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Abstract. A novel integrated model GOTRESS+ has been developed, which consists

of the iterative transport solver GOTRESS as a kernel of the integrated model,

the equilibrium and current profile alignment code ACCOME and the neutral beam

heating/current-drive code OFMC. GOTRESS is able to robustly find out an exact

solution of the stationary-state transport equations even with a stiff turbulent transport

model, taking advantage of global optimization techniques such as a genetic algorithm.

GOTRESS+ is then suitable for self-consistently assessing the stationary-state plasma

performance of JT-60SA as well as ITER and DEMO or validating their feasibility.

Recently GOTRESS+ has been extended to incorporate the in-house EPED1 model

exploiting the MHD stability code MARG2D and is now able to predict the plasma

profiles even with the pedestal over the entire region from the magnetic axis to

the plasma boundary in a self-consistent manner. The two JT-60SA operation

scenarios including the ITER-like inductive scenario and the high β fully non-

inductively current driven scenario have been assessed by GOTRESS+ with the CDBM

turbulent transport model and then were found to be feasible with most of the target

dimensionless parameters met.

1. Introduction

As the time to achieve a first plasma of JT-60SA is approaching and the construction

of ITER is making great progress, the development of operation scenarios that bring

out the plasma performance of these devices is becoming more and more important.

Operation scenarios are often stipulated by various target parameters, or sometimes

referred to as reference parameters, in a stationary state, such as the normalized beta

βN ≡ β/(Ip/(aBT)), the HH factor referring to enhancement above the nominal H-

mode scaling law and the bootstrap current fraction fBS, and self-consistent predictive

simulations using an integrated transport model are essential to investigate whether
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these parameters simultaneously satisfy the specified target values. In the definition of

βN, Ip is the plasma current in MA, BT is the toroidal magnetic field in T and a is the

plasma minor radius in m as well as β = ⟨p⟩/(B2
T/(2µ0)) where ⟨p⟩ is the mean plasma

pressure and µ0 is the permeability in vacuum. One of the most important factors in

predicting high-performance plasmas is the accurate prediction of the pedestal height

and width, because an H-mode plasma pedestal accounts for a large fraction of the

plasma stored energy. The EPED1 model [1] is considered to be the most successful

semi-empirical model in estimating pedestal height and width. The original EPED1

model and its derivatives [2–5] have been successful in accurately predicting pedestals

in many tokamaks [1–14]. Several integrated transport simulation codes that incorporate

the EPED1 model have been developed, such as OMFIT [15], CORSICA [16], ASTRA

[17, 18], JINTRAC [19], IPS-FASTRAN [20] and TRANSP [21], and used to develop

operating scenarios.

We have been developing a novel integrated suite of codes, GOTRESS+, with

GOTRESS at its core. GOTRESS [22,23], which is an acronym for Global Optimization

version of Transport Equation Stable Solver, is a transport code that finds solutions of

the stationary-state transport equations using global optimization techniques such as a

genetic algorithm. A stationary-state transport equation is in general a one-dimensional

nonlinear elliptic partial differential equation, and it is recognized as being tough to

find a solution in a numerically stable fashion. So far, few stationary-state transport

codes have been developed in the community. One of the few is TGYRO [24], which

is used as a transport module in OMFIT [15]. GOTRESS and TGYRO have the same

purpose of finding the solution of the stationary-state transport equations. Both codes

are the same in that they do not try to directly discretize the governing equations

that will be expressed in (1), but solve them in their volume-integrated form in a way

to find the transport flux that matches the target flux, while the numerical methods

for that purpose are quite different. In TGYRO, focusing on the dependence of the

heat flux on the gradients of the kinetic profiles, both transport and target fluxes are

Taylor-expanded with the gradients and the derivatives of the fluxes with respect to

the gradients explicitly appear. Then, the Newton-iteration technique is applied to

minimize the error between the fluxes by gradually changing the gradients [24]. On the

other hand, thanks to the global optimization technique, in GOTRESS it is possible

to find a set of temperature and its gradient satisfying the stationary-state transport

equation at each grid point. Even though the methodology finding a solution and the

algorithms numerically implemented in GOTRESS are detailed in Refs. [22, 23], they

will also briefly be explained here to see how GOTRESS works. We here note that the

problem we are dealing with is greatly simplified to illustrate the algorithm. A heat flux

qa is the product of the density na, the heat diffusivity χa and the temperature gradient

T ′
a, where χa is usually a function of Ta, T

′
a and other quantities and its dependence

on these quantities varies depending upon a transport model adopted. In general, it is

roughly written as qa/na ∼ −χa(Ta, T
′
a)T

′
a. Taking account of the fact that the value of

qa/na should be known in advance because it should be identical to the known target flux,
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all GOTRESS has to do is to find a pair of Ta and T ′
a satisfying qa/na ∼ −χa(Ta, T

′
a)T

′
a.

In this process, any relationship between Ta and T ′
a is never assumed. Each of a pair is

individually and independently determined by the global optimization technique like the

genetic algorithm. Finding an appropriate pair is not an easy task due to the nonlinear

dependence of χa on Ta and T ′
a. The genetic algorithm is powerful in robustly finding

global optimum solutions in a broad (Ta, T
′
a) parameter space. Of course there are

perhaps countless pairs of candidate solutions found by dealing with this relationship

alone. Another equation, which is obtained by cumulatively integrating the heat flux

relationship over the volume, must be required to be solved simultaneously. This

equation is mainly responsible for determining Ta and the Dirichlet boundary condition

for Ta can be imposed on it. The global optimizer finds out a pair simultaneously

satisfying both equations, which results in the solution of the transport equation. As

one can see from this explanation, the temperature gradient is not computed from the

temperature profile using some numerical differentiation method. Turbulent transport

fluxes calculated by advanced turbulent transport models having stiff transport nature

are sensitive to the gradient of plasma quantities, and a large difference in the fluxes

could be caused by a small difference in the gradient especially around a critical gradient.

