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DOCK2 is involved in the host genetics and 
biology of severe COVID-19

   

 I de ntifying the host genetic factors underlying severe COVID-19 is an emerging 
challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 
2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial 
waves of the pandemic, with 3,289 unaffected controls. We identified a variant on 
chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene 
(DOCK2), which was associated with severe COVID-19 in patients less than 65 years  
of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, 
highlighting the value of genome-wide association studies in non-European 
populations. RNA-sequencing analysis of 473 bulk peripheral blood samples 
identified decreased expression of DOCK2 associated with the risk allele in these 
younger patients. DOCK2 expression was suppressed in patients with severe cases  
of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified 
cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing  
effect of the risk allele on DOCK2 expression in non-classical monocytes. 
Immunohistochemistry of lung specimens from patients with severe COVID-19 
pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 
function with CPYPP increased the severity of pneumonia in a Syrian hamster model 
of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced  
viral loads, impaired macrophage recruitment and dysregulated type I interferon 
responses. We conclude that DOCK2 has an important role in the host immune 
response to SARS-CoV-2 infection and the development of severe COVID-19, and  
could be further explored as a potential biomarker and/or therapeutic target.

COVID-19, caused by SARS-CoV-2, remains a serious global public health 
issue6. Although promising vaccines have recently become available, 
the emergence of SARS-CoV-2 variants may delay the end of this pan-
demic7. COVID-19 manifests as a range of clinical presentation from 
asymptomatic infection to fatal respiratory or multi-organ failure, 
with multiple risk factors8,9.

The human genetic background influences the susceptibility to and/
or the severity of infectious diseases. The Severe Covid-19 Genome-Wide 
Association Study (GWAS) Group reported a variant of LZTFL1 at locus 
3p21 with severely increased COVID-19 risk in a European population1. 
Of note, these variants demonstrated globally heterogeneous allele 
frequency spectra and were rarely present in East Asian people2.

Further GWAS efforts, including COVID-19 Human Genome Initiatives 
(HGI), have nominated host susceptibility genes3–5. However, the vast 
majority of existing studies have been carried out on European popula-
tions. Considering the global diversity of COVID-19 severity, COVID-19 host 
genetic analysis in non-European people should provide novel insights.

The Japan COVID-19 Task Force ( JCTF) was established in early 2020 
as a nationwide multicentre consortium to overcome the COVID-19 
pandemic (Extended Data Fig. 1 and Supplementary Table 1). Here 
we report the result of a large-scale GWAS of COVID-19 in Japanese 
individuals with systemic comparisons to results from Europeans, 
which identified a population-specific risk allele at the DOCK2 region 
that confers a risk of severe COVID-19, particularly in individuals below  

65 years of age (hereafter referred to as ‘young’). We further conducted 
bulk and single-cell transcriptomics, and immunohistochemical assays 
of the patients as well as in vivo perturbation of DOCK2 function in an 
animal model. We found that DOCK2 suppression is associated with 
the development of severe COVID-19 in a Syrian hamster model of 
SARS-CoV-2 infection, and that DOCK2-mediated signalling has a key 
role in the host immune response to SARS-CoV-2 infection.

Overview of the study participants
We enrolled 2,393 unrelated patients with COVID-19 who required 
hospitalization between April 2020 and January 2021 (during the 
first, second and third waves of the pandemic in Japan) to the GWAS, 
from more than 100 hospitals participating in the JCTF. The COVID-19 
diagnoses were confirmed by physicians at each affiliated hospital on 
the basis of clinical manifestations and a positive PCR test result. As 
controls, we enrolled 3,289 unrelated subjects ahead of the COVID-19 
pandemic, representative of the general Japanese population. All of 
the participants were confirmed to be of East Asian origin by principal 
component analysis (Extended Data Fig. 2a,b).

Of the 2,393 patients with COVID-19, 990 had severe infection as 
defined by the need for oxygen support, artificial respiration and/or 
intensive care, whereas 1,391 patients had non-severe disease. Sever-
ity information was not available for the remaining 12 individuals. 
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As reported previously8,10, those with severe COVID-19 were older 
(65.3 ± 13.9 years (mean ± s.d.)) and included a higher proportion 
of males (73.9%) compared with non-severe cases (49.3 ± 19.2 years  
of age and 57.2% male).

To replicate these results, we enrolled 1,243 further patients with 
severe COVID-19 collected between February 2021 and September 
2021 (the fourth and fifth waves of the pandemic in Japan) and 3,769 
controls. Detailed characteristics of the participants are provided in 
Supplementary Table 2.

COVID-19 GWAS in the Japanese population
The GWAS including all COVID-19 cases yielded no signals satisfying 
a genome-wide significance threshold (P < 5.0 × 10−8; Extended Data 
Fig. 2c). Cross-population comparisons confirmed the risks at multiple 
COVID-19-associated variants identified in the previous studies1,3,5. 
Seven out of the eleven reported positive associations were replicated 
in our Japanese cohort with P < 0.05, including those at LZTFL1, FOXP4, 
TMEM65, ABO, TAC4, DPP9 and IFNAR2 (Fig. 1a and Supplementary 
Table 3), where the highest odds ratios were observed in comparisons 
for severe and young (less than 65 years of age) COVID-19 cases in 6 out 
of the 7 loci. The most significant replication was observed at FOXP4, 
as expected from its higher allele frequency in East Asian people than 
in Europeans3 (odds ratio = 1.29, 95% confidence interval 1.13–1.46, 
P = 9.1 × 10−5 for severe COVID-19). By contrast, the risk allele at LZTFL1 
(rs35081325), which showed the strongest association in Europeans, 
was rare in Japanese patients. Despite its low frequency (0.0013 in 
controls), we nominally replicated the association with the highest 
risk in the young patients with severe COVID-19 (odds ratio = 11.8, 95% 
confidence interval = 1.64–85.5, P = 0.014).

We evaluated the effects of human leukocyte antigen (HLA) variants 
on COVID-19 risk11,12 by in silico HLA imputation analysis13,14. We did 
not observe association signals satisfying the HLA-wide significance 
threshold (P < 0.05 over 2,482 variants, 2.0 × 10−5; Extended Data Fig. 3 
and Supplementary Table 4). Among the four major ABO blood types15, 
the O blood type was associated with a protective effect (P < 0.05), most 
evidently in young patients with severe COVID-191 (odds ratio = 0.73, 
95% confidence interval 0.56–0.93, P = 0.014; Extended Data Fig. 4a 
and Supplementary Table 5). We found an increased risk associated 
with the AB blood type, especially in severe cases of COVID-19 (odds 
ratio = 1.41, 95% confidence interval 1.10–1.81, P = 0.0065 for all ages). 
The Japanese population has the highest frequency of the AB blood 
type16 (9.5% in our study), which may have provided the power to detect 
its risk.

Cross-population Mendelian randomization
Next, to identify medical conditions that may affect COVID-19 suscepti-
bility, we applied cross-population two-sample Mendelian randomiza-
tion analysis17 (Supplementary Table 6). We inferred a causal role for 
obesity in severe COVID-19 in the Japanese cohort (P < 0.0074; Extended 
Data Fig. 4b and Supplementary Table 7). We also inferred causal roles 
for asthma, uric acids and gout, whereas systemic lupus erythematosus 
showed a protective effect (P < 0.05). Hyperuricemia is a risk factor 
for severe COVID-19 in the Japanese population10, consistent with our 
findings from Mendelian randomization. In Europeans, we observed 
significant causal inferences for obesity18 (P < 6.2 × 10−6), with doubled 
effect sizes in hospitalized patients and those with severe COVID-19 
when compared with self-reported COVID-19. Our analysis provided 
additional evidence of obesity as a risk factor8,9.

A population-specific risk allele on DOCK2
Given the observation that many COVID-19 risk variants confer larger 
effects in severe disease and young patients1,3,5,19, we stratified the 

subjects according to age and disease severity, analysing those with 
severe COVID-19 (n = 990), young patients9 (n = 1,484) and young 
patients with severe COVID-19 (n = 440).

