = W(=X], =X[) — oo, (8.11)
which yields [|X/?| — oc]. But [P(’aa’y
a + fot XBds — oc], which contradicts the fact that X' = a < 0 and 7% = oo by (i) of
Proposition 2.1. Hence we obtain (8.10).

J(XP — o0) = 0], since [X/ — oo] implies [X* =

(2) Supremum penalisation. Let f : R — [0, 00) be a continuous function such that for
some —o0 < yg < 0, we have f(y) > 0 for y < yo and f(y) =0 for y > yo. Set

1 ,
t FX) 1Xi su — {(bya,y) €R®:a <y <y}

By Profeta [10, Proposition 18 and Theorem 19|, we see that all the assumptions of
Proposition 5.1 are satisfied with p(t) = ¢;t'/* and

sup, f — _ g — L yo i _q — sup, f
¢ .0,9) = by =0, 0) o [ S g o b, (0. € 50,
(8.13)

so that (A1) and (A2') are satisfied. By a similar argument to that deducing (6.5), we

see that [X;"™ = X5 for large t] P(S;j;’j)-a.s., and that [[§""/ — T3/ > 0] P(Sb‘fﬁ,’;c)-a-sw

which shows (A3). By the fact that g—g > 0, we have

) < (s ) — a0 o
y<w<yo
By a similar argument after (8.11), and by (ii) of Proposition 2.1, we can deduce
Py (X — —o0 and X! — —o0) = 1. (8.15)

(*) The universality class of Langevin penalisation. We would like to compare the

three unweighted measures e@(‘ga’y), 95;25) and t@(’za’y). Here we write 78 = inf{t > 0 :

XPB >0} for the exit time from (—o0,0) for the Brownian motion X? and set
I =1pesy, SP={(bya,y)€S5:b<0}. (8.16)

The penalisation for the weight I'? is nothing else but the conditioning to stay negative
for the Brownian motion, so that we obtain ¢?(b,a,y) = —b. The penalized probability
P(f ay) 18 the minus times 3-dimensional Bessel process and the corresponding unweighted

measure is given as 20 = (=b)Pj, . Since X! = a+ Jy XEdu, we obtain

Pl (X7 — —oc and X! — —o0) = 1. (8.17)

We prove the following proposition with conjectured assumptions.
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-X
Proposition 8.1. Set Z; = ( Xf . Then the following assertions hold:

(i) Suppose the following conjecture is true:

A sup, f

P(b,a,y) (b,a,y) f
Zy e and Z; e for (b,a,y) € S*P7. (8.18)

Then ,@S“pg and P4

(b,a,y)

coincide for (b,a,y) € S*P/(C S4).

(ii) Suppose the following conjecture is true:

Z t(b#’) oo and Z; t(b—>ay) oo for (b,a,y) € S* NS~ (8.19)
Then ,@ (bay) and ,@ (bay) OT€ singular to each other for (b,a,y) € SANSE,
. sup (_XtB)3 P A
Proof. (i) Set Z;" = X — XA Then Z, — X both for P = Fj . and for
pP= P(S;SJ Since X2 < 0 for large t, we have
XX @VUGAET 5
h<_XtAv _XtB) (Zt)l/GU(%v %7 Zt) =00
by the assumption. Noting that (8.5) implies
2h(:c y) = csx 0 OU(T 4 ) < ey 1y >0, 2= 2y (8.21)
ox ’ 3 6’3" = (4 ’ ) ) 9 :
for some constants c3, ¢4 > 0, we obtain
sup, f X
Ll C.O N (8.22)

QOA (Xt) t—oo

both for P = P(ba ,) and for P = P(Sgl 5; We may now apply Theorem 4.1 for £ = T'4

and I' = "™/ and thus we obtain the desired result.
(ii) By the assumption, we have

LAY TP (-XP)2 (Z)VU(R8.2)
) —xP) = (8.23)

Rt =

both for P = P(’;"a’y) and for P = P(]Ii ay)- By the same argument of Theorem 4.1 with
E=TPF and I =T'4, we obtain

R, e (b,a,y) 4 ry
PB | F,- = I p F.o—t 1. 8.24
() { 1+ R, +1Tp ] PP,a,y) C [ T+ R+ TP (524

Letting ¢ — oo, we obtain P(bay)(TB > 0) = 0. Since P(fay)(l"fo > 0) = 1, we obtain the

desired result. O
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9 Appendix: Extension of transformed probability measures

We discuss in general extension of the transformed probability measures given by local
absolute continuity like (2.11). Recall that D is the space of cadlag paths from [0, c0) to
a locally compact separable metric space S and X is the coordinate process on D.

Theorem 9.1. Let P be a probability measure on (D,0(X)) and let (M;)i>o be a non-
negative martingale such that P[M;] = 1 for all t > 0. Then there exists a unique
probability measure Q on (D, o(X)) such that

where FX = (X, : s <) is the natural filtration of X.
Proof. Since UtZO ftx is a w-system generating o (X ), uniqueness of @) follows immediately
from Dynkin’s 7-A theorem.

Let us prove existence of (). For n € N, let ID,, denote the space of cadlag paths from
[n—1,n) to S, equipped with the o-field B,, generated by the coordinate process on D,.
We thus see that D is the product space of {D,}:

D= [[D.. a(X)za(Hka 11 Dk:BleBl,...,BneBn;neN>. (9.2)
n=1 k=1

k=n+1

Let p, denote the law on Dy x - -- x D, the space of cadlag paths from [0,n) to S, of
(Xt)o<t<n under M, - P|zx. We then see that {j,} is a projective sequence:

P (- X Dpyr) = pin, n €N, (9.3)

We may apply Daniell’s extension theorem (cf. [7, Theorem 6.14]) to see that there exists
a sequence of random variables {£,,} defined on a probability space (€', F', P") such that
&, for each n takes values in D,, and the joint distribution of (&1, .. .,&,) under P’ for each
n coincides with .

We now define ) by the law on D of (£1,&,...) under P’'. For any A € FX for each
n € N, we can find B C D; x- - - xID,, which belongs to o([[,_, Bx : B1 € B1,..., B, € B,)
such that A = {(X})o<t<n € B}, so that we obtain

Q(A) = P((§1,- -+, 8n) € B) = pin(B) = P[My; (Xi)ostan € Bl = P[M,; Al (9.4)

We thus conclude that @ is as desired. O
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