It is not preferable that such important gradients change depending upon the numerical

differentiation method the one chooses. One of the main features of GOTRESS is that it

can avoid this problem. Even though the disadvantage of global optimization techniques

is the slow computational speed, MPI parallelization has alleviated the problem to some

extent; GOTRESS runs on the MPMD framework along with MPI-parallelized transport

models like TGLF [25, 26] and successfully reproduced the temperature profiles of the

JT-60U plasma with TGLF [23]. Since a genetic algorithm makes many trials to find

the best answer due to its heuristic nature and produces a large amount of data in

the process, GOTRESS is a suitable code for building a neural-network-based surrogate

model of the turbulent transport model with deep learning techniques [23].

The explanation of a novel integrated model GOTRESS+ [27] and the workflow

thereof will be detailed in the next section, but here its components are briefly

introduced. GOTRESS+ mainly consists of GOTRESS, ACCOME [28] and OFMC [29].

ACCOME is a code to calculate a magnetic equilibrium consistent with the current

density profile driven by several auxiliary heating systems. It includes the bounce-

averaged Fokker-Planck solver and the electron cyclotron heating (ECH) code. Note

that the bounce-averaged Fokker-Planck solver does yield a driven current profile only

and does not compute the heat deposition profile. This is because the plasma kinetic

profiles are given and fixed throughout the calculation in ACCOME and hence the heat

deposition profile is not required. The heating profiles, which GOTRESS necessitates,

are calculated by OFMC, which is literally an orbit following Monte Carlo code to

calculate the profiles of not only heating but also fueling and torque by neutral beam

injection (NBI).

We have also been developing another integrated suite of codes, TOPICS [30,31], to

analyze JT-60U plasmas and to predict plasmas of JT-60SA, ITER and other tokamaks.
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TOPICS solves a set of time-dependent transport equations in its transport module and

is thus able to predict temporal evolution of profiles of the plasma quantities like the

density, the temperature and the safety factor. It is thus apparent that GOTRESS+ is

completely different from TOPICS. In order to evaluate the stationary state of a plasma

with time-dependent codes, the calculation has to be continued until the plasma does

not nearly vary in time. Therefore, the simulation time could be too long for the purpose

of evaluating the plasma performance in a stationary-state current flat-top phase.

We here note that GOTRESS+ is an integrated model for finding the consistent

kinetic profiles in a flap-top phase of a scenario with target plasma parameters.

Developing operation scenario in the context of this paper means finding such a solution

in a stationary state, not modeling an entire scenario of a tokamak discharge such

as from current ramp up to ramp down. GOTRESS+ has already been applied to

the development of operation scenarios for JT-60SA [27] with the CDBM turbulent

transport model used [32]. The CDBM model is widely used for plasma predictions

especially with internal transport barriers (ITBs) in JT-60SA as the validity of using the

model has been assessed: For ITB plasmas in JT-60U and JET, CDBM demonstrated

good reproducibility of temperature profiles among several transport models with

TOPICS and CRONOS used [33]. Here, the GOTRESS+ simulation of the scenario

#5-1 [34] was focused on: BT = 1.72T, Ip = 2.3MA, the NBI heating power

PNBI = 18.85MW and the ECH power PECH = 7MW. This scenario has also been

assessed by integrated simulations in the previous work [35, 36]. The plasma predicted

by GOTRESS+ met the target values: βN = 4.42(> 4.3), HH = 1.65(> 1.3) and the

loop voltage Vloop = 0.003(∼ 0) [27]. Here, we note that the density profiles were

prescribed in the simulation and will be in the same way in this paper. The results are

in excellent agreement with those by TOPICS, a fact which bolsters the reliability of

GOTRESS+. Also, the time to complete the simulation was 6,654 seconds on our PC

cluster, which is about six times faster than 42,909 seconds when using TOPICS [27].

We note that OFMC took only about 12 minutes per run due to the assumption of the

perfectly axisymmetric magnetic field for the sake of simplicity. The problem with this

simulation was that the boundary condition for GOTRESS was set at ρ = 0.8 and the

MHD stability of the final result was not investigated. Outside ρ = 0.8 the temperature

profiles were prescribed and fixed. This assumption had to be made due to the fact that

neither GOTRESS+ nor TOPICS had the model predicting the pedestal width and

height in a self-consistent manner. Considering that the stored energy earned by the

pedestal accounts for a significant fraction and that the plasma cannot be established

unless it is MHD stable, it must be said that this simulation was not sufficient. In

order to resolve these problems, it is essential to incorporate the EPED1 model into

GOTRESS+ and to work with the MHD stability code.

The rest of this paper is organized as follows. Section 2 describes the

further information on each component of GOTRESS+ and the original workflow of

GOTRESS+ in more detail. In section 3, the development of our in-house EPED1

is detailed and then its integration into the new GOTRESS+ workflow is presented.
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After that, section 4 is devoted to the development of JT-60SA operation scenarios by

the extended GOTRESS+ including EPED1. Finally, conclusions of this paper and

discussion are presented in section 5.

2. GOTRESS+ and its components

GOTRESS in essence solves a set of the stationary-state heat transport equations [23],

0 = − ∂

∂V

(
5

2
V ′TaΓa − na⟨|∇V |2⟩χa

∂Ta
∂V

)
+ Sa (1)

for electrons and ions, given an equilibrium and heat sources and sinks. Here, V

is the volume, Γ is the particle flux, and S denotes the sum of heat sources and

sinks. The subscripts a denote species and the prime denotes the ρ-derivative, where

ρ is the normalized radial coordinate defined by the square root of the normalized

toroidal flux. The heat diffusivity χa comprises turbulent and neoclassical contributions:

χa = χturb
a +χneo

a . The turbulent component χturb
a is evaluated by the turbulent transport

model currently in use, like CDBM or TGLF, and the neoclassical one χneo
a is calculated

by the Matrix Inversion method [37]. While the usual numerical implementation of

the code solving the similar equations is to directly discretize this equation, GOTRESS

solves the simultaneous equations consisting of the volume-integrated (1) and the one

obtained by further integrating the former one over the volume. In other words, a set

of Ta and 1/LTa ≡ −(1/Ta)(∂Ta/∂ρ) satisfying both equations simultaneously is found

out using the global optimization techniques at each radial location [23].