By comparing young patients with severe COVID-19 and controls, 
we identified a genetic locus on 5q35 that satisfied genome-wide 
significance (P = 1.2 × 10−8 at rs60200309; Fig. 1b). The A allele of the 
lead SNP (rs60200309), located at an intergenic region downstream 
of DOCK2, was associated with an increased risk of severe COVID-19 
(odds ratio = 2.01, 95% confidence interval 1.58–2.55, P = 1.2 × 10−8; 
Fig. 1c and Table 1). The rs60200309-A allele was also associated 
with an increased risk of COVID-19 in other comparisons, including 
all COVID-19 cases and controls (odds ratio = 1.24; Supplementary 
Table 8), and within-case severity analysis (that is, severe versus 
non-severe cases; odds ratio = 1.27 for all ages and odds ratio = 1.90 
for ages < 65 years).

We then conducted a replication study using an additional 1,243 
patients with severe COVID-19, recruited during the fourth and fifth waves 
of the pandemic, as well as 3,769 controls. We replicated an age-specific 
nominal risk in the young patients with COVID-19 (n = 833; odds 
ratio = 1.28, 95% confidence interval 1.02–1.61, P = 0.033; Table 1) com-
pared with all ages (odds ratio = 1.00, 95% confidence interval 0.85–1.19, 
 P = 0.96), whereas the effect size was smaller than that observed in the 
GWAS during the first three pandemic waves. A decreased severity risk 
was observed for other risk loci in this later study (for example, odds 
ratios of 11.8 during the first three waves and 4.4 during the fourth and 
fifth waves at LZTFL1; regression coefficient = 0.57; Extended Data 
Fig. 5). This suggests that longitudinal shifts of confounding factors 
with the pandemic waves—such as the introduction of therapeutic 
strategies, a high prevalence of vaccination, changes in hospitalization 
policy and the evolution of virus strains—may have mitigated the host 
genetic burdens defined during the initial pandemic waves; further 
evaluations of this effect may be warranted.

We also examined the COVID-19 risk profile of the DOCK2 variant on 
different ancestral backgrounds20,21 (3,138 hospitalized patients with 
COVID-19 versus 891,375 controls from the pan-ancestry meta-analysis). 
We observed the same directional effect, with a marginal association 
signal (odds ratio = 1.73, 95% confidence interval 0.95–3.15, P = 0.072, 
control minor allele frequency (MAF) = 0.0008; Supplementary 
Table 9).

The DOCK2 variant was prevalent in East Asian people (0.097)—
with the highest frequency (0.125) in Japanese individuals—and, to a 
lesser extent, in Native Americans (0.049), but was very rare in other 
groups (<0.005; Fig. 1d). Natural selection screening in Japanese par-
ticipants22 suggested marginal positive selection of the variant (P for 
singleton density score = 0.051). Population-specific features of the 
DOCK2 variant provide a rationale for COVID-19 host genetic research 
in non-European populations.

DOCK2 downregulation in severe COVID-19
To functionally annotate the DOCK2 risk variant, we examined the 
expression quantitative trait loci (eQTL) effect by conducting periph-
eral blood RNA-sequencing (RNA-seq) analysis of data from patients 
with COVID-19 collected by the JCTF (n = 473). The risk allele at DOCK2 
(rs60200309-A) was not associated with a significant eQTL effect 
for all patients (β = −1.07, P = 0.083; Fig. 2a), but was associated with 
decreased expression of DOCK2 in the patients below 65 years of age 
(n = 270; β = −2.15, P = 0.0030). This allele did not exhibit a significant 
eQTL effect on other surrounding genes (±500 kb window, P > 0.070). 
We observed colocalization between the GWAS and the DOCK2 eQTL 
signals23 (colocalization posterior probability > 0.01; Extended Data 
Fig. 6 and Supplementary Table 10).

We analysed differential expression of DOCK2 in patients with 
severe and non-severe COVID-19 (n = 468) using real-time quantita-
tive PCR (qPCR). DOCK2 expression was reduced in the patients with 
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severe COVID-19 (P = 0.011; Fig. 2b). Suppression of DOCK2 was more 
marked in young patients (P = 0.0068). When the patients were further 
stratified into asymptomatic, mild, severe and most severe cases, we 
observed a negative correlation between DOCK2 expression level and 
disease severity (Fig. 2c). Together, these results indicate that DOCK2 
expression is downregulated in peripheral blood cells of patients with 
severe COVID-19, especially in young patients, and that the risk vari-
ant may contribute to severe COVID-19 by suppressing expression 
of DOCK2.

DOCK2 is a RAC activator that is involved in chemokine signalling, 
production of type I interferon (IFN) and lymphocyte migration24,25. 
Elucidation of immune cell-type-specific expression profiles was neces-
sary to disentangle the roles of DOCK2 in the biology of COVID-19. We 
therefore conducted single-cell RNA-seq (scRNA-seq) of peripheral 
blood mononuclear cells (PBMC) obtained from 30 patients with severe 
COVID-19 and 31 healthy controls. We obtained 394,526 high-quality 
single cells and annotated 12 clusters (Fig. 2d and Extended Data Fig. 7). 
DOCK2 expression was highest in CD16+ monocytes (Fig. 2e). The pro-
portion of cells expressing DOCK2 was higher in innate immune cell 
clusters (monocytes and dendritic cells) (43.8%) than in other clusters 
(25.6%; Fig. 2f). Differential expression analysis also demonstrated 

suppression of DOCK2 expression in cases of severe COVID-19 in the 
immune cell clusters (fold change (FC) = 0.82, P = 8.3 × 10−4 for mono-
cytes; FC = 0.87, P = 0.050 for dendritic cells; Fig. 2g).

To determine immune cell-type specificity, we performed cluster-
ing and annotation by extracting 63,544 cells belonging to the innate 
immune cell clusters (Fig. 2h and Extended Data Fig. 7). Among the clas-
sified cell types—classical (CD14++CD16–), intermediate (CD14++CD16+) 
and non-classical (CD14+CD16++) monocytes, conventional dendritic 
cells and plasmacytoid dendritic cells (pDCs)—DOCK2 expression was 
highest in the non-classical monocytes, which have been implicated 
in the pathophysiology of COVID-19 (refs. 26,27) (Fig. 2h–j). Differential 
expression analysis showed that DOCK2 was most potently downregu-
lated in non-classical monocytes (FC = 0.61, P = 3.2 × 10−7; Fig. 2k). The 
DOCK2 co-expression gene module28 in the non-classical monocytes 
of the COVID-19 patients exhibited enrichment in pathways such as 
immune response signalling pathways and phagocytosis (Extended 
Data Fig. 7). To further support the functional consequences of the 
DOCK2 risk variant, we assessed its single-cell eQTL effects. We found a 
COVID-19 context-specific decreasing dosage effect of the risk variant 
on DOCK2 expression in non-classical monocytes (β = −0.21, P = 0.035 
for COVID-19 and β = 0.02, P = 0.51 for controls; Fig. 2l).
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Fig. 1 | GWAS in a Japanese population stratified by COVID-19 severity and 
age. a, Forest plots of the risk of COVID-19-associated variants in a Japanese 
population. Error bars indicate the 95% confidence interval. b, Manhattan plot 
of the GWAS on severe COVID-19 in young patients (those less than 65 years of 
age) (440 cases and 2,377 controls). Uncorrected P values from the GWAS 
analysis are shown. The dotted line represents the genome-wide significance 

threshold of P < 5.0 × 10−8. Manhattan and quantile–quantile plots of all GWAS 
results are presented in Extended Data Fig. 2. MT, mitochondrial. c, Regional 
association plot at the DOCK2 locus. Dots represent SNPs coloured according 
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Next, we evaluated the biological effects of DOCK2 downregulation. 
In assays with primary cells, DOCK2 inhibition by CPYPP, an inhibitor 
of the DOCK2–RAC1 interaction29, resulted in reduced production 
of IFNα by pDCs under CpG stimulation (FC = 5.5 × 10−5, P = 0.0038, 
n = 3 per group; Extended Data Fig. 8a). pDCs are another key innate 
immune cell type involved in COVID-19 pathogenicity30, and DOCK2 
expression was downregulated in pDCs from patients with COVID-
19 (FC = 0.79, P = 0.019; Fig. 2k). CPYPP blocked chemotaxis of CD3+ 
T cells under CXCL12 stimulation (FC = 0.57, P = 1.0 × 10−7, n = 19 per 
group; Extended Data Fig. 8b). The DOCK2 risk variant had no significant 
effect on IFNα production in pDCs or chemotaxis of CD3+ T cells in pri-
mary cell assays (Supplementary Fig. 1). In THP1 Blue ISG cells, DOCK2 
knockdown caused a marked decrease in transcriptional activation 
of IFN-stimulated genes, an indicator of type I IFN activity (Extended 
Data Fig. 8c–f and Supplementary Fig. 2). These results highlight the 
immunological roles of DOCK2 in complications of COVID-19 such as 
type I IFN immunity and chemotaxis dysregulation, as exemplified by 
patients with congenital impairment in type I IFN immunity31.

