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Abstract: Modal properties are recognized as indicators reflecting structural condition in structural 6 
health monitoring (SHM). However, changing environmental and operational variables (EOVs) cause 7 
variability in the identified modal parameters and subsequently obscure damage effects. To address the 8 
issue caused by the EOVs-related variability, this study investigated the variability of modal 9 
frequencies in long-term SHM of a steel plate-girder bridge. A Bayesian fast Fourier transform (FFT) 10 
method was used for operational modal analysis in a probabilistic viewpoint. Bayesian linear regression 11 
(BLR) and Gaussian process regression (GPR) models were utilized to capture the variability in the 12 
identified most probable values (MPVs) of modal frequencies as temperature-driven models, and the 13 
limitation of these models for data normalization with latent EOVs was discussed. To overcome the 14 
interference of latent EOVs indirectly, a long short-term memory (LSTM) network was established to 15 
trace the variability as an autocorrelated process, with a traditional seasonal autoregressive integrated 16 
moving average (SARIMA) model as a benchmark. Finally, an anomaly detection method based on 17 
residuals of one-step ahead predictions by LSTM was proposed associating with the Mann–Whitney U 18 
test. 19 
Keywords: anomaly detection, EOVs, fast Bayesian FFT method, LSTM, SARIMA 20 

Introduction 21 
Modal parameters of a dynamic system of structures have been regarded as indicators reflecting 22 
structural integrity and widely utilized in the research of vibration-based long-term SHM (Ralbovsky et 23 
al. 2010; Fan and Qiao 2011). In modal parameter identification for bridge structures, operational 24 
modal analysis (OMA) which claims output-only system identification with ambient vibration data is a 25 
practical way of acquiring structural modal parameters. The accuracy of identified modal properties 26 
might yet be affected because of the absence of excitation information and the low amplitude of 27 
ambient vibration. A series of Bayesian OMA approaches including Bayesian spectral density approach, 28 
Bayesian time domain approach, and Bayesian fast Fourier transform (FFT) approach have been 29 
developed and widely used with a capacity of quantifying uncertainty in system identification (Yuen 30 
and Katafygiotis 2001 a, b and 2003; Au et al. 2013; Au 2017). In the framework of Bayesian OMA, 31 
uncertainties are classified into two groups: identification uncertainty, which indicates the uncertainty 32 
in a posterior estimation and can be denoted by the posterior covariance matrix of modal parameters; 33 
and variability, which mainly represents the variation of modal parameters related with the 34 
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environmental variations. Uncertainty laws have been clarified to manage identification uncertainty in 35 
Bayesian OMA (Au 2017). However, practical application of vibration-based SHM remains restricted 36 
because of the remaining variability, which exists in long-term SHM and might be inferred as a 37 
combined effect of various EOVs, such as temperature, traffic, humidity, and wind. 38 

Results of field studies have shown that such variability can mask changes in modal parameters 39 
caused by damage or deterioration, and further reduce accuracy of structural condition assessment 40 
(Sohn 2007). Comanducci et al. (1999) used an analytical model of a suspension bridge to study wind 41 
loading effects on modal frequencies compared with damage effects. They demonstrated that frequency 42 
variations caused by changing wind speed can be more significant than those produced by slight 43 
damage. Zhou and Sun (2019) investigated the periodical variability of modal frequencies in a 44 
sea-crossing bridge as correlated to EOVs including temperature, traffic, and wind. They reported the 45 
dominant EOVs with specific correlation patterns to modal frequencies in different time scales. 46 
Therefore, for the long-term SHM of bridge structures, consideration of the variability of modal 47 
frequency represents an important issue. 48 

Data normalization research, as a crucial part in practical SHM, aims to normalize the data by 49 
modeling and removing the EOVs-related variability in the data, which will further improve the 50 
damage sensitivity in anomaly detection. Generally, major studies can be divided into two groups: 51 
EOVs-driven and non-EOVs methods. The EOVs-driven method is a supervised way with measured 52 
EOVs. Generally speaking, it specifically emphasizes the correlation between measured EOVs and 53 
modal frequency. Subsequently, a model connecting modal frequency and measured EOVs can be 54 
constructed to catch the correlation and used for anomaly detection. Nandan and Singh (2014) 55 
introduced a state space model-based approach to investigate correlation between the modal frequency 56 
and temperature, and proposed two kinds of filtering methods to remove seasonal trend in observations. 57 
Kim et al. (2018) proposed a Bayesian approach considering multiple factors such as temperature and 58 
vehicle weights in a long-term SHM on a Gerber-type steel plate girder bridge. Avendaño-Valencia and 59 
Chatzi (2020) combined a Gaussian process with a vector autoregressive model in different time-scales 60 
to model the variation of structural dynamics under varying wind speeds and ambient temperatures. 61 

Nevertheless, because monitoring all significant EOVs in SHM campaign is quite difficult, it might 62 
engender a latent variable issue in the EOVs-driven methods. This issue sometimes makes the residual 63 
of model a nonstationary process, and affects the efficacy of the model-based prediction and anomaly 64 
detection. Alternatively, it has been recommended that non-EOVs methods can be used to avoid such 65 
issues (Deraemaeker 2018; Zhou and Sun 2019). Non-EOVs methods work in a different path to tackle 66 
issues of variability without involving partially measured EOVs, and can be treated in an unsupervised 67 
way, such as principal component analysis (PCA), cointegration-based methods, and autoregressive 68 
methods. Sen et al. (2019) verified the effectiveness of the PCA for decoupling structural damage and 69 
environmental effects in different bridge structures. Liang et al. (2018) used a frequency 70 
cointegration-based damage detection method to find a robust co-integration relation between modal 71 
frequencies which is insensitive to EOVs, and demonstrated the feasibility of the proposed method by 72 
case studies. Xin et al. (2018) applied a composite Kalman-ARIMA-GARCH model to simulate the 73 
variability of deformation data collected from a medium span bridge, and observed the existence of 74 
heteroscedasticity in the long-term record of deformation data under operational condition. 75 