The source and sink term Sa in (1) is detailed here. The source and sink terms for

electrons and ions are

Se = S(f)
aux,e + S

(f)
OH,e + S

(u)
fus,e − S

(u)
ei − S

(f,u)
rad,e, (2)

Si = S
(f)
aux,i + S

(u)
fus,i + S

(u)
ei , (3)

respectively, and each term is explained in the following. First of all, the superscript

(f) or (u) means that a term is fixed or updated in each iteration in GOTRESS and the

term with (f,u) is the one that allows a user to choose (f) or (u). Please note that the

term with (f) is in usual updated in the GOTRESS+ procedure.

Saux denotes the auxiliary heating sources, such as NBI and ECH. GOTRESS does

not calculate any physics-based auxiliary heating profiles internally except for artificially

given functional heating profiles used in a test. They are computed by other codes taking

part in GOTRESS+: The heating profile by NBI is computed in OFMC [29], and that

by ECH is computed by the EC-Hamamatsu code [38] that is actually invoked from

ACCOME. These profiles are read at the beginning of the GOTRESS simulation and

fixed throughout the simulation. Joule heating SOH,e, which occurs only for electrons,

takes part in Se. It is calculated in ACCOME and is incorporated into GOTRESS

in the same manner as Saux. Another heating mechanism is the alpha heating due to

fusion reactions, Sfus, and is internally computed in GOTRESS in each iteration. The
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major heat loss channel is radiation Srad, which is unique for electrons. A user can

choose whether its profile is read from a result calculated by other codes, if any, or

calculated inside GOTRESS. GOTRESS can currently calculate three mechanisms of

the electron radiation loss: Bremsstrahlung [39], the impurity (line) radiation under the

coronal equilibrium assumption [40] and the cyclotron radiation by CYTRAN [41]. The

radiation loss profiles are calculated and updated in each iteration in GOTRESS if they

are chosen to be calculated. The collisional equipartition process also acts as a kind of

heat sources and sinks and is calculated in GOTRESS. Here, Sei is defined as the heat

transfer from electrons to ions and is actually given by

Sei =
3me

mi

ne

τei
(Te − Ti), (4)

where ma is the mass of species a and τei denotes the energy equipartition time between

electrons and ions. This process transfers the heat from one species to another, trying to

equilibrate the temperatures. It is updated in each iteration in GOTRESS. The actual

implementation is detailed in the GOTRESS flowchart shown in Fig. 1 of Ref. [23].

The particle flux Γa in (1) is calculated in GOTRESS by integrating the NB particle

source Sn
NB given from OFMC.

Given the equilibrium and the current density profile, i.e., the safety factor q profile,

metrics such as ⟨|∇V |2⟩ and V ′ are computed in GOTRESS by tracing the magnetic

field line at each magnetic surface. Then, GOTRESS finds out the solution as a set of

(Ta, 1/LTa) for each species by the method described above. In this sense, the magnetic

shear s, which has a large impact on the transport coefficients, is kept fixed during

the calculation. It means that GOTRESS is not responsible for calculating the current

density profile and the associated quantities like resistivity, while it does calculate the

neoclassical transport coefficients using the Matrix Inversion method [37] internally.

The equilibrium and the current density profile are computed in ACCOME [28]. The

detailed procedure is detailed in Ref. [28], but here the equations solved in ACCOME

are briefly summarized. ACCOME has its own free-boundary equilibrium solver. The

poloidal flux function ψ is the sum of the poloidal flux function generated by the plasma

current, ψp, and the vacuum one generated by the external coil current, ψv as

ψ = ψp +
∑
k

Ikvψ
k
v , (5)

where Ikv and ψk
v are the current of the k-th external coil and the poloidal flux function

produced by a unit current of the k-th coil, respectively. The Grad-Shafranov equation

∆∗ψ = −µ0R
2 dp

dψ
− F (ψ)

dF

dψ
, (6)

is solved to determine ψ on each grid point of the two-dimensional rectangular domain

including the entire plasma and the vacuum region. Here, ∆∗ is the Grad-Shafranov

operator, the poloidal current function F (ψ) = RBt and the other variables follow
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the convention. The second term on the right-hand side of (6) is determined by the

relationship with the parallel current density as

−F dF

dψ
=

µ0

⟨B2⟩
F

(
F
dp

dψ
+ ⟨j∥B⟩

)
, (7)

which makes sense inside the plasma, where the plasma current flows. The parallel

current density can be decomposed into

⟨j∥B⟩ = ⟨jNBCDB⟩+ ⟨jECCDB⟩+ ⟨jBSB⟩+ ⟨jOHB⟩. (8)

and all components are updated at each iteration in ACCOME. The bootstrap current

⟨jBSB⟩ and neoclassical resistivity are evaluated by the Matrix Inversion method. The

fast-ion current ⟨jNBCDB⟩ is calculated by solving the bounce-averaged Fokker-Planck

equation and multiplied by the shielding factor [42] to give the NB driven current. We

note that the shielding factor model same as the one in ACCOME is adopted in OFMC

when the NB driven current computed by OFMC is used in GOTRESS+ instead of

that by ACCOME. The electron cyclotron current drive ⟨jECCDB⟩ is computed by EC-

Hamamatsu [38] invoked in ACCOME. Since ACCOME regards the given total plasma

current as a constraint of a calculation, it is necessary to adjust some components of

the current density to match it in the end. There are a few options available for this

purpose: adjusting ⟨jNBCDB⟩ or ⟨jOHB⟩, or adding the so-called additional current.

ACCOME is often applied to the case with the finite inductive current, i.e., the finite

loop voltage Vloop, albeit in the stationary state of kinetic profiles, but it is in general

difficult to know the adequate value or its profile in advance. The ohmic current density

⟨jOHB⟩ can be calculated internally with Vloop and neoclassical resistivity used if a user

can feed a Vloop profile. Otherwise, it is usual to assume dVloop/dρ = 0, which means

the constant Vloop over the profile, and to adjust the ⟨jOHB⟩ profile or to put a given

shape of the additional current, which mimics the spatial variation of Vloop. In such a

case, Vloop is an output.