To confirm the involvement of DOCK2 in COVID-19 pneumonia, 
we performed immunohistochemical analysis on postmortem sam-
ples from people who died from COVID-19 (Extended Data Fig. 9). We 
examined three cases of COVID-19 pneumonia and observed decreased 
expression of DOCK2 in lymphocytes and macrophages located in the 
lung and in hilar lymph nodes (Fig. 2m). There was no such decrease in 
two control samples without COVID-19 or pneumonia (Fig. 2n). DOCK2 
has been reported to be suppressed in bronchoalveolar lavage fluid 
cells of patients with COVID-19 (ref. 32), consistent with our findings. 
We observed a loss of DOCK2 expression in lymphocytes in a case of 
non-COVID-19 severe pneumonia, whereas there was a slight decrease 
of DOCK2 expression in a sample from a case of non-COVID-19 mild 
pneumonia. Thus, DOCK2 expression is suppressed during severe pneu-
monia caused by COVID-19. These observations reveal a link between 
cell-type- and tissue-specific downregulation of DOCK2, indicating a 
potential value for DOCK2 as a biomarker of severe COVID-19.

DOCK2 inhibition in a Syrian hamster model
To decipher in vivo pathogenesis of DOCK2 in COVID-19, we investi-
gated the effects of DOCK2 suppression following SARS-CoV-2 infection 
in a Syrian hamster model33,34 (Extended Data Fig. 10a). Administra-
tion of the DOCK2 inhibitor CPYPP or vehicle (as a negative control) 
to mock-infected animals did not induce weight loss (Extended Data 
Fig. 10b). However, hamsters infected with SARS-CoV-2 and treated 
with vehicle (n = 12) decreased to 83.3% of the starting body weight by  
7 days post-infection (dpi), but recovered to 97.6% of the starting weight 
at 11 dpi. By contrast, hamsters infected with SARS-CoV-2 and treated 
with CPYPP (n = 13) decreased to 79.0% of the starting body weight by 

7 dpi, and recovered to 85.4% of the initial weight at 11 dpi (Fig. 3a and 
Extended Data Fig. 10c). Advanced pulmonary oedema was observed 
in the lung of the hamsters infected with SARS-CoV-2 and treated with 
CPYPP at 11 dpi (Fig. 3b). The largest lung weight (Fig. 3c) and the high-
est histopathological scoring changes of lung34 (Fig. 3d and Extended 
Data Fig. 10d–f) were observed at 6 dpi. Lung immunohistochemistry 
showed that the migration of CD68 macrophages around alveolar cells 
was impaired in the hamsters infected with SARS-CoV-2 and treated 
with CPYPP (Fig. 3d and Extended Data Fig. 10e). Conversely, there 
was mild or no lung damage in infected hamsters treated with vehicle 
or uninfected hamsters treated with CPYPP (Fig. 3b–d and Extended 
Data Fig. 10d–f).

Focusing on the deteriorating stages of SARS-CoV-2-induced 
pneumonia (3 and 6 dpi), we assayed SARS-CoV-2 viral loads in vari-
ous organs. We observed increased viral loads in nasal swab at 3 and 
6 dpi, in lung at 3 dpi and in intestine at 6 dpi (P < 0.05; Fig. 3e) of the 
CPYPP-treated hamsters. Lung cytokine expression profile assays 
revealed that expression of type I IFN (encoded by Ifna and Ifnb) 
decreased at 6 dpi and expression of type II IFN (encoded by Ifng) 
increased at 3 dpi (Fig. 3f) following CPYPP administration. We also 
observed that CPYPP administration induced increased expression 
of inflammatory cytokine (Il6) and chemokine (Ccl5) genes at 3 dpi. 
The roles of the IFN response in the pathogenicity of COVID-19 have 
been controversial31,35,36. Our observational and interventional find-
ings on DOCK2 downregulation show that in COVID-19 pneumonia 
pathophysiology, impaired macrophage recruitment at the site of 
infection and dysregulated IFN responses result in impaired virus 
elimination and prolonged lung inflammation.

Discussion
Here we reported on a GWAS of COVID-19 in a Japanese cohort, one of 
the first large-scale COVID-19 genetic studies in a non-European popula-
tion. We confirmed the presence of multiple genetic variants associated 
with COVID-19 risk shared across different populations, identified a 
population-specific risk variant at DOCK2, particularly in young patients 
with severe COVID-19 collected during the early waves of the pandemic. 
Cross-population Mendelian randomization analysis disclosed causal 
effects of a number of complex human traits, such as obesity, on COVID-
19. Our results highlight the role of population-specific risk alleles on 
different host genetic backgrounds, underscoring the need for studies 
of COVID-19 host genetics in non-European populations. Of note, auto-
somal recessive DOCK2 deficiency is a Mendelian disorder associated 
with combined immunodeficiency and severe invasive pneumonia37 
(Online Mendelian Inheritance in Man (OMIM) entry 616433). Our results 
provide a genetic and clinical link between a Mendelian disorder and 
pneumonia associated with COVID-19. In the replication study using 

Table 1 | Association of the DOCK2 variant with COVID-19 risk in the Japanese population

rsID Chromosome position 
Cytoband allele Gene

Case collection 
period

Age Phenotype No. of subjects Risk allele 
frequency (A)

Odds ratio (95% 
confidence interval)

P value

Cases Controls Cases Controls

rs60200309 5:169519612 
5q35 G/A DOCK2

GWAS (April 2020 
to January 2021)

All ages COVID-19 vs control 2,393 3,289 0.12 0.10 1.24 (1.09–1.41) 0.0011

Severe COVID-19 vs 
control

990 3,289 0.13 0.10 1.39 (1.16–1.66) 3.1 × 10−4

<65 years COVID-19 vs control 1,484 2,377 0.12 0.10 1.32 (1.13–1.55) 5.1 × 10−4

Severe COVID-19 vs 
control

440 2,377 0.16 0.10 2.01 (1.58–2.55) 1.2 × 10−8

Replication 
(February 2021 to 
September 2021)

All ages Severe COVID-19 vs 
control

1,243 3,769 0.11 0.11 1.00 (0.85–1.19) 0.96

<65 years 833 1,242 0.12 0.10 1.28 (1.02–1.61) 0.033

Uncorrected P values are shown.
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samples collected during later waves of the COVID-19 pandemic, we 
observed significant increases in the risk of severe COVID-19 associated 
with the risk variants identified in the studies based on the initial waves—
including variants in DOCK2 and LZTFL1—but with smaller effect sizes. 

How the host genetics interact longitudinally with confounding factors 
and affect the spectrum of COVID-19 phenotypes through the pandemic 
waves remains unknown. Large-scale COVID-19 host genetics studies 
with diverse genetic backgrounds based on samples from different time 
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blood. The risk allele (rs60200309-A) decreases DOCK2 levels in patients  
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points during the pandemic are required, and will contribute towards 
planning a global health strategy for the pandemic.