Compared with traditional methods, long short-term memory (LSTM) (Horchreiter and 76 
Schmidhuber 1997; Gers et al. 2000), as a deep learning technique which has been used in many fields 77 
like speech recognition (Zia and Zahid 2019), handwriting recognition (Graves et al. 2009) and time 78 
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series prediction (Wierstra et al. 2005), may also possess the ability of data normalization in addressing 79 
the variability of damage-sensitive features like modal frequency in long-term SHM, while related 80 
investigations about the application to the SHM of civil structure are still scarce. Therefore, this study 81 
is intended to investigate the efficacy of LSTM in data normalization of modal frequencies in the SHM 82 
of a steel plate-girder bridge comparing with some traditional methods, and to propose a residual-based 83 
anomaly detection approach. Long-term monitoring data for an in-service steel plate-girder bridge are 84 
considered. A Bayesian FFT system identification method (Au et al. 2013; Au 2017) is introduced to 85 
identify the modal parameters of the in-service steel plate-girder bridge and quantify the identification 86 
uncertainty. First, the thermal effect to modal frequencies is investigated using temperature-driven 87 
models considering the measured temperature as an EOV. The limitation of these models for data 88 
normalization in the target bridge is discussed. Then, the performances of non-EOVs methods in an 89 
autoregressive way by the means of seasonal autoregressive integrated moving average (SARIMA) 90 
model (Box et al. 2015) and LSTM network are investigated. With the SARIMA model selected as a 91 
benchmark model, a vanilla LSTM neural network, as a deep learning model with the ability for 92 
sequence feature learning and prediction (Wu et al. 2018; Guo et al. 2020), is used to trace and remove 93 
the variability in the identified modal frequency. Finally, the validity of anomaly detection based on the 94 
normalized data, i.e. residuals of the two non-EOVs methods, is verified using the Mann-Whitney U 95 
test. A flowchart for the proposed anomaly detection is presented in Fig. 1. 96 

Bayesian FFT for OMA 97 

Most probable value 98 
The Bayesian FFT method is a frequency domain system identification method (Au et al. 2013; Au 99 
2017) that associates Bayesian inference and FFTs of vibration response with a basic form as 100 

,           (1) 101 

where 𝜽  denotes a set of modal parameters to be identified; 𝐹#!  is the estimated FFTs at 102 
corresponding frequency 𝑓!, while %𝐹#!& denotes a set of 𝐹#! in a selected frequency band. 103 

Without loss of generality, given non-informative prior, it can be further denoted as Eq. (2). 104 

            (2) 105 

Then, given that the FFTs are Gaussian and independent at different frequencies, it can be written as 106 

,     (3) 107 

where 108 

      (4) 109 

is the theoretical power spectral density (PSD) matrix of data at the kth FFT for given 𝜽. Here, the set 110 
of modal parameters 𝜽 comprises modal frequencies {𝑓"}"#$%  and modal damping ratios {𝜁"}"#$%  111 
denoted in transfer functions {ℎ"!}"#$%  corresponding to each mode, partial mode shapes {𝝋"}"#$% , PSD 112 
matrix of modal forces 𝑺 = .𝑆"&0%×%, and the PSD matrix of prediction errors 𝑆(𝑰). In addition, m 113 
represents the number of dominant modes in a specified frequency band where the estimation is 114 
conducted. n is the number of sensors to collect the ambient vibration response. Nf is the number of 115 
FFT points in the specified frequency band. System parameters 𝜽 can be estimated with an objective 116 
function shown in Eq. (5), which is the ‘negative log-likelihood function’ (NLLF), and the most 117 
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probable value (MPV) 𝜽2 = arg	min𝜽𝐿(𝜽). 118 

       (5) 119 

Identification uncertainty 120 
The identification uncertainly is one of the major contributions in Bayesian FFT method since it is a 121 
fully Bayesian approach. The posterior probability density function (PDF) of the system parameter of 122 
the structure 𝑝>𝜽?𝐹#!@ can also show the identification uncertainty. It has been demonstrated that the 123 
posterior PDF can be well approximated as a Gaussian form for typical data size. Au (2017) showed 124 
that a second-order Taylor approximation of the NLLF at the MPV engenders a Gaussian 125 
approximation of the posterior PDF as 126 

       (6) 127 

where 𝜽2 is the MPV, and 𝑪2 denotes the posterior covariance matrix which is the inverse of the 128 
Hessian of NLLF at the MPV. Also, 𝑛𝜽 represents the number of parameters in 𝜽. The posterior 129 
covariance matrix 𝑪2 can provide useful information reflecting the identification uncertainty. 130 

EOVs-driven model 131 

Bayesian linear regression 132 
As a combination of Bayes’ theorem and the multiple linear regression (MLR), Bayesian linear 133 
regression (BLR) (Marin and Robert 2007; Gelman et al. 2014) can be used as an EOVs-driven model 134 
to address variability in the long-term SHM. A basic representation of BLR can be given as 135 