It is GOTRESS+ that needs to be executed to obtain a solution consistent among

the transport quantities such as Ta, Sa, q and the equilibrium. The workflow of

GOTRESS+ is demonstrated in figure 1 and that of the original one corresponds to

the dotted magenta arrow extending from the ”GOTRESS” process symbol to the

”converge?” decision symbol in the flowchart. The prescribed density and temperature

profiles as well as the coil currents supporting an equilibrium and the settings of

heating systems are initially given as input of ACCOME. The iterative calculation inside

ACCOME yields a consistent solution between the equilibrium and the current profile

with fast-ion effects included. The fast-ion pressure is calculated in ACCOME and its

effect is reflected in the equilibrium calculation. In an iterative convergence loop of

ACCOME, the NB current drive (NBCD) is computed and updated inside ACCOME,

whereas the user can alternatively replace it with the NBCD calculated by OFMC at the

previous GOTRESS+ iteration. In this case, the NBCD of OFMC used in ACCOME is

fixed during ACCOME calculation due to the numerical heaviness of OFMC calculation.
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Figure 1. Flowchart of a GOTRESS+ simulation. The workflow in GOTRESS+

is regulated by the Python script and a job scheduler. Whether or not there is

a data flow related to the NBCD shown in the dashed arrow from ”OFMC” to

”ACCOME” depends upon the user’s choice. In the original version of GOTRESS+,

the temperature profile data is directly transferred from GOTRESS to ACCOME after

finishing a GOTRESS simulation and checking the convergence, as shown in the dotted

magenta arrow. Main quantities updated in each code, most of which are transferred

to other codes for use, are also listed on the right. The quantities with brackets denote

the ones that a user can decide to use or not.

This choice is made when the user values the fact that the NBCD calculated by OFMC,

which incorporates the finite orbit width effect, is more accurate. With the equilibrium

calculated in ACCOME used, OFMC then estimates the heating and current drive

profiles by NBI. GOTRESS in turn predicts the temperature profiles, incorporating the

equilibrium and the current density profile from ACCOME and the heating profiles and

the fast-ion pressure from OFMC. The predicted temperature profiles are transferred to

ACCOME, which will be used as input for the next ACCOME calculation. This whole

procedure continues until all variables are considered to be sufficiently converged.

An integrated workflow is controlled by a Python script, which controls the

execution of all these Fortran codes, the exchange of data between them, and the order

of execution, with the aid of a job scheduler.
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3. Extension of GOTRESS+ with EPED1

The EPED1 model is a model in which the pedestal height, i.e., the total pressure on

top of the pedestal, is determined at the intersection of the peeling-ballooning stability

boundary and the semi-empirical pedestal width scaling model that the pedestal width is

proportional to the square root of the poloidal beta at the pedestal: ∆ = 0.076β
1/2
p,ped [1],

where βp,ped = pped/(B
2
p/(2µ0)). The numerical factor 0.076 seems to vary device by

device and this value was determined based on DIII-D experiments [1]. In JT-60SA

plasma predictions, the standard value of 0.076 has usually been used as previously

investigated in [43] and will be used in the paper as well. In the original EPED1 model,

the MHD stability code ELITE calculates growth rates for n =5,6,8,10,15,20 and 30 at

each pedestal height to determine the peeling-ballooning stability boundary [1]. Here,

n is the toroidal mode number. As the MHD stability code, the in-house EPED1 model

exploits MARG2D [44], which realizes a fast stability analysis of ideal external MHD

modes from n = 1 to high n, a feature which greatly benefits GOTRESS+. A successful

benchmark test has confirmed that both ELITE and MARG2D give almost the same

growth rates as a function of the toroidal mode number [2]. The MARG2D code has

recently incorporates the ion diamagnetic drift effects on the MHD stability, which tends

to stabilize the mode [45].

Our EPED1 model mainly consists of five parts: the semi-empirical EPED1 scaling

code, MARG2D, ACCOME, the interface programs, and the integrated controller

written in Python. The newly implemented parts associated with EPED1 correspond

to the orange process symbols in the GOTRESS+ workflow shown in figure 1. In

the following, the boundary condition of GOTRESS is in typical set at ρ = 0.9,

dubbed ρb hereafter, indicating that the temperature profiles inside ρb are determined by

GOTRESS and those outside of it will have to be given by EPED1. GOTRESS runs on

the ρ grid, while EPED1 works on the ψ grid, where ψ denotes the normalized poloidal

flux. Every time the GOTRESS result is transferred to EPED1, the ψ corresponding

to ρb, i.e., ψb, must be recalculated because the relationship between them differs each

time due to the change in an equilibrium.

In our EPED1 model, first the ”map to eped” interface program is invoked to

find the coefficients of the hyperbolic tangent function for the electron density ne, the

electron temperature Te and the ion temperature Ti by fitting the discrete data given

by GOTRESS because EPED1 assumes that the density and temperature profiles are

described by the hyperbolic tangent function like

f(ψ) = c0 + c1

[
tanh

2(1 + c8 − c2)

c3
− tanh

2(ψ + c8 − c2)

c3

]
+ c4H

(
1− ψ

c5

)[
1−

(
ψ

c5

)c6]c7
, (9)

where f denotes an arbitrary quantity like the density and the temperature as a function

of ψ and H is the Heaviside step function. Here, c0 denotes f at ψ = 1, c1 is the scale

factor related to the pedestal height, c2 denotes the ψ at the center of the pedestal,
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(a) (b) (c) (d)

Figure 2. Profiles of the best-fit function of Ti and the functions with (a) c1, (b) c4,

(c) c6 and (d) c7 of the best-fit function multiplied by 1.5 and 0.5, respectively, for

pedagogical purposes. The discrete data that was the target of fitting is also displayed

as open circles in the subfigure (a).

c3 is the pedestal width ∆, c4 is the scale factor related to the core profile, c5 is the

pedestal position ψped, c6 and c7 are the exponents determining the shape of the core

profile, and c8 denotes the shift of the pedestal ψshift. This shape of the function f is

different from the one in the original model [1] in that c8 has been introduced, which

is the offset of c2. The coefficients c2 and c8 are connected to the other coefficients in

the forms: c2 = 1 − c3/2 and c5 = 1 − c8 − c3. The coefficients c2, c3 and c5 are

directly linked to the pedestal position and width. The EPED1 model determines

the pedestal width c3, resulting in c2 and c5 according to the above relationships.