Our follow-up analyses of GWAS showed that DOCK2-mediated sig-
nalling has a key role in the response to SARS-CoV-2 infection, suggest-
ing that the hypomorphic DOCK2 allele is involved in exacerbation of 
COVID-19 pathology, and that DOCK2 could serve as a potential clinical 
biomarker to predict severe COVID-19. Bulk and single-cell transcrip-
tome analysis of peripheral blood cells identified cell-type-specific 
downregulation of DOCK2 modulated by a COVID-19-specific eQTL 
effect of the DOCK2 risk variant in patients with severe COVID-19, 

which was most evident in innate immune cells including non-classical 
monocytes and pDCs. Nevertheless, our evidence does not necessar-
ily imply a direct causal link between the COVID-19-specific eQTL and 
COVID-19 severity. The risk variant could potentially induce DOCK2 
downregulation in early phase of infection. Immunohistochemical 
analysis showed reduced DOCK2 expression in the lung of patients 
with COVID-19 pneumonia. In vivo inhibition of DOCK2 activity fol-
lowing SARS-CoV-2 infection using CPYPP in the Syrian hamster model 
resulted in severe COVID-19 pneumonia, highlighted by impaired migra-
tion of macrophages and dysregulation of the IFN response. We note 
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the possibility that CPYPP is not specific to DOCK2 and also inhibits 
other DOCK family proteins. Assays with increased DOCK2 expression 
would provide further evidence of its role in COVID-19 pathophysiol-
ogy. Given its critical roles in immune regulation25, upregulation of 
DOCK2 could be a potential therapeutic strategy against COVID-19. Our 
results motivate further studies linking DOCK2 to molecular and clini-
cal phenotypes of COVID-19 in the effort to overcome the pandemic.
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Methods

Study participants
All the cases affected with COVID-19 were recruited through the JCTF. 
We enrolled hospitalized patients diagnosed as COVID-19 by physi-
cians using the clinical manifestation and PCR test results who were 
recruited at any of the more than 100 affiliated hospitals between April 
2020 and January 2021 (for the GWAS) or between February 2021 and 
September 2021 (for the replication; Supplementary Tables 1 and 2). 
Patients requiring oxygen support, artificial respiration and/or inten-
sive care unit hospitalization were defined as having ‘severe COVID-19’, 
whereas others were defined as having ‘non-severe COVID-19’. Details 
of the clinical manifestation including cardiovascular and respiratory 
comorbidities are provided in Supplementary Table 2. The threshold 
of 65 years of age was selected according to the clinical management 
guide in Japan9. Control subjects were collected from the general Japa-
nese population at Osaka University and affiliated institutes (for the 
GWAS and replication) or by the Biobank Japan Project38 (for the rep-
lication). Individuals determined to be of non-Japanese origin either 
by self-reporting or by principal component analysis were excluded 
as described elsewhere39 (Extended Data Fig. 2a). All the participants 
provided written informed consent as approved by the ethical com-
mittees of the affiliated institutes (Keio IRB approval 20200061, Osaka 
University IRB approval 734-14, University of Tsukuba IRB approval 
H29-294).

GWAS genotyping and QC
We performed GWAS genotyping of the 2,520 COVID-19 cases and 
3,341 controls using Infinium Asian Screening Array (Illumina). We 
applied stringent quality control (QC) filters to the samples (sample 
call rate < 0.97, excess heterozygosity of genotypes >mean + 3 × s.d., 
related samples with PI_HAT > 0.175, or outlier samples from East 
Asian clusters in principal component analysis with 1000 Genomes 
Project samples), and variants (variant call rate < 0.99, significant 
call rate differences between cases and controls with P < 5.0 × 10−8, 
deviation from Hardy–Weinberg equilibrium with P < 1.0 × 10−6, 
or minor allele count <5). Details of the QC for the mitochondrial 
variants are described elsewhere40. After QC, we obtained geno-
type data of 489,539, 15,161 and 217 autosomal, X-chromosomal and 
mitochondrial variants, respectively, for 2,393 COVID-19 cases and 
3,289 controls.

Genome-wide genotype imputation
We used SHAPEIT4 software (version 4.1.2) for haplotype phasing 
of autosomal genotype data, and SHAPEIT2 software (v2.r904) for 
X-chromosomal genotype data. After phasing, we used Minimac4 
software (version 1.0.1) for genome-wide genotype imputation. We 
used the population-specific imputation reference panel of Japanese 
individuals (n = 1,037) combined with 1000 Genomes Project Phase3v5 
samples22 (n = 2,504). Imputations of the mitochondrial variants were 
conducted as described elsewhere40, using the population-specific 
reference panel (n = 1,037). We applied post-imputation QC filters of 
MAF ≥ 0.1% and imputation score (Rsq) > 0.5, and obtained 13,116,003, 
368,566 and 554 variants for autosomal, X-chromosomal, and mito-
chondrial variants, respectively. We note that the genotypes of the 
lead variant in the GWAS (rs60200309) were obtained by imputation 
(Rsq = 0.88). We assessed accuracy by comparing the imputed dosages 
with WGS data for the part of the controls (n = 236), and confirmed 
high concordance rate of 97.5%.

Case–control association test
We conducted GWAS of COVID-19 by using logistic regression of the 
imputed dosages of each of the variants on case–control status, using 
PLINK2 software (v2.00a3LM AVX2 Intel (6 July 2020)). We included 

sex, age, and the top five principal components as covariates in the 
regression model. We set the genome-wide association significance 
threshold of P < 5.0 × 10−8.

HLA genotype imputation and association test
HLA genotype imputation was performed using DEEP*HLA software 
(version 1.0), a multitask convolutional deep learning method14. We 
used the population-specific imputation reference panel of Japanese 
donors (n = 1,118), which included both classical and non-classical HLA 
gene variants for imputation13. Before imputation, we removed the 
overlapping samples between the GWAS controls and the reference 
panel (n = 649), from the GWAS data side. We imputed HLA alleles (two 
and four digit) and the corresponding HLA amino acid polymorphisms, 
and applied post-imputation QC filters of MAF ≥ 0.5% and imputation 
score (r 2 in cross-validation) > 0.7.

As for the imputed HLA variants, we conducted (1) association test of 
binary HLA markers (two- and four-digit HLA alleles) and (2) an omnibus 
test of each of the HLA amino acid positions, as described elsewhere13. 
Binary maker test was conducted using the same logistic regression 
model and covariates as in the GWAS. Omnibus test was conducted by 
a log likelihood ratio test between the null model and the fitted model, 
followed by a χ2 distribution with m − 1 degrees of freedom, where  
m is the number of residues. R statistical software (version 3.6.0) was 
used for the HLA association test. We set the HLA-wide significance 
threshold based on Bonferroni’s correction for the number of the HLA 
tests (α = 0.05).

Estimation of the ABO blood types and analysis
We estimated the ABO blood types of the GWAS subjects based on the 
five coding variants at the ABO gene (rs8176747, rs8176746, rs8176743, 
rs7853989 and rs8176719)41. We phased the haplotypes of these five 
variants based on the best-guess genotypes obtained by genome-wide 
imputation, and estimated the ABO blood type as described elsewhere15. 
We were able to unambiguously determine the ABO blood type of 99.1% 
of the subjects.

Blood-group-specific odds ratios were estimated based on com-
parisons of A versus AB/B/O, B versus A/AB/O, AB versus A/B/O and O 
versus A/AB/B. We conducted a logistic regression analysis including 
age, sex and the top five principal components as covariates. R statisti-
cal software (version 3.6.3) was used for the ABO blood type analysis.

Cross-population Mendelian randomization analysis
We conducted two-sample Mendelian randomization analysis as 
described elsewhere17,42. As exposure, we selected a series of clinical 
states where altered comorbidity with COVID-19 have been discussed. 
As an outcome phenotype, we used the GWAS summary statistics of 
Japanese (current study) and European (release 5 from COVID-19 HGI3) 
participants. Lists of the Japanese and European GWAS studies used as 
the exposure phenotypes are in Supplementary Table 6. We extracted 
the independent lead variants with genome-wide significance (or the 
proxy variants in linkage disequilibrium r 2 ≥ 0.8 in the EAS or EUR sub-
jects of the 1000 Genomes Project Phase3v5 databases) from the GWAS 
results of the exposure phenotypes. We applied the inverse variance 
weighted method using the TwoSampleMR package (version 0.5.5) in 
R statistical software (version 4.0.2).