      (7a) 136 

     (7b) 137 

where 𝑿 = {𝑿$, 𝑿+, ⋯ , 𝑿,} and 𝒚 = {𝑦$, 𝑦+, ⋯ , 𝑦,} are N couples of training samples, and denote 138 
the predictors and response, respectively; 𝜺 denotes the error term which is assumed to follow a 139 
normal distribution denoted as 𝑁(0, 𝜎)+𝑰,) with zero mean and covariance 𝜎)+𝑰,; {𝜶, 𝜎)+} are the 140 
parameters to be estimated or updated, and the form of posterior depends on the assumption of joint 141 
prior 𝑝(𝜶, 𝜎)+). 142 

Without loss of generality, a Jeffreys’ non-informative joint prior (Jeffreys 1946) can be used as 143 
below. 144 

        (8) 145 

Then, the marginal posterior can be written as 146 

   (9a) 147 

    (9b) 148 

where q represents the number of predictors and q+1 is equal to the number of regression coefficients 149 
𝜶 including an intercept. 𝜶M = (𝑿-, 𝑿).$𝑿-𝒚 denotes the least squares estimate of 𝜶. 150 
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Gaussian process regression 151 
When the linear correlation is not strong because of the disturbance of latent variables, using a 152 
non-parametric model is more flexible. Gaussian process regression (GPR), which is a nonparametric 153 
and fully Bayesian approach (Gelman et al. 2014), offers one way to address the issue of an unclear 154 
model form in a function space. 155 

The basic assumption of the model is presented in Eq. (10). 156 

    (10) 157 

where 𝑿 = {𝑿$, 𝑿+, ⋯ , 𝑿,} and 𝒚 = {𝑦$, 𝑦+, ⋯ , 𝑦,} are N couples of training samples; f(X) is a 158 
latent function which follows a Gaussian process; 𝑘>𝑿" , 𝑿&@ is a covariance function (a kernel 159 
function) specifying the covariance between f(Xi) and f(Xj) at any two points Xi and Xj (i and j can be 160 
the same) in the process; 𝜺 denotes the residual term which follows normal distribution and i.i.d. The 161 
form of covariance function and hyper-parameters 𝜼 including kernel parameters and 𝜎)+ defines the 162 
mapping from X to y in the function space. 163 

The selection of kernel function depends on the feature of data itself. As a generally used kernel 164 
function, radial basis function kernel (RBF kernel), which has a ready interpretation as a similarity 165 
measure related with the squared Euclidean distance of two feature vectors in input space, is adopted. 166 
Eq. (11) shows an RBF kernel. 167 

      (11) 168 

where 𝜎/+ and l are kernel parameters which denote width and characteristic length-scale, respectively. 169 
A key step in the GPR is to learn the hyper-parameters with the training dataset X and y. Generally, 170 

hyper-parameter estimation can be done by methods of two kinds (Bachoc 2013): Maximum 171 
Likelihood Estimation (MLE) (as shown in Eq. (12a)), and Maximum Pseudo-likelihood Estimation 172 
(MPLE) (as shown in Eq. (12b)) which combines a cross-validation in a leave-one-out way and is 173 
regarded to perform better when there is weak confidence for the model assumptions. 174 

      (12a) 175 

      (12b) 176 

Therein, 𝜼 includes the hyper-parameters %𝜎/+, 𝑙, 𝜎)+&, 𝒚."  denotes the dataset without 𝑦" , and N 177 
represents the number of observations. 178 

Based on the property by which the conditional distribution of a multi-dimensional joint Gaussian 179 
distribution is still Gaussian, a posterior predictive distribution on new predictors 𝑿∗ can be given as 180 
follows. 181 

      (13a) 182 

      (13b) 183 

  (13c) 184 

where 𝒇∗ = 𝑓(𝑿∗), K denotes a kernel matrix with entries 𝑘"& = 𝑘>𝑿" , 𝑿&@ and I is an identity matrix. 185 

Generalized autoregressive model 186 
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As previously mentioned, deficient measurement of the predictor variables might sometimes lead to a 187 
non-stationary residual process in EOVs-driven models, which severely undermines the reliability of 188 
residual-based anomaly detection. This section introduces two popular generalized autoregressive 189 
models for variability research in a non-EOVs way: SARIMA and LSTM. 190 

Seasonal Autoregressive Integrated Moving Average (SARIMA) model 191 
The SARIMA model is a classical linear time-series model which is able to track the variability of data 192 
with trend, seasonality and random components (Box et al. 2015). A general multiplicative 193 
representation of a SARIMA(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄)1  model can be written as Eq. (14). 194 

     (14) 195 

Therein, B denotes the backward shift operator with 𝐵𝑦2 = 𝑦2.$. Also, s stands for the period of 196 
seasonality, ∇= 1 − B is the difference operator, and 𝛻1 = 1 − 𝐵1 is the seasonal difference operator. 197 
The polynomials 𝜙3(∙), Φ4(∙), 𝜃5(∙) and Θ6(∙) are ordered respectively as p, P, q and Q with 198 
unknown coefficients. Also, d and D respectively represent the order for differencing and seasonal 199 
differencing. Innovation 𝜀2 is generally assumed to follow a Gaussian or Student’s t-distribution. 200 

A plot involving autocorrelation function (ACF) and partial autocorrelation function (PACF) can be 201 
referred to specify a proper set initially for the order parameters of a SARIMA model. Furthermore, 202 
some indices such as the Akaike information criterion (AIC) and Bayesian information criterion (BIC) 203 
are useful to assess the optimal structure of the model. Generally speaking, model order parameters 204 
with small AIC and BIC can be adopted. Given k as the number of coefficients to be estimated, n as the 205 
sample size and 𝐿# as the maximum likelihood, AIC and BIC can be estimated using Eq. (15). 206 

