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Abstract
Adirect, explicit derivation of the recently discovered time–information uncertainty relation in
thermodynamics [S. B.Nicholson et al (2020),Nat. Phys. 16, 1211] is presented.

The evolution of entropy and related uncertainty relations are of great importance in nonequilibrium
thermodynamics and statisticalmechanics [1–3]. Nicholson et al have recently discovered a time–information
uncertainty relation in thermodynamics [4]:

∣ ∣ ( ) D DS k I I. 1B

S is the Shannon entropy:

( )å= -S k p pln , 2B x x

where kB is the Boltzmann constant, px is the probability of the state x (= 1, 2,K ,N), and the simplified symbol
of summation in this note denotes:
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where ax is a general variable. S is the evolution rate or time derivative of the entropy:

( ) ºS
dS

dt
. 4

ΔI is the standard deviation of the surprisal or information content Ix:

( )= -I pln , 5x x

and DI is the standard deviation of the evolution rate of the surprisal [5–7]. Because px is a stochastic variable,
other statistical variables such as S, Ix, and their derivatives are also stochastic. The relation of equation (1)
provides an upper bound of the entropy evolution rate in a system, and thus is positioned as amilestone in
multiplefields including informatics, nonequilibrium thermodynamics, and energy science and engineering.
The time–information uncertainty relation and the associated speed limit forflows of heat and entropywere
validatedwith a number of examples [4]. This uncertainty applies to various systems ranging from energy
transducers [8–10] to consciousness neuroinformatics [11–13]. In this short note, we present amore explicit
derivation of the time–information uncertainty relation of equation (1), solely using themost primitive variable,
px, as a supplement of the original article byNicholson et al [4], for the convenience of the community.

Let us start with the formulation of the standard deviation of the surprisal and of the surprisal evolution rate.
From equation (5),
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where the symbol of expectation denotes:

( )åá ñ ºa p a . 7x x
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since
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Next, let usmove onto the entropy evolution rate. From equation (2),
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Becauseå =p 1,x å å= =p
d

dt
p 0.x x This fact allows for a trick tomultiply the second termof equation (10)

by å- p plnx x (=S kB):

( )( ) ( )  å å å= - +S k p p p p pln ln . 11B x x x x x

From equation (11), by further tricky transformations,
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For the transformation across the second equality sign in equation (12), a general property å=A p A,x whereA
is a constant, was used. Using theCauchy–Schwarz inequality ( ) ( )( )å å åa b a b ,x x x x

2 2 2 where bx is a
general variable, from equation (12),
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via equations (6) and (8). Hence, ∣ ∣ D DS k I IB (equation (1)).
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