Replication analysis
We genotyped additional 1,243 severe COVID-19 cases and 3,769 con-
trols using Infinium Asian Screening Array (Illumina). We applied the QC 
filters and genotype imputation, and conducted case–control analysis 
of the variant as in the same manner as the GWAS.

RNA-seq of peripheral blood of patients with COVID-19
We incorporated 475 patients with COVID-19 recruited at the core 
medical institutes of JCTF and included them in the GWAS for the bulk 
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RNA-seq analysis (Supplementary Table 2). Isolation of RNA from 
the peripheral blood of the COVID-19 patients was conducted using 
RNeasy Mini Kit (Qiagen). Libraries for RNA-seq were prepared using 
NEBNext Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra 
Directional RNA Library Prep Kit for Illumina (New England BioLabs). 
RNA-seq was performed using the NovaSeq6000 platform (Illumina) 
with paired-end reads (read length of 100 bp), using S4 Reagent kit 
(200 cycles). We obtained on average 71,724,142 ± 17,527,007 reads 
per a sample (mean ± s.d.). Sequencing reads were quality-filtered, 
and adapter removal was performed using the Trimmomatic (v0.39)43. 
Alignment to the human reference genome GRCh38/hg38 was per-
formed using STAR (v2.7.9a)44, based on the GENCODE v30 annota-
tion. Gene level quantification and normalization was using RSEM 
(v1.3.3)45. TPM was used as an index of gene quantification. We excluded 
the two outlier samples in the principal component analysis plot of 
the TPM from the analysis (n = 473 for the analysis). We quantified 
58,825 genes, and adopted the 5,991 genes with median TPM > 10 for 
the subsequent analysis.

In the eQTL analysis of the DOCK2 variant, dosage effects of the risk 
variant (rs60200309-A) on the gene expression levels (TPM) were 
evaluated using linear regression models with age, sex, severity, the 
top ten principal components of the TPM matrix, and the top 5 pricipal 
components of the GWAS data as covariates. The dosage effects of the 
risk variant on the expression of nearby genes located within a 500-kb 
window were also evaluated. R statistical software (version 3.6.3) was 
used for the analysis. Colocalization analysis between the GWAS and 
the DOCK2 eQTL signals was conducted using eCAVIAR23.

qPCR-based differential expression analysis
Real-time qPCR was conducted for the RNA isolated from the 
peripheral blood of the COVID-19 patients (n = 468). Total RNA was 
reverse-transcribed using the High-Capacity RNA-to-cDNA cDNA Kit 
(Life Technologies). Real-time qPCR was performed using TaqMan 
assays on a 7500 Fast Real-Time PCR system (Applied Biosystems; probe 
assay ID: Hs00386045_m1 (DOCK2) and Hs99999905_m1 (GAPDH)). 
Differential expression analysis was conducted between severe and 
non-severe COVID-19, and across four COVID-19 disease severity grades, 
ordered from asymptomatic > mild > severe > most severe. Among the 
severe COVID-19, patients in intensive care or requiring intubation and 
ventilation were classed as ‘most severe’ disease, and the rest were 
classed as ‘severe’ disease. Among the non-severe COVID-19, patients 
without any symptoms related to COVID-19 were classed as ‘asympto-
matic’ disease, and others were classed as ‘mild’ disease. The analysis 
was performed on relative DOCK2 mRNA expression relative to GAPDH 
using linear regression models with age and sex as covariates in R sta-
tistical software (version 3.6.3).

Subjects and specimen collection of PBMC for scRNA-seq
Peripheral blood samples were obtained from patients with severe 
COVID-19 (n = 30) and healthy controls (n = 31) recruited at Osaka Uni-
versity Graduate School of Medicine. Of the 30 patients with COVID-19, 
5 were classed as moderate and 25 were classed as severe according to 
disease severity based on the highest score on the World Health Organi-
zation (WHO) Ordinal Scale for Clinical Improvement. For patients with 
COVID-19 and healthy controls, blood was collected into heparin tubes 
and PBMCs were isolated using Leucosep (Greiner Bio-One) density 
gradient centrifugation according to the manufacturer’s instructions. 
Blood was processed within 3 h of collection for all samples, and stored 
at −80 °C until use.

Droplet-based single-cell sequencing
Single-cell suspensions were processed through the 10x Genomics 
Chromium Controller (10x Genomics) following the protocol outlined 
in the Chromium Single Cell V(D)J Reagent Kits (v1.1 Chemistry) User 
Guide. Chromium Next GEM Single Cell 5′ Library & Gel Bead Kit v1.1 

(PN-1000167), Chromium Next GEM Chip G Single Cell Kit (PN-1000127) 
and Single Index Kit T Set A (PN-1000213) were applied during the pro-
cess. Approximately 16,500 live cells per sample were separately loaded 
into each port of the Chromium controller without sample mixing to 
generate 10,000 single-cell gel-bead emulsions for library preparation 
and sequencing, according to the manufacturer’s recommendations. 
Oil droplets of encapsulated single cells and barcoded beads were 
subsequently reverse-transcribed in a Veriti Thermal Cycler (Thermo 
Fisher Scientific), resulting in cDNA tagged with a cell barcode and 
unique molecular index (UMI). Next, cDNA was amplified to generate 
single-cell libraries according to the manufacturer’s protocol. Quantifi-
cation was made with an Agilent Bioanalyzer High Sensitivity DNA assay 
(Agilent, High-Sensitivity DNA Kit, 5067-4626). Subsequently amplified 
cDNA was enzymatically fragmented, end-repaired, and polyA tagged. 
Cleanup and size selection was performed on amplified cDNA using 
SPRIselect magnetic beads (Beckman-Coulter, SPRIselect, B23317). 
Next, Illumina sequencing adapters were ligated to the size-selected 
fragments and cleaned up using SPRIselect magnetic beads. Finally, 
sample indices were selected and amplified, followed by a double-sided 
size selection using SPRIselect magnetic beads. Final library quality was 
assessed using an Agilent Bioanalyzer High Sensitivity DNA assay. Sam-
ples were then sequenced on NovaSeq6000 (Illumina) as paired-end 
mode to achieve a minimum of 20,000 paired-end reads per cell for 
gene expression.

Alignment, quantification and QC of scRNA-seq data
Droplet libraries were processed using Cell Ranger 5.0.0 (10x Genom-
ics). Sequencing reads were aligned with STAR (v2.7.2a)44 using the 
GRCh38 human reference genome. Count matrices were built from 
the resulting BAM files using dropEst46. Cells that had fewer than 1,000 
UMIs or greater than 20,000 UMIs, as well as cells that contained greater 
than 10% of reads from mitochondrial or haemoglobin genes, were 
considered low quality and removed from further analysis. Addition-
ally, putative doublets were removed using Scrublet (v0.2.1) for each 
sample47.

scRNA-seq computational pipelines and basic analysis
The R package Seurat (v3.2.2) was used for data scaling, transforma-
tion, clustering, dimensionality reduction, differential expression 
analysis and most visualization48. Data were scaled and transformed 
using the SCTransform() function, and linear regression was per-
formed to remove unwanted variation due to cell quality (percentage 
of mitochondrial reads). For integration, we identified 3,000 shared 
highly variable genes (HVGs) using SelectIntegrationFeatures() func-
tion. Then, we identified ‘anchors’ between individual datasets based 
on these genes using the FindIntegrationAnchors() function and 
inputted these anchors into the IntegrateData() function to create a 
batch-corrected expression matrix of all cells. Principal component 
analysis and UMAP dimension reduction with 30 principal components 
were performed49. A nearest-neighbour graph using the 30 dimensions 
of the principal component analysis reduction was calculated using 
FindNeighbors() function, followed by clustering using FindClusters() 
function.