       (15a) 207 

      (15b) 208 

Long Short-Term Memory (LSTM) 209 
Classical time series models including SARIMA have been used widely. However, there are still some 210 
defects in the classical time series models. A linear form might restrict the distribution of the predicted 211 
response and engender heteroscedasticity in the residuals. Consideration of finite order in the time 212 
series model as an approximation might affect the performance of residuals. In that case, a nonlinear 213 
neural network with an LSTM layer (Horchreiter and Schmidhuber 1997; Gers et al. 2000) might be a 214 
good substitute for SARIMA. 215 

An LSTM neural network is a kind of Recurrent Neural Network (RNN) that is able to learn the 216 
long-term dependencies in time series data. In traditional RNN, learning long-term dependencies 217 
practically is difficult because of the computation issue known as gradient vanishing and exploding in 218 
the backpropagation through time (BPTT) algorithm. The LSTM network solves this issue well by 219 
introducing a cell state and some special gates to forget and update information from each time step. 220 

A common LSTM network for time series regression issue has a layer structure as presented in Fig. 221 
2(a). Compared with traditional feedforward neural networks like multilayer perceptron (MLP) or 222 
convolutional neural network (CNN), the major difference is a recurrent structure in LSTM layer. A 223 
schematic diagram for the local details of a vanilla LSTM layer (Gers et al. 2000; Wu et al. 2018; Guo 224 
et al. 2020) is presented in Fig. 2(b). The vertical direction shows the data flow in time, whereas the 225 
horizontal direction shows the data flow from input to output. The architecture is composed mainly of a 226 
cell and three gates, respectively called a forget gate, input gate, and output gate. The cell is used to 227 

( ) ( ) ( ) ( )s d D s
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track and record the dependencies in the time series, whereas the gates regulate the information flow 228 
into or out of the cell. The detailed forward pass operation in an LSTM layer can be described as 229 
follows referring to reports by Horchreiter and Schmidhuber (1997), Gers et al. (2000), and Graves 230 
(2012). 231 

       (16a) 232 

        (16b) 233 

       (16c) 234 

        (16d) 235 

         (16e) 236 

         (16f) 237 

where the operator ∘ denotes the Hadamard product; 𝑿2 ∈ 𝑅7×$ is the input vector with d features; 238 
𝒇2 ∈ 𝑅8×$, 𝒊2 ∈ 𝑅8×$, and 𝒐2 ∈ 𝑅8×$ are the output of forget gate, input gate, and output gate, 239 
respectively with h dimensions which equals to the number of hidden units in LSTM layer; 𝒉2 ∈ 𝑅8×$ 240 
is the hidden state vector which is delivered to both output and next step; 𝒄p2 ∈ 𝑅8×$ is the candidate 241 
cell state input; 𝒄2 ∈ 𝑅8×$ is the cell state vector which records long-term dependency; 𝑾 ∈ 𝑅8×7, 242 
𝑼 ∈ 𝑅8×8 and 𝒃 ∈ 𝑅8×$ are input weight matrix, recurrent weight matrix and bias vector to be 243 
learned, respectively; 𝜎9 is the gate activation function which is a sigmoid function, while 𝜎: denotes 244 
the state activation function generally using a hyperbolic tangent function. 245 

For a one-step ahead prediction case, the learned correlation between sequential input {𝑿"}"#+2 =246 
{𝒚"}"#$2.$ and one-step ahead output 𝒚2 can be finally written as Eq. (17). 247 

       (17) 248 

which can be regarded as a nonlinear and no-cut-off autoregressive model, with initial states h0 and c0 249 
generally set to be 0 as two hyper-parameters. 𝜑(	∙	) denotes a nonlinear function displaying the 250 
long-term correlation between one-step ahead prediction 𝒚M2 and all the past observations {𝒚"}"#$2.$. 𝜺2 251 
is the residual term between the observation 𝒚2 and the prediction 𝒚M2. 252 

Residual-based anomaly detection 253 
From the viewpoint of classical statistics and in long-term SHM, the MPV of the modal frequency 254 
obtained using the Bayesian FFT at a certain time t is a maximum likelihood estimator correlated with 255 
the estimators of FFTs, %𝐹#!&2, which comply with independent complex Gaussian distributions. This 256 

arrangement leads to treatment of MPV (denoted as 𝑓u2) as a random variable with a naive form such as 257 
Eq. (18). 258 

     (18) 259 

Therein, 𝐺(∙	) is a connection function. 𝑓2 denotes the real value (fixed but unknown) of modal 260 
frequency at time t and is EOVs-related; 𝜀2 is the random error term which mainly contains the 261 
influence from noise of vibration data and approximation in identification algorithm, and is generally 262 
independent. 263 

As shown in Eq. (18), the total variability of identified MPV 𝑓u2 in long-term SHM comprises the 264 
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EOVs-related variability in 𝑓2, and identification uncertainty in 𝜀2 which is mainly caused by noise in 265 
vibration data as well as approximations in identification algorithms and is generally independent. 266 
Consequently, theoretically speaking, if a model that ideally captures the EOVs-related variability of 267 
modal frequency in long-term SHM can be formulated, the residuals of the model can be regarded as a 268 
component after removing the EOVs-related variability, and might include most effects of noise and 269 
approximations in system identification. In that case, it can be expected that the residuals get close to a 270 
white noise process or at least a stationary process regardless of heteroscedasticity in some cases, and a 271 
change in the features of residual distribution might indicate an anomalous state of structure. 272 

Above discussion can be regarded as an interpretation of data normalization in SHM from a 273 
probabilistic viewpoint with various sources of uncertainties. Therefore, by comparing the introduced 274 
four models on modeling the EOVs-related variability and data normalization, the efficacy of LSTM 275 
for data normalization and residual-based anomaly detection can be demonstrated. 276 