The c8 is subsequently computed by the above relationship and c0 is taken from the

boundary condition. Therefore, the remaining c1, c4, c6 and c7 have to be determined

such that the resultant hyperbolic tangent function can reproduce the discrete profile

data predicted by GOTRESS as much as possible. In general, it is quite difficult to find

out these coefficients properly because it is obviously a nonlinear least-squares problem.

Fortunately, a genetic algorithm we get used to is a method good at solving this kind

of nonlinear least-squares problem [22]. Hence, the genetic algorithm is adopted in the

”map to eped” program to figure out the coefficients of the function. By weighting,

it emphasizes the reproducibility of the profiles by the function in the pedestal region

rather than the core.

Here, in order to intuitively understand how the shape of the fitted function changes

when the coefficients c1, c4, c6 and c7 change, graphs are drawn with these coefficients

multiplied by 1.5 and 0.5, respectively, from the best-fit case for original discrete data

point. For example, the coefficients of the best-fit case of the Ti profile shown in figure 2

(a) are c1 ≃ 0.734 keV, c4 ≃ 6.63 × 103 keV, c6 ≃ 1.42 and c7 ≃ 2.36, respectively. In

this case, the boundary between GOTRESS and EPED1 is located at ψb ≃ 0.882 and a

10-fold weight was placed on the fitting outside ψb, the region in which EPED1 would

determine the shape of the pedestal by changing c2, c3 and c5 coefficients afterward. It is

clearly found that outside ψb the fitted function perfectly reproduced the pedestal profile

given by the discrete data. It is straightforward to understand how the function behaves

when c1 changes because it is just the scale factor of the pedestal shape function. Also,

the same holds for c4, which is the scale factor of the core shape function, as shown
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in figure 2 (b). The c6 and c7 coefficients are the exponents determining the shape of

the core profile as well. Figures 2 (c) and (d) demonstrate that they play a role in

determining the shape inside the pedestal position, c5 ≡ ψped ≃ 0.937 for this case.

Apparently, c1 affects the shape of the profile over the entire region, while the influence

of c4, c6 and c7 is bounded inside ψped.

With regard to the density profile, the original EPED1 model assumes ne,sep =

ne,ped/4 [1], where ne,sep corresponds to c0, and determines c1 so as to satisfy this

relationship. In this work, the density profile is prescribed without restricting ne,sep

by any relationship with ne,ped. We note that how to determine ne,sep is very important

because it has a great influence on the density gradient and thus the pressure gradient,

having an impact on the MHD stability [46]. The density profile prescribed in the

simulations shown in the next section can be confirmed in the corresponding figure.

Prior to calling the semi-empirical EPED1 scaling code, some preparation is

required in advance. We should recall that the EPED1 modeling handles the total

pressure p embedded in the semi-empirical scaling ∆ = 0.076β
1/2
p,ped . It does not

distinguish between Te and Ti, nor does it distinguish between the density and

temperature widths [1]. In the original EPED1 model, Ti is taken to be equal to Te due

to the minor contribution of Ti to the bootstrap current influencing peeling-ballooning

stability [1]. Our EPED1 model receives ne, Te and Ti separately given as the (9) form.

The pedestal width ∆(= c3), which is defined to be the average of the ne, Te and Ti
pedestal widths in ψ space as the original EPED1 model does [1], is evaluated at this

point, which is regarded as ∆(0). ACCOME then constructs an equilibrium based on the

coefficients of (9) determined by map to eped, which reflects the temperature profiles

calculated by GOTRESS.

According to the semi-empirical scaling, the pedestal width ∆(1) is evaluated at

ψped(= c5), which is given as the average of those for ne, Te and Ti. The error is

estimated as ϵ
(1)
∆ ≡ |∆(1) − ∆(0)|/∆(0). The results of EPED1 are not considered to

converge if ϵ
(1)
∆ exceeds the designated criterion. In such a case, ∆(1) is substituted into

c3, and c2 and c5 for ne, Te and Ti are updated accordingly for the next equilibrium

calculation in the EPED1 model. Please note that c2 and c3 are common for the density

and temperatures because ∆(= c3) was averaged out and c2 is solely dependent on c3;

however, it is possible that c8 differs for the density and the temperatures, respectively,

and c5 could therefore be different between them. This process is repeated until ϵ
(n)
∆ at

n-th iteration is below the designated criterion.

After convergence, MARG2D scrutinizes its MHD stability for n =1-6,8,10,15,20

and 30 with the stabilizing effects by the ion diamagnetic drift taken into account.

The integrated controller then scales up/down the temperatures if the plasma is MHD

stable/unstable. This whole process corresponds to step 0 in figure 3, which illustrates

how our EPED1 model determines the pedestal height in a marginally stable state. In

the example shown in figure 3, the plasma is determined to be MHD stable at step 0.

Therefore, the temperature profiles are raised to a certain width and then the same

thing as was done at step 0 is repeated at step 1. At step 4, the plasma apparently
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becomes unstable. At step 5, where the temperature profiles are lowered by half the

width increased at the previous step, the plasma is again judged to be unstable. In such

a case, the pedestal height at step 3 is considered to be a marginally-stable solution.

0.05 0.065
0.5

0.65

# of steps
in EPED1 0

1

2

3

4
5

Pedestal width ∆

stable

unstable

∆=0.076β1/2p, ped

marginally
stable

Figure 3. Procedure in our EPED1 model to determine the pedestal height in a

marginally stable state.

Now that the pedestal profiles, which are outside of the boundary of GOTRESS,

have been determined, the ”map from eped” interface program provides the mapping

of the profiles between ψ and ρ coordinates and also properly joins the pedestal profile

with the discrete profile data predicted by GOTRESS. For example, it is assumed that

EPED1 predicted temperatures at ρb, dubbed T
E
a (ρb), different from those before EPED1

had been invoked, TG
a (ρb). Please note that TE

a (ρb) = TE
a (ψb) and TG

a (ρb) = TG
a (ψb).