Cellular identity was determined by finding differentially expressed 
genes for each cluster using FindMarkers() function with param-
eter ‘test.use=wilcox’, and comparing those markers to known 
cell-type-specific genes (Extended Data Fig. 7a). We obtained 12 cell 
clusters, which were further confirmed using Azimuth (Fig. 2d and 
Extended Data Fig. 7a, c)50. Six major cell types were defined from 12 
clusters as follows; CD4+ T cells and Treg cells were annotated as CD4T; 
CD8+ T cells and proliferative T cells were annotated as CD8T; natural 
killer cells were annotated as NK; B cells and plasmablasts were anno-
tated as B; CD14+monocytes and CD16+monocytes were annotated as 
Mono; conventional dendritic cells and pDCs were annotated as den-
dritic cells. To clarify immune cell-type-specific expression of DOCK2, 



we produced the density plot using plot_density() function from Nebu-
losa R package (v1.0.0)51, and the dot plot using DotPlot() function.

Droplets labelled as innate immune cell clusters (CD14+ monocytes, 
CD16+ monocytes and conventional and pDCs) were extracted and 
reintegrated for further subclustering using the same procedure as 
described above except using 2,000 shared HVGs. After integration, 
clustering and cluster annotation (Extended Data Fig. 7b) were per-
formed as described above.

Differential expression analysis using scRNA-seq data
Differential gene expression analysis was performed between patients 
with severe COVID-19 and healthy controls in each cell type. Donor 
pseudo-bulk samples were first created by aggregating gene counts 
for each cell type within each sample. Genes which expression rate was 
more than 10% in either COVID-19 patients or healthy controls in each 
cell type were included in the analysis. Differential gene expression 
testing was performed using an NB GLM implemented in the Biocon-
ductor package edgeR (v3.32.0)52.

DOCK2 co-expression analysis and GO enrichment analysis
We applied the weighted gene co-expression network analysis (WGCNA) 
algorithm28 to evaluate co-expressed genes with DOCK2 in COVID-19. 
Pseudo-bulk normalized data of non-classical monocytes in the patients 
with COVID-19 using scran (v1.18.5)53 was used for WGCNA analysis, and 
genes were selected if they were expressed in more than 1% of cells in 
non-classical monocytes of the patients with COVID-19. We calculated 
the adjacency with a ‘unsigned network’ option and soft threshold power 
with the adjacency matrix set to 5, created Topological Overlap Matrix 
by TOMsimilarity, calculated the gene tree by hclust against 1 - TOM 
with method = “average”, and conducted a dynamic tree cut with the 
following parameters; deepSplit = 4, minClusterSize = 30. We performed 
GO enrichment analysis of DOCK2 co-expression gene module using  
the function enrichGO (pvalueCutoff = 0.01, pAdjustMethod = “BH”, 
OrgDb = “org.Hs.eg.db”, ont = “BP”) of Clusterprofiler (v3.14.3)54.

Single-cell eQTL analysis of the DOCK2 risk variant
We applied pseudo-bulk approach for single-cell eQTL analysis. First, 
we performed single-cell-level normalization using scran (v1.18.5)53. 
Gene expression per cell type per sample was then calculated as the 
mean of log2-transformed counts-per-cell-normalized expression 
across cells. For principal component analysis, genes were adopted 
if they were expressed in more than 1% of cells in non-classical mono-
cytes.

In the eQTL analysis of the DOCK2 variant, dosage effects of the risk 
variant (rs60200309-A) on the gene expression were evaluated using 
linear regression models with age, sex, disease severity (included only in 
COVID-19 analysis) and the top two PCs of the gene expression as covari-
ates. R statistical software (version 4.0.2) was used for the analysis.

IFNα production assay using primary blood cells
PBMC were isolated from the blood of three healthy donors by  
Lymphoprep density gradient. pDCs were purified by negative selec-
tion using the Plasmacytoid Dendritic Cell Isolation Kit II (Miltenyi 
Biotec). To evaluation interferon-α production ability, sorted pDCs 
were stimulated with 30 μg ml−1 CpG-A ODN (D35; Gene Design, Japan) 
or control. IFNα was evaluated 12 h after stimulation using VeriKine-HS 
Human Interferon Alpha All Subtype TCM ELISA Kit (PBL). Differ-
ences of IFNα production between the groups were evaluated using 
paired t-test.

Chemotaxis assay using primary blood cells
PBMC were isolated from the blood of 19 healthy donors by Lym-
phoprep density gradient. CD3+ T cells were sorted by magnetic acti-
vated cell sorting (MACS). CD3+ T cells (1.0 × 105) in 100 μl RPMI + 0.5% 
BSA medium ± CPYPP (100 μM; Tocris, UK) were placed in the upper 

chambers of Transwell (5 μm pore size; Coaster). The lower chambers 
were filled with 400 μl RPMI medium supplemented with CXCL12 
(100 ng ml−1; R&D Systems) and incubated at 37 °C for 2 h. The cells 
that migrated to the lower chambers were collected and analysed 
using FACS. The following monoclonal antibodies were used for FACS 
analysis: anti-human CD3 (UCHT1; BD Biosciences) and CD4 (SK3; BD 
Biosciences) antibodies. Dead cells were excluded using zombie dyes 
(BioLegend). Events were acquired with a LSR Fortessa (BD Biosciences) 
and analysed with FlowJo software (BD Biosciences). Differences of 
chemotaxis between CXCL12 groups and CXCL12 + CPYPP group were 
evaluated using paired t-test.

DOCK2 knockdown and IFNα production assay in THP1 Blue ISG 
cells
THP1-Blue ISG (InvivoGen) cells were cultured in 10% FBS, 2 mM 
l-glutamine, 25 mM HEPES. To generate lentivirus vectors, LentiCRISPR  
v2 expressing guide RNA/Cas9 (ref. 55), Gag-Pol packaging plasmid 
psPAX2 (Addgene #12260) and pMD2.G (Addgene #12259) were 
co-transfected to 293T cells using X-treme GENE 9 DNA Transfection 
Reagent (Roche). The guide RNA for DOCK2 knock out and potential 
off-target effects evaluation56,57 were in Supplementary Table 11. Trans-
fected 293T cells were cultured in Dulbecco’s modified Eagle medium 
with 10% FBS and 50 units per ml penicillin/streptomycin. The cultured 
medium was replaced 12 h after transfection. The virus-containing 
supernatants were collected after a further 36 h and filtered through a 
0.45-μm pore size cellulose acetate filter (Sigma-Aldrich). Then, 2 × 106 
THP1-Blue ISG cells were cultured in 2 ml polybrene (8 μg ml−1, Mil-
lipore)/virus-containing medium. After a 24 h incubation, infected 
THP1-Blue ISG cells with virus-containing medium were collected, 
centrifuged (400g, 4 min) and cultured in fresh medium. For selection 
LentiCRISPR vector expressing cells, infected cells were cultured for 
4 days in medium supplemented with 1 μg/ml puromycin 2 days after 
infection. DOCK2 knockdown efficiency was evaluated through quanti-
tative real-time PCR analysis and western blotting (Abcam ab124848). 
THP1 monocytes are differentiated by 72 h incubation with 20 ng ml−1 
phorbol 12-myristate 13-acetate (PMA, Sigma, P8139). IFNα was evalu-
ated 6 h after stimulation (3 μg ml−1 CpG-A ODN (D35, Gene Design) or 
control ODN (D35, GC)) using VeriKine-HS Human Interferon Alpha All 
Subtype TCM ELISA Kit (PBL).

Immunohistochemical analysis of lung samples of patients with 
COVID-19 pneumonia
Patient samples of lung and hilar lymph node were obtained from 
autopsies following death from COVID-19 pneumonia (samples 1–3) 
and non-COVID-19 pneumonia (samples 4 and 5). To stain the con-
trol sample, lung and lymph node tissue sections were obtained from 
the surgically resected lung specimens due to lung cancer. Immu-
nohistochemistry for DOCK2 was performed according to standard 
procedures. In brief, formalin fixed paraffin embedded tissue sec-
tions of 5 μm were deparaffinized. Antigen retrieval was carried out 
using pressure cooking (in citrate buffer for 3 min). Endogenous per-
oxidase activity was blocked by incubating sections in 3% hydrogen 
peroxide for 5 min. After blocking, tissue sections were incubated 
with the anti-DOCK2 rabbit polyclonal antibody58 diluted at 1:1,000.  
The EnVision kit from Dako (Glostrup) was used to detect the staining.