Case study 277 

Background 278 
A case study is conducted using monitoring data collected from a simply supported steel plate-girder 279 
bridge in Japan [see Fig. 3]. The target bridge was constructed in 1957 with span length of 40.5 m and 280 
width of 4.5 m. Vehicle was the major excitation to the bridge from the view of strength, while other 281 
EOVs such as wind occupied the major duration of ambient excitation. Long-term health monitoring 282 
was implemented for this bridge with duration of about half a year before it is removed. As portrayed in 283 
Fig. 4, sensors are deployed mainly to the two steel girders to measure bridge responses including 284 
acceleration, strain and displacement along with temperature. The vertical acceleration data collected 285 
by accelerometers (A1–A10) are taken to reflect the vibration response and used for operational modal 286 
analysis. Temperature records are denoted as T1, T2, T3, T4, and T5, where T5 represents the air 287 
temperature. 288 

Operational modal analysis 289 
Operational modal analysis is conducted with acceleration records from 10 channels based on the Fast 290 
Bayesian FFT algorithm. The signal length for the analysis was set as 0.5 h, whereas the identification 291 
of modal properties was conducted per 0.5 h in the long-term SHM. To apply the Bayesian FFT 292 
algorithm, frequency bands within which the modal frequencies probably exist, the number of modes, 293 
and the corresponding initialization set should be previously specified. The frequency band generally 294 
can be determined with a singular value (SV) spectrum inferred from the cross power spectral density 295 
(CPSD) matrix (Au 2017). The SV spectrum is a plot of the eigenvalues of the real part of CPSD 296 
matrix versus frequency. Each spectral line in an SV spectrum denotes a certain-order eigenvalue 297 
versus frequency. Because correlation among signal channels is not involved in a PSD spectrum, it is 298 
difficult to ascertain the number of modes around a peak displaying dynamic amplification, especially 299 
when some close modes exist. In that case, the amount of dominating eigenvalues (lines) around a peak 300 
in the SV spectrum might indicate the number of close modes around the peak. 301 

As presented in Fig. 5, both the PSD and SV spectrum provide the potential resonance bands of the 302 
bridge, while in the SV spectrum, the number of lines (eigenvalues) significantly above the remaining 303 
ones around a peak represents the number of modes around the corresponding frequency. The captions 304 
denoted in the SV spectrum show the identified modes. The identified ‘partial’ mode shapes (confined 305 
to the measured DOFs) are depicted in Fig. 6. The 2nd* bending mode is named for its high similarity to 306 
the 2nd bending mode with measured DOFs. 307 
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As previously described, Bayesian operational modal analysis including the Bayesian FFT provides 308 
information to quantify the uncertainty in identification such as posterior variance and the 309 
signal-to-noise ratio (SNR). The posterior variance and SNR at each modal frequency are portrayed in 310 
Fig. 7. The results suggest a phenomenon of ascending identification uncertainty and rapidly 311 
descending SNR with respect to the mode order. It is noteworthy that bending modes tend to possess 312 
higher SNR than torsional modes. These results provide valuable information for selecting indicators as 313 
response variables in later studies of long-term variability. In terms of data quality, modal frequencies 314 
with less identification uncertainty and higher SNR are preferred. A mode with lower SNR does not 315 
guarantee stable identification in every dataset. Consequently, modal frequencies of the first and the 316 
second bending modes (denoted respectively as f1 and f2) are considered. The third bending modal 317 
frequency (mode 7 in Fig. 6) denoted as f3 with the most significant uncertainty and lowest SNR as 318 
depicted in Fig. 7 is also selected for comparison. Long-term MPVs of those three bending frequencies 319 
are presented in Fig. 8. Each point corresponds to an identification conducted per 0.5 h. The blank 320 
segments are attributable to intermittent monitoring. To check the effects of EOVs-driven models in 321 
modeling the variability of modal frequencies in long-term SHM, the dataset is divided into two subsets: 322 
a training set (left part of the partition line in Fig. 8) and a validation set (right part of the partition line 323 
in Fig. 8). To verify if there is interference of multimodality in the estimates of each bending mode in 324 
the long-term SHM, Modal Assurance Criterion (MAC) is calculated along with each identification and 325 
plotted in Fig. 9. It is noted that most of the estimates lead to a MAC value more than 0.99, which 326 
indicated that most of the estimates follow the same mode in long-term SHM and thus are reliable. 327 

Correlation analysis and temperature-driven model 328 
In the monitoring of the target bridge, temperature is the only measured EOVs with records of different 329 
locations denoted as T1, T2, T3, T4, and T5. Fig. 10 shows that the temperature records from two girders 330 
(T1 to T4) show more variance than air temperature (T5). Even between two girders, the temperature 331 
variance mutually differs. It is noted that obvious difference of temperature records between two 332 
girders occurs around the lower points at night. A possible reason for this phenomenon is inferred as a 333 
result of the topography around the target bridge. The bridge lies along north-south direction, with 334 
nearby a dam located in east [see Fig. 3]. The girder with records of T1 and T2 is also in the east of 335 
bridge and just faced with the drain opening of dam. Therefore, it can be inferred a comprehensive 336 
effect of wind, water spray and sunshine may make a difference between the two girders on 337 
temperature records, in particular for the case at night. Fig. 11 shows a correlation plot including 338 
temperature records and the first bending modal frequency, from which higher similarity was observed 339 
between T1 and T2, as it was between T3 and T4. Therefore, to avoid the influence of multicollinearity in 340 
regression, T2, T4, and T5 are chosen as predictors in the temperature-driven models. A negative linear 341 
relation was observed for the relation between the modal frequency and temperature. However, a large 342 
variance was also noted, which is probably attributable to interference from other EOVs such as traffic 343 
and humidity. 344 

