)n

2	Molecular analysis of larvae suggests the existence of a second species of Sulcascaris
3	(Nematoda: Anisakidae: Anisakinae) in the Japanese moon scallop (Ylistrum japonicum) from
4	Japanese waters
5	Naoya Sata ^{1, *} , Takafumi Nakano ²
6	
7	¹ Meguro Parasitological Museum, Meguro-ku, Tokyo 153-0064, Japan.
8	² Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto
9	606-8502, Japan.
10	
11	*Corresponding author
12	Email address: nsata@kiseichu.org
13	

15 Abstract

Herein, the morphological and genetic features of the larval specimens of anisakine 16 nematode, isolated from Ylistrum japonicum (Pectinidae) collected from Japanese waters, 17 were examined. Although the specimens were identified as members of the genus Sulcascaris, 18 19 they were genetically divergent from Sulcascaris sulcata, which is currently the only member 20 of the genus. The present study highlights the possibility that the Sulcascaris population 21 inhabiting Japanese waters represents a unique taxonomic position within the genus 22 Sulcascaris. Additionally, given that many pectinid scallops have been reported as 23 intermediate host of S. sulcata, the present study implies that pectinid scallops may also 24 represent the primary intermediate hosts for the present Japanese Sulcascaris species. Because 25 S. sulcata infections can cause discoloration in the meat of scallops, regular monitoring of the prevalence and intensity of Sulcascaris infections is required to predict the impact of the 26 27 infections on the market.

28

29 Keywords: Anisakinae; scallop; sea turtle; Sulcascaris

30	Sulcascaris sulcata (Rudolphi, 1819) (Anisakidae: Anisakinae) is an only species of the
31	genus Sulcascaris Hartwich, 1957 that infects the gastrointestinal tract of sea turtles (Caretta
32	caretta, Chelonia mydas and Lepidochelys kempii) [1]. The parasite has been recorded from
33	the Mediterranean and Caribbean seas, and the Atlantic and Pacific Oceans [1, 2]. Infection
34	occurs when the definitive host ingests mollusks (bivalves and gastropods) infected with
35	fourth-stage larvae (L4) [1, 3]. A recent pathological study revealed that S. sulcata can cause
36	ulcerous gastritis in C. caretta (loggerhead turtles) [4].
37	Japanese waters are the only area in the North Pacific Ocean where Sulcascaris
38	nematode has been recorded [2] based on the L4 specimens from a gastropod host. Namely,
39	they were "tentatively" identified as S. sulcata. Because larval anisakid nematode specimens
40	often lack enough morphological features for species-specific identification [e.g., 5], the true
41	taxonomic status of Sulcascaris species from Japanese waters should be clarified using
42	genetic analysis of L4 specimens. To reveal the taxonomic status of Japanese Sulcascaris
43	species, we morphologically and genetically studied larval specimens of the genus
44	Sulcascaris collected from Japanese waters. We also discussed the potential impact of L4
45	infection on the seafood industry and consumer's risk.
46	A total of 15 nematode larvae were isolated from the adductor muscle of <i>Ylistrum</i>
47	japonicum (Japanese moon scallop), which were collected from waters off the cost of Eguchi

48	Beach, Kagoshima Prefecture, Japan, during food inspections in 2020. Some of the obtained
49	specimens were fixed in 70% ethyl alcohol, while others were fixed with a hot 5% solution of
50	glycerin in 70% ethyl alcohol. To clear the nematode specimens, they were placed in 100%
51	glycerin. The cleared specimens were observed with a light microscope (Eclipse Ni-U, Nikon,
52	Japan). Some of the larval specimens examined in this study have been deposited in the
53	Meguro Parasitological Museum Collections as vouchers (MPM21851, 21852). Identification
54	was based on the morphological characteristics described in Lichtenfels et al. [6] and Berry
55	and Cannon [3].
56	The morphometric values of the larval specimens are listed in Table 1. The bodies of
57	specimens were long and slender and covered by the third-stage sheath. The specimens
58	possessed three lips at the cephalic end, which were separated from the body by a postlabial
59	groove, interlabia, a ventriculus and a short intestinal cecum. The opening of the excretory
60	pore was located immediately behind the lips. A single pair of phasmids was present on both
61	sides of the tail.
62	The larval specimens in this study were definitively identified as L4 of the genus
63	Sulcascaris, since they possessed interlabia, a ventriculus, a short intestinal cecum, and a
64	third-stage sheath [3, 6]. The present L4 specimens differed from the L4 specimens collected
65	from Hemifusus ternatanus in Japanese waters by having shorter body lengths and widths [2]