In vivo suppression of DOCK2 in Syrian hamster model with 
SARS-CoV-2 infection
Virus. SARS-CoV-2 ( JPN/Kanagawa/KUH003)33, was used in experi-
mental animal model of COVID-19. An aliquot of virus was stored at 
−80 °C until use.

Materials. CPYPP, an inhibitor of the DOCK2–RAC1 interaction29, was 
obtained from Tocris Bioscience (Bristol, UK). CPYPP was dissolved 
in DMSO.
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Animal experiments. All applicable national and institutional guide-
lines for the care and use of animals were followed. The animal experi-
mentation protocol was approved by the President of Kitasato Uni-
versity through the judgment of the Institutional Animal Care and Use 
Committee of Kitasato University (approval no. 21-007). Sample sizes 
were determined based on our experience with SARS-CoV-2 infection 
models, and the minimum number of animals was used.

DOCK2 inhibition in a Syrian hamster model of SARS-CoV-2 
infection
We planned and executed the experimental schedule shown in Extended 
Data Fig. 10a. Six-week-old male Syrian hamsters (CLEA Japan) were 
maintained in the biological safety level 3 experimental animal facil-
ity of the Department of Veterinary Medicine, Kitasato University. 
Sixty-three animals were divided four groups: SARS-CoV-2 + CPYPP 
(n = 29); SARS-CoV-2 + vehicle (n = 28); mock + CPYPP (n = 3); and 
mock + vehicle (n = 3). Hamsters were intranasally inoculated with 
105.8 median tissue culture infectious dose (TCID50) of SARS-CoV-2 
or medium only (mock infection) in a volume of 100 μl. After 5 min  
(0 dpi) and 24 h (1 dpi), hamsters were injected intraperitoneally with 
CPYPP (8.4 mg each; 0.2 ml) or DMSO (vehicle; 0.2 ml). All hamsters 
were weighed daily. SARS-CoV-2 infected hamsters were euthanized at 
3, 6 or 11 dpi (8 animals per group 3 and 6 dpi, and 6 animals per group 
at 11 dpi), and then nasal swabs and tissues were collected. Lungs were 
dissected out from thoracic organs after euthanasia, and lung weights 
were measured at dpi 0, 3, 6 and 11. Differences of body weight and lung 
weight between SARS-CoV-2+CPYPP group and SARS-CoV-2+vehicle 
group were evaluated using two-sided Welch’s t-test. Hamsters were 
euthanized when reaching the humane endpoint or 11 days after inocu-
lation with SARS-CoV-2. The humane endpoint (weight loss of > 25%) 
was based on a previous study34.

Syrian hamsters infected with CPYPP or vehicle were euthanized at 
3, 6 or 11 dpi for pathological examinations (n = 3). Histopathological 
examination of the lungs of the hamsters inoculated with SARS-CoV-2 
with CPYPP or vehicle was conducted by haematoxylin and eosin stain-
ing. Pathological severity scores in the infected hamsters were evalu-
ated as described elsewhere34. In brief, lung tissue sections were scored 
based on the percentage of inflammation area of the maximum cut 
surface collected from each animal in each group by using the following 
scoring system: 0, no pathological change; 1, affected area (≤10%); 2, 
affected area (<50%, > 10%); 3, affected area (<90%, ≥50%); 4, (≥90%) an 
additional point was added when pulmonary oedema and/or alveolar 
haemorrhage was observed. The total score is shown for individual ani-
mals. Immunohistochemistry for alveolar macrophage was performed 
according to standard procedures. In brief, FFPE lung tissue section 
of infected Syrian hamster were incubated with the anti-CD68 mouse 
polyclonal antibody diluted in 1:400 (Abcam ab125212). The EnVision 
kit (Dako) was used to detect the staining.

Total RNA of nasal swab was extracted using QIAamp Viral RNA 
Mini kit (Qiagen) according to the manufacturer’s instructions. Each 
organ was homogenized by adding RLT buffer of QIAamp Viral RNA 
Mini kit using a multi-bead shocker (Yasui Kikai). After centrifugation 
of 10% (w/v) tissue homogenate at 10,000 rpm for 10 min, RNA was 
extracted from the recovered supernatants using the kit described 
above. The nucleocapsid (N) gene of SARS-CoV-2 was detected using 
THUNDERBIRD Probe One-step qRT-PCR (Toyobo) and Primer/
Probe N2 2019-nCoV (TaKaRa). To quantify SARS-CoV-2 N gene cop-
ies, a standard curve was generated using Positive Control RNA Mix 
2019-nCoV (TaKaRa). Lung cytokine expression profile (IFNs, Il6 and 
chemokines) were evaluated with the modifications of Ferren et al.59. 
In brief, 100 ng of RNA was converted to cDNA with the ReverTra Ace 
qPCR RT Master Mix (Toyobo). qPCR was performed with the THUN-
DERBIRD Probe qPCR Mix (Toyobo). The primers and probes used 
are listed in Supplementary Table 12. Reactions for all samples were 

performed in duplicates using QuantStudio 1 Real-Time PCR System 
(Thermo Fisher Scientific), and the target mRNA expression levels 
were normalized with Gapdh as a reference gene. Relative expression 
levels (fold changes) of mRNA from infected hamsters compared with 
uninfected hamsters were calculated using the 2−ΔΔCt method with 
QuantStudio Design and Analysis Software (Thermo Fisher Scien-
tific). Differences of viral load and lung cytokine expression profile 
between the two groups were evaluated using two-sided Wilcoxon 
rank sum test.

Statistics and reproducibility
Figure 2m,n shows representative images of immunohistochemical 
analysis of DOCK2 in COVID-19 pneumonia and in a control without 
COVID-19 or pneumonia. Extended Data Fig. 9 shows all of the autopsied 
cadaver or surgical specimens examined in this study. For immunohis-
tochemical analysis, all experiments were performed on at least three 
sections of lung and hilar lymph node in each sample, and the similar 
results were confirmed.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
GWAS summary statistics and processed count matrices with differ-
ential expression-identified metadata of bulk RNA-seq are deposited 
at the National Bioscience Database Center (NBDC) Human Database 
with the accession code hum0343 without restriction. Raw sequenc-
ing data of scRNA-seq are available under controlled access at the 
Japanese Genotype-phenotype Archive ( JGA) with accession codes 
JGAS000543 and JGAD000662 for general research use, which can 
be accessed through application at the NBDC with the accession code 
hum0197. GWAS genotype data of the COVID-19 cases are available 
under controlled access at European Genome-Phenome Archive (EGA) 
with the accession code EGAS00001006284 for general research use. 
GWAS genotype data of the controls collected at Osaka University and 
the affiliated medical institutes are available under controlled access 
at EGA with the accession code EGAS00001006423 for use as controls. 
GWAS genotype data of the controls collected at University of Tsukuba 
cannot be deposited, since no consent was obtained for deposition in a 
public repository, but these data are available upon request (nhizawa@
md.tsukuba.ac.jp) for use as controls in research of inflammatory lung 
disease. The GWAS summary statistics of COVID-19 HGI (release 5) were 
obtained from https://www.covid19hg.org/results/r5/. The reference 
for cell-type annotation of PBMC in scRNA-seq (pbmc_multimodal.
h5seurat) was obtained from https://satijalab.org/seurat/articles/
multimodal_reference_mapping.html. 
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Extended Data Fig. 1 | Japan COVID-19 Task Force. Japan COVID-19 Task Force 
is a nation-wide consortium to overcome COVID-19 pandemic in Japan, which 
was established in early 2020. Japan COVID-19 Task Force consists of > 100 
hospitals (red dots) led by core academic institutes (blue labels), and collected 
DNA, RNA, and plasma from the COVID-19 cases along with detailed clinical 
information. The figure was originally created using sf and ggplot2 R packages 
based on Global Map Japan version 2.1 Vector data (Geospatial Information 
Authority of Japan).