To get a clearer perception on the correlation, standardized temperature records and modal 345 
frequencies about five days were investigated. In Fig. 12, one might observe that the valleys of 346 
identified modal frequencies generally appear in daytime with good correspondence to the peaks of 347 
temperature records, while the peaks of identified modal frequencies are usually observed around 348 
midnight and hours ahead of the valleys of temperature records, which further complicated the research 349 
of EOVs-related variability. Generally, thermal inertia in large structure may lead to an inconsistency 350 
between temperature records and modal frequencies, but for that case the temperature records from 351 
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outside usually do not lag behind but go ahead of the modal frequencies. In the target bridge, it is 352 
observed that the valleys of temperature records severely lag behind the peaks of modal frequencies, 353 
and no obvious lag effect among three temperature records either. Therefore, it is inferred as a result of 354 
interference from some latent EOVs such as traffic and humidity. In addition, it is noteworthy that the 355 
EOVs-related variability with daily periodicity is heavily scattered in the third bending frequency 356 
compared to the first and second bending frequencies because of its high identification uncertainty and 357 
low SNR. It indicated the influence of high identification uncertainty in OMA blurred the feature of 358 
EOVs-related variability in long-term SHM. 359 

Using data of the training set shown in Fig. 8, temperature-driven models were established. As 360 
previously mention, temperature records T2, T4, and T5 were selected as an input vector with a 361 
consideration of the distributed thermal effect. The identified MPVs of modal frequencies f1, f2 and f3 362 
were taken as a response vector. In the training of BLR model, a non-informative joint prior of 363 
coefficients and error variance is used for posterior estimation which is analytically tractable. Then, the 364 
posterior is further used to calculate a predictive distribution for prediction with belief. In the training 365 
of GPR model, MPLE is implemented to estimate the hyper-parameters including kernel parameters of 366 
an RBF kernel and error variance. The quasi-Newton method is used in the optimization of objective 367 
function. Then, with the learned hyper-parameters, a conditional normal distribution is calculated as the 368 
posterior predictive distribution for prediction with belief. The prediction results of the validation set 369 
presented in Fig. 13 demonstrated that the GPR model performed better than the BLR model, with a 370 
capacity of predicting more local variations of the modal frequencies in long-term SHM. When 371 
considering the third bending frequency polluted by higher identification uncertainty, the prediction 372 
almost failed to reflect the EOVs-related variability which generally has daily periodicity. 373 

In long-term SHM, a well-performed model is needed for tracking EOVs-related variability to 374 
reproduce residuals with stationary features, which is the prerequisite in residual-based anomaly 375 
detection. Therefore, the residuals of prediction models for the first and the second bending frequencies 376 
are investigated comprehensively. As presented in Fig. 14, obvious differences such as biased mean 377 
values were observed between the residual distributions on training dataset and validation dataset for 378 
each prediction model, which suggests the existence of a non-stationary feature in the residuals and an 379 
unsatisfactory generalization capacity of these models. Quantile–quantile plots (Q–Q plots) of the 380 
residual distribution are presented in Fig. 15. The plots demonstrated that the residual distribution of 381 
each model performed as right-skewed and failed to meet a Gaussian distribution. It might be inferred 382 
that interference of some latent EOVs remained in the residuals of temperature-driven models and led 383 
to non-stationary and non-Gaussian behavior. Therefore, for the SHM of target bridge with some 384 
crucial latent EOVs unmeasured, these temperature-driven models tend to be insufficient for data 385 
normalization and residual-based anomaly detection in the target bridge. 386 

Generalized autoregressive model 387 
As the use of temperature-driven models might lead to an issue of latent EOVs effect in residuals, 388 
autocorrelation of modal frequencies corresponding to autocorrelation in general EOVs offered another 389 
way for data normalization and reducing latent EOVs effects in residuals. It can be expected that the 390 
residuals of generalized autoregressive models including SARIMA and LSTM might perform more 391 
stationarily in a one-step ahead predictive way. These generalized autoregressive models generally 392 
demand a time series without missing data. Therefore, a data segment with few missing data from 393 
original intermittent sequence of modal frequencies is used for model establishment after data 394 
interpolation using the daily periodicity. 395 
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As presented in Fig. 16, the data segment is divided into three subsets: a training dataset, validation 396 
dataset, and testing dataset. To conduct residual-based anomaly detection, five simulated anomaly 397 
scenarios were introduced into the testing dataset as marked as D1–D5. They denote the following: D1 398 
adds a step signal with amplitude of 0.3 s to the original testing data; D2 adds a linear slope signal 399 
from 0 to 0.6 s; D3 amplifies the original testing data by a factor of 1.05; D4 is a test for the robustness 400 
of the proposed anomaly detection method to white noise with SNR equal to 5; D5 simulates changes 401 
in the autocorrelation of the original testing data as a kind of anomaly by adding an AR(1) component 402 
to the original testing data. Also, INT denotes an intact scenario, which is the original testing data. The 403 
severity of these artificially introduced data anomalies was limited to represent weak anomalies which 404 
are difficult to detect intuitively. 405 

A SARIMA model is first constructed as a benchmark model. According to the ACF and PACF of f1 406 
presented in Fig. 17(a), the seasonal frequency of 48 time steps corresponding to 24 h (= 48 × 0.5	h) 407 
in the sequence is observed, which indicates a seasonal component with daily periodicity. Then, a 408 
seasonal differencing operation is conducted on the original sequence of f1, and the obtained seasonal 409 
differencing sequence is further investigated. Fig. 17(b) shows the ACF and PACF of the seasonal 410 
differencing sequence of f1, which proposes a seasonal moving average component SMA(1) and an 411 
autoregressive component AR(p) while p denotes the order of AR component. The optimal AR model 412 
order was decided as p = 3 using both AIC and BIC values of the model as shown in Table 1. Finally, a 413 
SARIMA(3,0,0) × (0,1,1);< model was used to capture the EOVs-related variability. 414 