To resolve the gap between TE
a (ρb) and TG

a (ρb) and at the same time keep the core

temperature almost unchanged, (TE
a (ρb)/T

G
a (ρb) − 1)(ψ/ψb) + 1 is multiplied by the

temperature profiles inside ψb in GOTRESS. It does smoothly connect both profiles at

ψb, while it hardly affects the temperature deep in the core region, making it possible to

minimize the change in the β value in this connection process. If the profiles sufficiently

converge after the iterations of GOTRESS+ are repeated, TE
a (ρb) and TG

a (ρb) will be

nearly identical and thus this connection function will be unity over the entire region.

The ”map from eped” then returns the profiles of ne, Te and Ti in the discrete data form

back to ACCOME as input for next iteration of the GOTRESS+ outermost iteration

loop.

The MHD stability of the final plasma is usually examined by MARG2D or the

MINERVA-DI code [47] as post-processing. The inputs for GOTRESS+ should be

provided in the TOML format ‡. Apart from it, the Fortran namelist files for GOTRESS

and ACCOME are required, but that for OFMC is not needed because ACCOME

automatically generates it and then launches OFMC after the end of ACCOME

calculation. The workflow in GOTRESS+ is regulated by the Python script, called

autorun.py, and a job scheduler. GOTRESS+ is basically designed to work without

the user being aware of the differences in computer systems on which GOTRESS+ runs.

Therefore, for codes that require parallel computation or take a long time to calculate,

‡ https://toml.io/en/
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an execution script of the job scheduler installed on the computer system the user is

using is automatically issued by the controller of GOTRESS+ and the job is submitted

via the scheduler.

Currently, GOTRESS+ is able to run on our PC cluster with 720 cores of Intel Xeon

E5-2630 v4 2.20 GHz and on JFRS-1 supercomputer. In the case that GOTRESS+ runs

on the PC cluster, it just takes a few minutes for each ACCOME calculation with a single

core and 25 minutes for each OFMC run with 120 cores. Depending upon how good the

convergence is and a turbulent transport model used, GOTRESS generally takes several

minutes with 26 cores. The number of cores and computation time required by each

component of the EPED1 model varies. Only MARG2D is parallelized and uses 40 cores.

Overall, it takes about 50 minutes to complete the entire EPED1 calculation, depending

upon the number of iterations required in EPED1 and how many toroidal mode numbers

MARG2D should compute. In total, each GOTRESS+ iteration requires about 80

minutes. Although the computation time for a GOTRESS+ simulation strongly depends

upon the number of iterations specified, the simulation for JT-60SA #4-1, which will be

presented in the next section, took about 12.5 hours for 10 iterations on our PC cluster.

4. Development of operation scenarios in JT-60SA

In this section, the two operation scenarios for JT-60SA scrutinized by GOTRESS+

will be presented. One is the scenario #4-1, which is called an ITER-like inductive

operation scenario, and the other is the scenario #5-1, which is called a high βN
fully non-inductively current driven operation scenario [34]. For both scenarios, the

preliminary assessment with ACCOME has already been performed by tailoring the

kinetic profiles as inputs to ACCOME by hand. The MHD stability and the pedestal

feasibility of the resulting prescribed profiles were examined a posteriori using MARG2D

and EPED1 to validate the developed scenario. Hence, it is worth performing integrated

transport simulations taking advantage of these kinetic profiles as initial profiles for

the following GOTRESS+ simulations together with EPED1 self-consistently to assess

the comprehensive feasibility of the scenarios. In this work, the density profiles are

prescribed as an initial condition and fixed throughout the simulation, even though the

shape of the profile would be slightly altered along with the change in an equilibrium

in the course of convergence. The Greenwald density fraction fGW, which is one of the

target dimensionless parameters, is therefore a designated parameter in the following

simulations. The actual shape of the vacuum vessel and the stabilizing plates of JT-

60SA, which can be consulted in Fig. 4-2 of [34], is taken into account in evaluating the

MHD stability, while resistivity in the conducting wall is currently neglected.

4.1. ITER-like inductive operation scenario

The plasma envisioned in this scenario is an inductive plasma with an ITER-like-shape

single-null equilibrium for the purpose of exploring the ITER-relevant plasma regimes
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Figure 4. Converging process of (a) Te, (b) Ti and (c) q profiles in the GOTRESS+

simulation for JT-60SA operation scenario #4-1. The digits in each subfigure denote

the iteration number for visibility. The broken lines shown in subfigures (a) and (b)

denote the initial profiles. The plot embedded in the subfigure (c) is the ne profile at

tenth iteration.

in terms of the dimensionless parameters. The designated plasma current and toroidal

magnetic field are Ip = 4.6MA and BT = 2.28T, respectively [34]. The anticipated

equilibrium parameters are: the major radius R = 2.93m, a = 1.14m, elongation

κ = 1.81, triangularity δ = 0.41, the safety factor at 95% surface q95 = 3.2 and

V = 122m3. The shape factor S = q95Ip/(aBT), which is the ratio of the safety factors

in actual and cylindrical geometry, would be 5.7. The target dimensionless parameters

are: βN = 2.8, HH = 1.1, fBS = 0.3 and fGW = 0.8. In the typical scenario of #4-1,

NBI of 34MW is applied to heat a plasma without ECH. The GOTRESS boundary is

set at ρb = 0.9, which is the interface between GOTRESS and EPED1 calculations.

Figure 4 exhibits the converging process of Te, Ti and q profiles in the GOTRESS+

simulation. The final profile of the electron density ne is also plotted in figure 4 (c). Not

only the temperature profiles but also the q profile are found to be nearly converged

after five iterations. In the first few iterations, the q profiles are to some extent reversed

in the core region, giving rise to rather strong ITB formation at that moment. At the

fifth iteration, the almost flat magnetic shear profile is formed and subsequently the

ITB becomes moderate. Afterward, the profiles are almost unchanged over iterations.

