ARTICLE • OPEN ACCESS

An explicit derivation of the time-information uncertainty relation in thermodynamics

To cite this article: Katsuaki Tanabe 2021 IOPSciNotes 2015202

You may also like
On quantum reading, quantum
illumination, and other notions Stefano Pirandola

Solitary waves on falling liquid films in the low Reynolds number regime Hollis Williams

Dynamics of Rényi entanglement entropy in diffusive qudit systems Yichen Huang and

View the article online for updates and enhancements.

ARTICLE

CrossMark

OPEN ACCESS

RECEIVED

27 January 2021
REVISED
18 February 2021
accepted for publication
24 February 2021

Publishe

4 March 2021

Original content from thi

work may be used under the terms of the Creative Commons Attribution 4.0 licence.

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

An explicit derivation of the time-information uncertainty relation in thermodynamics

Katsuaki Tanabe (1)
Department of Chemical Engineering, Kyoto University, Kyoto, Japan
E-mail: tanabe@cheme.kyoto-u.ac.jp
Keywords: uncertainty relation, kinetics, thermodynamics, statistical mechanics, informatics

Abstract

A direct, explicit derivation of the recently discovered time-information uncertainty relation in thermodynamics [S. B. Nicholson et al (2020), Nat. Phys. 16, 1211] is presented.

The evolution of entropy and related uncertainty relations are of great importance in nonequilibrium thermodynamics and statistical mechanics [1-3]. Nicholson et al have recently discovered a time-information uncertainty relation in thermodynamics [4]:

$$
\begin{equation*}
|\dot{S}| / k_{B} \leqslant \Delta \dot{I} \Delta I . \tag{1}
\end{equation*}
$$

S is the Shannon entropy:

$$
\begin{equation*}
S / k_{B}=-\sum p_{x} \ln p_{x} \tag{2}
\end{equation*}
$$

where k_{B} is the Boltzmann constant, p_{x} is the probability of the state $x(=1,2, \ldots, N)$, and the simplified symbol of summation in this note denotes:

$$
\begin{equation*}
\sum a_{x} \equiv \sum_{x=1}^{N} a_{x} \tag{3}
\end{equation*}
$$

where a_{x} is a general variable. \dot{S} is the evolution rate or time derivative of the entropy:

$$
\begin{equation*}
\dot{S} \equiv \frac{d S}{d t} \tag{4}
\end{equation*}
$$

ΔI is the standard deviation of the surprisal or information content I_{x} :

$$
\begin{equation*}
I_{x}=-\ln p_{x} \tag{5}
\end{equation*}
$$

and $\Delta \dot{I}$ is the standard deviation of the evolution rate of the surprisal [5-7]. Because p_{x} is a stochastic variable, other statistical variables such as S, I_{x}, and their derivatives are also stochastic. The relation of equation (1) provides an upper bound of the entropy evolution rate in a system, and thus is positioned as a milestone in multiple fields including informatics, nonequilibrium thermodynamics, and energy science and engineering. The time-information uncertainty relation and the associated speed limit for flows of heat and entropy were validated with a number of examples [4]. This uncertainty applies to various systems ranging from energy transducers [8-10] to consciousness neuroinformatics [11-13]. In this short note, we present a more explicit derivation of the time-information uncertainty relation of equation (1), solely using the most primitive variable, p_{x}, as a supplement of the original article by Nicholson et al [4], for the convenience of the community.

Let us start with the formulation of the standard deviation of the surprisal and of the surprisal evolution rate. From equation (5),

$$
\begin{align*}
\Delta I & =\sqrt{\sum p_{x}\left(I_{x}-\langle I\rangle\right)^{2}} \\
& =\sqrt{\sum p_{x}\left(-\ln p_{x}+\sum p_{x} \ln p_{x}\right)^{2}}, \tag{6}
\end{align*}
$$

where the symbol of expectation denotes:

$$
\begin{gather*}
\langle a\rangle \equiv \sum p_{x} a_{x} . \tag{7}\\
\Delta \dot{I}=\sqrt{\sum p_{x}\left(\dot{I}_{x}-\langle\dot{I}\rangle\right)^{2}} \\
=\sqrt{\sum p_{x}\left(-\dot{p}_{x} / p_{x}+\sum \dot{p}_{x}\right)^{2}}, \tag{8}
\end{gather*}
$$

since

$$
\begin{equation*}
\dot{I}_{x}=\frac{d}{d t}\left(-\ln p_{x}\right)=-\dot{p}_{x} / p_{x} . \tag{9}
\end{equation*}
$$