Extended Data Fig. 2 | A principal component analysis plot of the GWAS 
participants and Manhattan and quantile-quantile plots of the GWAS.  
(a, b) A principal component analysis (PCA) plot of the GWAS participants 
(COVID-19 cases and controls) along with and without International HapMap 

populations (a and b, respectively). (c) Manhattan plots and quantile-quantile 
plots of the Japanese GWAS of COVID-19. Uncorrected P values from GWAS 
analysis are shown. Dotted lines represent the genome-wide significance 
threshold of P < 5.0 × 10−8.
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Extended Data Fig. 3 | Regional association plots of the HLA imputation 
analysis. Regional association plots of the HLA imputation analysis results. 
Dots represent SNPs and HLA variants with colors according to the legend. 
Uncorrected P values from HLA imputation analysis are shown. Dotted lines 

represent the genome-wide significance threshold of P < 5.0 × 10−8. HLA genes 
with the most significant associations in each of the case-control phenotypes 
are indicated.



Extended Data Fig. 4 | ABO blood type associations with COVID-19 in 
Japanese and cross-population Mendelian randomization analysis of the 
COVID-19 GWAS. (a) Odds ratios of the ABO blood types in the Japanese 
population are indicated. Dots represent the odds ratios and bars represent  
the 95 % confidence intervals. P values are uncorrected. Detailed results are 
presented in Supplementary Table 5. (b) Forest plots of the Mendelian 
randomization (MR) analysis results of causal inference on the COVID-19 GWAS 
in Japanese (left panel) and Europeans (right panel). Since effect sizes (= beta) 
of MR are not scalable among phenotypes and populations, normalized beta is 
indicated. For each phenotype and population, the standard error for the 

COVID-19 GWAS with the largest sample size (i.e., “COVID-19 vs control” for 
Japanese and “Self-reported COVID-19 vs control (C2)” for Europeans) was set 
to be 0.1. Dots represent the effect size normalized beta estimates and bars 
represent the 95 % confidence intervals. P values are uncorrected. The 
abbreviations of the exposure phenotypes and the detailed MR results are 
given in Supplementary Table 6 and Supplementary Table 7. BMI; body mass 
index, T2D; type 2 diabetes, CPD; cigarettes per day, CAD; cardiovascular 
disease, SBP; systolic blood pressure, DBP; diastolic blood pressure, eGFR; 
estimated glomerular filtration rate, UA; serum uric acids, RA; rheumatoid 
arthritis, SLE; systemic lupus erythematosus.
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Extended Data Fig. 5 | Effect size comparisons of the COVID-19 risk loci 
between the discovery GWAS and the replication study. Co-plots of the  
odds ratios and 95% confidence intervals between the discovery GWAS cohort 
and replication cohort. To focus on the differences in the cases collected in 
different pandemic waves (initial waves for GWAS and latter waves for the 
replication), same controls as GWAS were currently used for the cases in the 
replication. A regression coefficient was estimated based on logarithm of  
odds ratios. Dots represent the odds ratios and bars represent the 95 % 
confidence intervals.



Extended Data Fig. 6 | Colocalization analysis of the GWAS and eQTL signals 
at the DOCK2 locus. Regional colocalization plots of the GWAS signals (severe 
and younger COVID-19 cases vs controls) and the eQTL signals on DOCK2 
expression in the COVID-19 patients at the DOCK2 locus. CLPP; colocalization 
posterior probability. The eQTL effects of the variants around DOCK2 region 
are given in Supplementary Table 10.
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Extended Data Fig. 7 | Cell type definition and gene ontology enrichment 
analysis of DOCK2 co-expression gene module in the PBMC single cell 
analysis. (a) Violin plots showing the expression distribution of selected 
canonical cell markers in the 12 clusters of PBMC. The rows represent selected 
marker genes and the columns represent clusters with the same color as  
in Fig. 2d. (b) Violin plots showing the expression distribution of selected 
canonical cell markers in the 5 clusters of innate immune cell clusters, shown  

in the same color as in Fig. 2h. (c) Tile plot showing percentage concordance 
between the manually annotated 12 clusters and Azimuth annotation.  
(d) The top 25 enriched biological processes by gene ontology (GO) analysis  
of DOCK2 co-expression gene module identified by weighted gene 
co-expression network analysis (WGCNA) in the non-classical monocytes  
of COVID-19 patients, where DOCK2 showed the highest cell type-specific 
expression profile. The color of the dots represents the adjusted P values.



Extended Data Fig. 8 | Biological impacts of DOCK2 downregulation in 
primary cells and DOCK2 knockdown and Interferon-α production assay  
in THP-1 Blue ISG cells. (a) The impact of DOCK2 downregulation on 
interferon-α (IFN-α) production ability in pDC. Sorted pDC were stimulated with 
CpG and/or CPYPP. Data shows means ± s.e.m. (n = 3 per group). Differences of 
IFN-α production ability between the groups were evaluated using two-sided 
paired t-test. (b) The impact of DOCK2 downregulation on chemotaxis in CD3+ 
T cells. CD3+ T cells were stimulated with CXCL12 or CXCL12 + CPYPP (n = 19 per 
group). Differences of chemotaxis between the groups were evaluated using 

two-sided paired t-test. (c, d) Knockdown of DOCK2 by CRISPR system was 
confirmed by western blotting (c) and qRT-PCR. (d) Semi-quantitative staining 
density measure was determined using ImageJ (NIH). Data shows means ± s.e.m. 
(n = 3 per group). Data are compared to control group. P values were determined 
with One-way ANOVA followed by Dunnett’s post hoc test. (e, f) Activity ratio of 
SEAP reporter to no treatment group. Reporter was activated by 50 ng/ml LPS 
(e) or 50 μg/ml polyIC (f). Data shows means ± s.e.m. (n = 3 per group). Data are 
compared to control group. P values were determined with One-way ANOVA 
followed by Dunnett’s post hoc test.
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Extended Data Fig. 9 | Immunohistochemical analysis for DOCK2. Lung and 
hilar lymph nodes were obtained from autopsied cadaver (Sample 1–3, 6, 7) or 
surgical specimen (Sample 4, 5), and stained by anti-DOCK2 polyclonal 

antibody. Sample 1–3; COVID-19 pneumonia. Sample 4-5; control. Sample 6; 
non-COVID-19 severe pneumonia. Sample 7; non-COVID-19 mild pneumonia.



Extended Data Fig. 10 | In vivo suppression of DOCK2 in a Syrian hamster 
model with SARS-CoV-2 infection. (a) Schematic timeline of the experimental 
procedure. (b) Changes in weight of uninfected animals. The error bars 
represent standard error of the mean. (c) Changes in weight of each of the 
infected animals, corresponding to Fig. 3a. Three CPYPP-administrated 
animals reaching humane endpoint were euthanized at dpi 7 and 9, lowering 
survival rate to 77% (=10/13), while survival of vehicle-administrated animals 
was 100% (=12/12). The animals were administered with CPYPP (red), or vehicle 
(blue). (d) Histopathological examination of the lungs of infected hamsters. 
Syrian hamsters were inoculated with SARS-CoV-2 with CPYPP or Vehicle. 
Syrian hamsters infected with CPYPP or Vehicle were euthanized on dpi 3, 6, 
and 11 for pathological examinations (n = 3). Shown are pathological findings  
in the lungs of hamsters infected with the virus on dpi 3, 6, and 11 (hematoxylin 
and eosin staining). Middle and Right show enlarged views of the area circled  

in black in Left. (Scale bars, 2.5 mm [Left], 1.0 mm [Middle], and 0.25 mm  
[Right].) (e) Immunohistochemistry for alveolar macrophages. Shown are 
immunohistochemical findings in the lungs of hamsters infected with the virus 
on dpi 6 (n = 3 per group). Lung tissue was stained with the anti-CD68 mouse 
monoclonal antibody. (Scale bars, 0.25 mm.) (f) Pathological severity scores  
in infected hamsters. To evaluate comprehensive histological changes, lung 
tissue sections were scored based on (d) pathological changes. Scores were 
determined based on the percentage of inflammation area of the maximum  
cut surface collected from each animal in each group by using the following 
scoring system: 0, no pathological change; 1, affected area (≤10%); 2, affected 
area (<50%, > 10%); 3, affected area (<90%, ≥50%); 4, (≥90%) an additional point 
was added when pulmonary edema and/or alveolar hemorrhage was observed. 
The total score is shown for individual animals. Blue dot and red dot indicate 
+Vehicle and +CPYPP, respectively.
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