Focusing on the edge pedestal region, it is found in figure 5 that the shape of the

pedestal or the top of the pedestal is somewhat changed iteration by iteration in the

first three iterations and after that it is nearly unvaried. It can be seen that in this

simulation the change in the pedestal over iterations is small and does not have much

influence on convergence. Instead, the strong tie between the ITB formation and the

magnetic shear profile affects the converging process. The CDBM model used in the

simulation predicts the reduced turbulent heat transport when s − α is almost zero

or negative [48], where α is the normalized pressure gradient including the fast-ion

pressure. The subsequent steep pressure gradient of the ITB drives the bootstrap current

further, facilitating the negative magnetic shear around the peak of the pressure gradient

and thus fortifying the ITB. This positive feedback is prone to make the convergence
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Figure 5. Closeup figures of (a) Te and (b) Ti near the pedestal. Note that the

pedestal profile at initial is identical to that at first iteration because these figures

were plotted based on the result of GOTRESS before calling EPED1.

difficult. As apparent in figure 4, GOTRESS+ has succeeded in bringing into a state of

convergence within several iterations. The NB heating profiles do not change much. The

heating mechanism due to NBI is the energy transfer through collisions between fast

neutrals and plasma particles and thus the heat deposition profile is mainly influenced

by the density and the temperature of a plasma if an equilibrium does not significantly

change. In this simulation, therefore, the change in the NB heat deposition profiles

is almost solely dependent on the change in the temperature profiles. In addition, the

collisional energy equipartition always functions between electrons and ions, which takes

part in the heating mechanisms.

Finally, the converged plasma, which has been confirmed to be MHD stable for

n = 1-20 over the entire profile, has βN = 2.67, HH = 1.06 and fBS = 0.23. These

values are slightly less than the aforementioned target values. The βN on top of the

pedestal, βN,ped, reaches 0.766. Even though it is difficult to directly compare the value

without matching the density and temperature at the plasma surface, it is slightly higher

or comparable to the previous study for the operation scenarios of ITER [1, 46]. The

equilibrium obtained in this simulation is shown in figure 6. The equilibrium parameters

are: R = 2.94m, a = 1.14m, κ = 1.83, δ = 0.490, q95 = 3.28, V = 122m3 and S = 5.83.

It could be interesting to see what happens if ECH is additionally applied. The

dual-frequency-type gyrotrons of 110GHz and 138GHz, the latter frequency of which

corresponds to the toroidal magnetic field of 2.25T, are equipped in JT-60SA. The

simulation was performed by adding 2MW ECH on the previous case. The position

of the ECH absorption depends upon the antenna angle setting, but in this case it

was set such that the peak of the heating was around ρ = 0.42 and electron cyclotron

current drive (ECCD) was almost zero. The converging process can be seen in figure 7,

indicating that it takes one extra iteration for the variation of the profiles to converge as

compared to the previous case without ECH, but they converge well within 10 iterations.

The equilibrium parameters are virtually the same as those in the previous case without

ECH. The temperatures at the magnetic axis is higher by about 1 keV, resulting in the

better performance of βN = 2.93, HH = 1.14 and fBS = 0.25. These values meet the
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Figure 6. The equilibrium in the GOTRESS+ simulation for JT-60SA operation

scenario #4-1. The red arcs express the stabilizing plates.
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Figure 7. Converging process of (a) Te, (b) Ti and (c) q profiles in the GOTRESS+

simulation with 138GHz ECH of 2MW. The digits in each subfigure denote the

iteration number for visibility.

target ones except for fBS. Based on the fact that the bootstrap current can be varied by

manipulating the shape of the density profile, the development of the plasma that meets

all the target values is in progress. Finally note that βN,ped = 0.778, which is almost

equivalent to the case without ECH, meaning that the better plasma performance does

not stem from the pedestal performance but from the improvement of core confinement.

4.2. High βN fully non-inductively current driven operation scenario

The plasma envisioned in this scenario is a high βN fully non-inductive plasma, which is

designed to have Ip = 2.3MA, BT = 1.72T, R = 2.97m, a = 1.11m, κ = 1.90, δ = 0.47,

q95 = 5.8, V = 124m3 and S = 7.0 [34]. The target parameters are: βN = 4.3, HH = 1.3,
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Figure 8. Final state of (a) Te and Ti, (b) Se and Si, and (c) ne and q profiles in the

GOTRESS+ simulation for JT-60SA operation scenario #5-1. Se and Si denote the

auxiliary heat deposition for electrons and ions. The initial profiles are also plotted in

the subfigure (a) as the thin broken lines just for comparison.

fBS = 0.68 and fGW = 0.85. Unlike the previous one, this scenario is prepared with

the goal of developing the DEMO-relevant plasma regimes in a steady state without the

inductive current. Self-consistent scenario development would be quite difficult, as all

the current must be driven by the current provoked by auxiliary heating systems and

the bootstrap current, and the MHD stability must also be met at the same time. The

plasma that meets the above conditions ought to naturally have a negative magnetic

shear and thus a steep pressure gradient due to the confinement improvement, which

generates a significant amount of the bootstrap current. The amount of the current

that cannot be covered by the bootstrap current must be fulfilled by the driven current,

especially from NBI, which is the main current driver in JT-60SA. However, from the

aspect that fGW = 0.85 must be met, the steep density pedestal should be sustained,

which prevents fast neutrals from penetrating into the core region. It results in the

shortage of NBCD in the core. The high plasma density makes it difficult to control the

current density profile.

Accordingly, our strategy to attain the fully current driven scenario is to manipulate

the density profile and to adjust the number of NBI units activated. The strong beam

pressure distributed around ρ = 0.4 is likely to destabilize the MHD modes together

with the thermal plasma density. It is important to decouple the region of the steep

beam pressure gradient and that of the steep thermal plasma density gradient, while

keeping fGW at the target value. The GOTRESS boundary is set at ρb = 0.8 for this

simulation. As a result, it has been finally found out in figure 8 (c) that the double

barrier structure of the density profile, where the ITB locates around ρ = 0.4 and

the pedestal resides around ρ = 0.9, with PNBI = 16.01MW and PECH = 7MW with

110GHz applied, makes it possible to bring us the scenario that satisfies all the target

values and the MHD stability at the same time. Figure 8 (b) indicates that the negative-

ion-source NBI generates the high energy fast neutrals that can penetrate the density

barriers into the core region. Also, ECH creates the peak of the electron heating around

ρ = 0.7, which bolsters the higher pedestal temperature. The reversed magnetic shear in
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Figure 9. The equilibrium in the GOTRESS+ simulation for JT-60SA operation

scenario #5-1.

the core region suppresses turbulent transport and forms the ITBs. Despite the strong

ion heating in the core, the collisional energy equipartition attempts to equilibrate the

ion temperature with the electron’s and thus the resultant temperature profiles do not

differ much between electrons and ions, as shown in figure 8 (a). The non-dimensional

parameters in question are βN = 4.33, HH = 1.61 and fBS = 0.676, respectively, which

satisfy the target parameters.