Next, let us move onto the entropy evolution rate. From equation (2),

$$
\begin{align*}
\dot{S} / k_{B} & =\frac{d}{d t}\left(-\sum p_{x} \ln p_{x}\right) \\
& =-\sum \dot{p}_{x} \ln p_{x}-\sum p_{x} \frac{d}{d t}\left(\ln p_{x}\right) \\
& =-\sum \dot{p}_{x} \ln p_{x}-\sum \dot{p}_{x} . \tag{10}
\end{align*}
$$

Because $\sum p_{x}=1, \sum \dot{p}_{x}=\frac{d}{d t} \sum p_{x}=0$. This fact allows for a trick to multiply the second term of equation (10) by $-\sum p_{x} \ln p_{x}\left(=S / k_{B}\right)$:

$$
\begin{equation*}
\dot{S} / k_{B}=-\sum \dot{p}_{x} \ln p_{x}+\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right) . \tag{11}
\end{equation*}
$$

From equation (11), by further tricky transformations,

$$
\begin{align*}
\dot{S} / k_{B} & =-\sum \dot{p}_{x} \ln p_{x}+\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right) \\
& +\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right)-\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right) \\
& =-\sum \dot{p}_{x} \ln p_{x}+\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right) \\
& +\left(\sum p_{x} \ln p_{x}\right)\left(\sum \dot{p}_{x}\right)-\sum p_{x}\left\{\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right)\right\} \\
& =-\sum\left\{\dot{p}_{x} \ln p_{x}-\dot{p}_{x} \sum p_{x} \ln p_{x}-p_{x} \ln p_{x} \sum \dot{p}_{x}+p_{x}\left(\sum \dot{p}_{x}\right)\left(\sum p_{x} \ln p_{x}\right)\right\} \\
& =-\sum p_{x}\left(-\dot{p}_{x} / p_{x}+\sum \dot{p}_{x}\right)\left(-\ln p_{x}+\sum p_{x} \ln p_{x}\right) . \tag{12}
\end{align*}
$$

For the transformation across the second equality sign in equation (12), a general property $A=\sum p_{x} A$, where A is a constant, was used. Using the Cauchy-Schwarz inequality $\left(\sum a_{x} b_{x}\right)^{2} \leqslant\left(\sum a_{x}{ }^{2}\right)\left(\sum b_{x}{ }^{2}\right)$, where b_{x} is a general variable, from equation (12),

$$
\begin{align*}
\left(\dot{S} / k_{B}\right)^{2} & =\left\{\sum p_{x}\left(-\dot{p}_{x} / p_{x}+\sum \dot{p}_{x}\right)\left(-\ln p_{x}+\sum p_{x} \ln p_{x}\right)\right\}^{2} \\
& \leqslant\left\{\sum p_{x}\left(-\dot{p}_{x} / p_{x}+\sum \dot{p}_{x}\right)^{2}\right\}\left\{\sum p_{x}\left(-\ln p_{x}+\sum p_{x} \ln p_{x}\right)^{2}\right\} \\
& =(\Delta \dot{I})^{2}(\Delta I)^{2}, \tag{13}
\end{align*}
$$

via equations (6) and (8). Hence, $|\dot{S}| / k_{B} \leqslant \Delta \dot{I} \Delta I$ (equation (1)).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Katsuaki Tanabe (©) https:// orcid.org/0000-0002-0179-4872

References

[1] Seifert U 2005 Phys. Rev. Lett. 95040602
[2] Parrondo J M R, Horowitz J M and Sagawa T 2015 Nat. Phys. 11131
[3] Horowitz J M and Gingrich T R 2020 Nat. Phys. 1615
[4] Nicholson S B, García-Pintos L P, del Campo A and Green J R 2020 Nat. Phys. 161211
[5] Shannon C E 1948 Bell Syst. Tech. J. 27379
[6] Landauer R 1961 IBM J. Res. Dev. 5183
[7] Sekimoto K 2010 Stochastic Energetics (Heidelberg: Springer)
[8] Shiraishi N, Saito K and Tasaki H 2016 Phys. Rev. Lett. 117190601
[9] Tanabe K 2016 J. Phys. Soc. Jpn. 85064003
[10] Josefsson M, Svilans A, Burke A M, Hoffmann E A, Fahlvik S, Thelander C, Leijnse M and Linke H 2018 Nat. Nanotechnol. 13920
[11] Tononi G 2004 BMC Neurosci. 542
[12] Oizumi M, Tsuchiya N and Amari S 2016 Proc. Nat'l. Acad. Sci. USA 11314817
[13] Tanabe K 2020 arXiv2006.16243