As for the vanilla LSTM neural network, which is a popular deep learning technique, the structure 415 
of the network and corresponding hyper-parameters are determined after sufficient trials of 416 
hyper-parameter adjustment. The network is defined as a univariate one-step ahead predictive structure. 417 
Optimal network parameters are learned by stochastic optimization on the objective function, 418 
specifically the mean squared error (MSE) with the Adam algorithm (Kingma and Ba 2015). The 419 
number of hidden units in the LSTM layer was set as 30. The maximum number of epochs was defined 420 
as 250. The initial learning rate was set as 0.001, but it was dropped after half of the epochs with a 421 
factor of 0.1. To avoid gradient explosion, the gradient threshold was set as 1. To avoid overfitting, a 422 
trick called early stopping was used. The training process is presented in Fig. 18. 423 

To show a more intuitive comparison, BLR and GPR models are also established on the same 424 
datasets shown in Fig. 16. The performance of EOVs-related variability compensation and data 425 
normalization using the trained SARIMA model and LSTM network is investigated compared with 426 
temperature-driven models. Observed from Fig. 19, both SARIMA and LSTM models traced the 427 
EOV-related variability well compared with temperature-driven models, while the prediction by the 428 
SARIMA model displayed more local variations than the LSTM network. Fig. 20 shows the residual 429 
sequences of these four models on both training set and validation set. It can be noted that residual 430 
sequences of SARIMA and LSTM tend to be a stationary process, while residual sequences of BLR 431 
and GPR still performed differently between training set and validation set with an obvious remaining 432 
trend term. To quantitatively reflect the distinction of the four models in explaining the variance of 433 
original sequence, coefficient of determination denoted as R2 is computed in Fig. 21. It is known that a 434 
high value of R2 close to 1 gives a proof of good explanation of data variance, and close R2 values 435 
between training set and validation set implies a good generalization ability of model. Hence, the 436 
results shown in Fig. 21 indicated the trained LSTM model made both good interpretation and 437 
generalization ability, while SARIMA model resulted in a poor interpretation and temperature-driven 438 
models showed a bad generalization. From the residual distributions on training dataset and validation 439 
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dataset presented in Fig. 22, it is noteworthy that the stationarity of residuals in both models performed 440 
much better than those in temperature-driven models, especially the mean values of residual 441 
distributions. The trained LSTM network led to better performance than the SARIMA model with less 442 
variance in residuals. The ACF and PACF of the residuals presented in Fig. 23 further demonstrated 443 
better performance of the LSTM network than that of SARIMA. Fig. 23(a) shows that the residuals of 444 
the trained SARIMA model belong to a SMA(1) component which is a stationary but autocorrelated 445 
process, while Fig. 23(b) shows that there was almost no autocorrelation in the residuals of the trained 446 
LSTM network. An interesting observation from the cumulative distributions of residuals presented in 447 
Fig. 24 is that the residual distributions of both models tend to be symmetric but heavy-tailed rather 448 
than a Gaussian distribution, while a t-location-scale distribution fits well. However, this phenomenon 449 
is explainable by an effect of heteroscedasticity which can be found between the daytime and nighttime 450 
(e.g. valleys and peaks of modal frequencies in Fig. 12 and Fig. 16) with daily periodicity. 451 

Since both SARIMA and LSTM models produced residuals with un-biased mean values in residual 452 
distributions after data normalization, it is expected the mean of residual distribution can be taken as an 453 
indicator for anomaly detection with statistical test. Because the residual distributions tend to be 454 
symmetric but non-Gaussian as shown in Fig. 24, t-test which requests a normal population may lose 455 
the efficacy. Therefore, in this study a nonparametric test method called Mann–Whitney U test (Mann 456 
and Whitney 1947; Siegel 1956) was introduced to ascertain whether significant changes had occurred, 457 
or not, in the medians (equal to means in symmetric distributions) of residual distributions from 458 
different datasets. 459 

Mann–Whitney U test offers a flexible way without any assumption on the distribution type of 460 
populations. It tests a null hypothesis H0 (the samples are from two populations with equal medians), 461 
against an alternative H1 (the samples are from two populations with different medians). For 462 
populations that are approximately symmetric, this test is equivalent to a test of the equality of means. 463 
The test statistic U is defined as 464 

, with      (19) 465 

where {𝑋"}"#$
)!  and %𝑌&&&#$

)"  respectively represent two sets of samples from two populations. 𝑛$ and 466 

𝑛+ are corresponding sample size. 467 
The distribution of U is known under the null hypothesis, and generally tabulated in the case of a 468 

small sample size. For a large sample size, it has been demonstrated that U is approximately normally 469 
distributed, in which case a z-test can be used. The standardized test statistic z is given as 470 

         (20) 471 

where 𝜇= and 𝜎= are the mean and standard deviation of U, respectively, given by 472 