The equilibrium at the final state is displayed in figure 9. The parameters associated

with the equilibrium results in R = 2.97m, a = 1.11m, κ = 1.91, δ = 0.503, q95 = 5.44,

V = 124m3 and S = 6.59. The shape factor S is slightly less than the target value by

the amount that q95 is short of its target value. Still, the high S makes it possible to

access the high βN regime that we achieved in this simulation. The passive stabilizing

plates inserted inside the vacuum vessel of course play a critical role in exceeding the

no-wall limit. Actually βN,ped = 1.06 in this case, comparable to that in the Super H-

mode regime plasma [10, 49]. Such high β value could not have been obtained without

these stabilizing effects.

As mentioned in section 1, this scenario has already been investigated in the

previous work [35, 36]. In the work, the pedestal models different from our modeling

have been exploited, where the EPED1 empirical scaling has been employed to estimate

the pedestal width only or to get a pedestal prediction double-checked. Garzotti et al

have carried out integrated simulations using multiple integrated codes with CDBM as

CRONOS, JINTRAC and TOPICS to predict the electron and ion temperature profiles

for the reduced power case of 24MW corresponding to the case in question [36]. In

the simulations the density profile was fixed, whereas its shape was quite different from
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that used here. The βN values ranged from 3.5 to 3.9, smaller than the reference value

of 4.3. The difference between their results and ours was probably due to the fact

that their pedestal heights were lower and the positions of ITBs were more near the

core. Romanelli et al have made use of JINTRAC to predict the performance for both

full-power and reduced power cases with an emphasis on accounting for SOL/divertor

conditions [35]. For the reduced power case, the resultant values of βN were 3.6 or

3.7, while those of fGW ranged between 0.94 to 0.97, which are much larger than the

reference value of 0.85. These results imply the influence of the density profile and the

coupling with a SOL/divertor model on performance predictions.

5. Summary and perspectives

The integrated model GOTRESS+, which includes the iterative transport solver

GOTRESS at its core, ACCOME and OFMC, has been extended such that it

incorporates the in-house EPED1 model with the MHD stability code MARG2D used.

One of the advantages of the in-house EPED1 model is the use of MARG2D, which

can apply to low to high-n modes. The self-built Python workflow tool makes many

Fortran codes, Python scripts and the job scheduler coalesce into one integrated model

GOTRESS+. GOTRESS+ is now capable of calculating the plasma profiles from the

plasma boundary to the axis self-consistently.

Scrutinizing the validity of JT-60SA operation scenarios provided in the JT-

60SA Research Plan [34], it has been used to predict the plasma profiles consistent

with heatings, equilibria and the MHD stability and to With the CDBM model

used, GOTRESS+ successfully validated the two JT-60SA operation scenarios almost

satisfying the pre-defined target values for dimensionless parameters such as βN, HH and

fBS. Even for the high βN fully non-inductive plasma, which tends to be MHD unstable,

GOTRESS+ could figure out the solution.

In this work, the peak performance in the flat-top phase has been assessed.

Especially, it was shown that the double barriers can go together in an MHD stable

manner in the scenario #5-1. If the plasma in this scenario will actually exist in a future

JT-60SA experiment, edge localized modes (ELMs) may possibly occur. According to

the previous experimental findings, it was observed in some JT-60U discharges that

the ITB was sustained during the ELMy H-mode, while type-I ELMs typically degrade

the ITB and sometimes terminate it unless some measures are taken [50]. It will be

important to examine the feasibility of the operation scenario through a time-dependent

simulation that considers ELMs.

Resistivity of the conducting wall has been neglected in the simulations. The

resistive wall modes (RWMs) would be destabilized if finite resistivity were taken into

account [51]. It is well known that toroidal rotation and/or its profile shear is likely to

stabilize the RWMs and so are the resonances between the modes and the precessional

drifts of thermal [52] and fast particles [53]. Extending GOTRESS+ to compute the

evolution of toroidal rotation is an import task for comprehensive predictions.
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Some more issues remain to be resolved. OFMC and EPED1, which are time-

consuming parts in the GOTRESS+ workflow, may be speeded up by replacing them

with their surrogate models, respectively, as demonstrated in the previous study [54,55].

The sensitivity study of the settings like initial conditions is quite interesting and should

be performed in the future, as bifurcations in transport have been observed in DIII-D

high β plasmas [56].

We ought to assess the feasibility of the density profiles that were given and fixed

in this work. Dealing with particle transport to determine the density profiles is of great

difficulty as compared to heat transport in the integrated simulation. The understanding

of turbulent particle transport is still less mature than heat transport even in the core

region, so it is even less near the edge region with the pedestal. To make matters worse,

despite the critical importance of estimating the particle source and sink for particle

transport, it is very difficult to make a reasonable estimate of it in the edge region,

where neutrals play a salient role.

This problem is also linked to the scrape-off-layer plasma physics, which is a key

component to determine the boundary condition at the plasma surface, as well as

plasma-wall interactions [35,57]. The values at the plasma surface used in this work have

been prescribed consistent with the previous work [57, 58]. It has been reported that

EPED1 predictions with the SOLPS boundary conditions in ITER are different from

those with the fixed values used [59], obviously suggesting the importance of the coupling

between the core and scrape-off-layer plasma modelings, as also shown in more recent

work [18,35]. Implementing particle transport physics and integrating a scrape-off-layer

plasma model would therefore be an unavoidable path to make use of GOTRESS+ in

reliable predictions for ITER and DEMO plasmas. The mechanisms of the alpha heating

and the dilution of helium ash produced by fusion reactions have already been included

in GOTRESS, both of which are indispensable to calculations for ITER and DEMO.

Also, simulations will plan to be performed with more sophisticated transport models

such as TGLF.
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