         (21a) 473 
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Fig. 25 shows the fitted t-location-scale distributions of the residuals of two models on different 475 
data subsets. It is noteworthy that the mean values of the residual distributions of LSTM network show 476 
more distinctions among different scenarios than those in SARIMA model. Based on the statistical test, 477 
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the residuals of two models are tested between training dataset and testing dataset with six scenarios. 478 
Those tested results are summarized in Table 2 for the Mann–Whitney U test. Value 1 denotes rejection 479 
of null hypothesis, which indicates that significant difference exists between the means of two 480 
populations and can be treated as a proof of anomaly occurrence. As shown in the table, the results 481 
indicated that LSTM network which is a nonlinear and no-cut-off model tends to be more sensitive to 482 
anomalies than a linear and finite-order SARIMA model in the procedure of data normalization. By 483 
means of the Mann–Whitney U test on the residuals of trained LSTM network, all simulated anomaly 484 
scenarios were detected except for the D4 scenario which is defined by introducing additional white 485 
noise, whereas this situation can be regarded as evidence for the robustness of the residual-based 486 
anomaly detection method associating Mann–Whitney U test with the LSTM network. 487 

Conclusions 488 
This study investigated the efficacy of LSTM for data normalization and anomaly detection in a steel 489 
plate-girder bridge comparing with some traditional methods, and proposed a novel anomaly detection 490 
approach. Modal frequency identified by a fast Bayesian FFT method under ambient vibration is taken 491 
as the basic damage-sensitive feature, and the properties of EOVs-related variability in the identified 492 
modal frequencies in long-term SHM is elaborated with data normalization methods. Major 493 
conclusions can be summarized as follows. 494 
(1) The quantified identification uncertainty and estimated signal-to-noise ratio from the Bayesian 495 

FFT method provide useful information when selecting parameters for subsequent long-term 496 
SHM. 497 

(2) Among EOVs-driven models, the GPR model performed better than the BLR model in capturing 498 
the EOVs-related variability. 499 

(3) Lack of information of dominant EOVs caused a latent variable issue that severely affects the 500 
EOVs-driven model performance. The residuals involving the effects of latent EOVs might not 501 
comply with the Gaussian assumption of random error and further affect the accuracy of MLE, or 502 
become nonstationary and further affect the generalization ability of models. 503 

(4) Under the condition of existence of latent dominant EOVs, both classical SARIMA model and 504 
vanilla LSTM network well captured the seasonality and random variability of the modal 505 
frequency in long-term SHM. 506 

(5) Results of residual-based anomaly detection demonstrated that the LSTM model considering 507 
nonlinearity and long-term correlation is more sensitive to the anomaly which occurs in the 508 
pattern of EOVs-related variability of modal frequency compared to the classical SARIMA model. 509 

(6) An anomaly detection method combining the residuals of one-step ahead prediction by LSTM and 510 
Mann–Whitney U test showed a good performance for detecting anomalies in the long-term SHM 511 
of the steel plate-girder bridge. 512 
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Table 1. AIC and BIC for the SARIMA models with a component AR(p) 607 

Criterion 
Order of AR component 

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 

AIC -1678.5 -1734.3 -1774.8 -1773.6 -1777.2 -1778.6 
BIC -1658.6 -1709.5 -1745.0 -1738.8 -1737.5 -1734.0 

 608 

 609 

Table 2. Test results based on Mann–Whitney U test 610 

Model 
Scenarios of testing data 

INT D1 D2 D3 D4 D5 

LSTM 0 1 1 1 0 1 

SARIMA 0 0 0 0 0 0 

 611 
 612 

 613 

Fig. 1. Flowchart for the proposed residual-based anomaly detection procedure. 614 
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 615 

 616 

Fig. 2. (a) Common LSTM network for regression and (b) schematic diagram of a vanilla LSTM layer. 617 

 618 

Fig. 3. Elevation view of the target bridge. 619 

 620 

Fig. 4. Sensor deploying map. 621 
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 622 

Fig. 5. PSD and SV spectrum. 623 

 624 

Fig. 6. Identified mode shapes. 625 
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 626 

Fig. 7. Identified posterior variance and SNR. 627 

 628 

Fig. 8. MPVs of identified modal frequencies in long-term SHM. 629 

 630 
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Fig. 9. Temperature records in long-term SHM. 631 

 632 

 633 

Fig. 10. Correlation plot among temperature records and f1. 634 

 635 

Fig. 11. Correspondence of standardized modal frequencies and temperatures. 636 

 637 
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 638 
Fig. 12. Correspondence of standardized modal frequencies and temperatures. 639 

a) b)  640 

Fig. 13. Prediction on validation set: (a) BLR with non-informative prior and (b) GPR. 641 

a)  b)  642 

Fig. 14. Residual distributions on training set and validation set: (a) BLR and (b) GPR. 643 
 644 
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a) b)  645 

Fig. 15. Q-Q plots of residuals on training set and validation set: (a) for f1; and (b) for f2. 646 
 647 

 648 
Fig. 16. Continuous segment of f1 with five simulated anomaly scenarios. σ = standard deviation of original data. 649 
 650 
 651 

a) b)  652 

Fig. 17. ACF and PACF: (a) for f1; and (b) for seasonal differencing sequence of f1. 653 
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 654 

Fig. 18. Training process of LSTM network. 655 

 656 

Fig. 19. Predictions of four models on training set and validation set. 657 
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 658 
Fig. 20. Residual sequences of four models on training set and validation set. 659 
 660 

 661 

Fig. 21. Coefficient of determination R2 of four models on training set and validation set.662 
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 663 

Fig. 22. Residual distributions on training set and validation set. 664 

a) b)  665 

Fig. 23. ACF and PACF of residuals: (a) for SARIMA; and (b) for LSTM 666 

 667 
Fig. 24. Cumulative distribution functions (CDFs) of residuals. 668 
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 669 
Fig. 25. Statistical feature of residuals: fitted t-location-scale distributions. Vertical dotted lines denote the means 670 
of each scenario. 671 
 672 