66	(Table 1). The other measurements of the larval specimens were largely concordant with
67	those of L4 of S. sulcata isolated from other hosts (Table 1) [2, 6, 7].
68	We used four anisakine larvae identified morphologically as belonging to the genus
69	Sulcascaris for molecular analyses. Genomic DNA of nematode specimens was extracted
70	from the whole body of each individual using the DNeasy Blood and Tissue kit (QIAGEN,
71	Hilden, Germany). The partial sequences of 18S rDNA (18S) and cytochrome c oxidase
72	subunits II (COII) were amplified by polymerase chain reaction (PCR) using a TaKaRa Ex
73	Taq kit (Takara Bio Inc., Kusatsu, Japan) and a Tks Gflex DNA Polymerase kit (Takara Bio,
74	Otsu, Japan), respectively, and a T100 Thermal Cycler instrument (Bio-Rad Laboratories,
75	Hercules, CA, USA). The primer sets used for 18S PCR were 998F and 2646R [8], and those
76	for COII were 211Fmod [9] and 210R [10]. The PCR conditions were as follows: 35 cycles of
77	30 s at 95°C, 30 s at 51°C, and 1 min at 72°C for 18S; and 94°C for 1 min, followed by 30
78	cycles of 10 s at 98°C, 15 s at 60°C, and 30 s at 68°C for COII. The former condition was
79	initiated with an initial denaturation step at 95°C for 3 min, followed by a final extension at
80	72°C for 7 min. The PCR products were purified using ExoSAP-IT reagent (Thermo Fisher
81	Scientific, Waltham, MA, USA) and then sequenced directly using the primer sets used for
82	PCR (DNA sequencing service was provided by Eurofins Genomics K. K., Tokyo, Japan). We
83	also used 1813F and 1912R [8] for direct sequencing of 18S as internal primers. In total, one

84	and four DNA sequences of 18S and COII, respectively, were determined. All sequences were
85	deposited at the DNA Data Bank of Japan (18S: LC705336; COII: LC705332–LC705335).
86	The phylogenetic position of the Japanese Sulcascaris species and other related genera
87	were estimated based on 18S sequences using maximum likelihood (ML) and Bayesian
88	inference (BI). In addition to the newly determined sequence, the sequences of six species of
89	the Anisakinae retrieved from GenBank were S. sulcata (EF180080), Anisakis simplex
90	(MF072711), Anisakis pegreffii (MF072697), Neoterranova caballeroi (U94381),
91	Neoterranova scoliodontis (DQ442661), Pseudoterranova decipiens (U94380) and
92	Porrocaecum depressum (U94379) (Supplementary Table 1). These operational taxonomic
93	units were chosen to represent the anisakine genera. We also retrieved the 18S sequences of
94	two species of Contracaecinae from GenBank, Contracaecum eudyptulae (EF180072) and
95	Contracaecum multipapillatum (U94370) (Supplementary Table 1), and used them as
96	outgroups of the phylogenetic analysis. The sequences were edited using MEGA 5 [11] and
97	aligned using MAFFT (v. 7.490) (see https://mafft.cbrc.jp/alignment/software/) [12]. Regions
98	difficult to align due to alignment gaps were manually removed; therefore, the final sequences
99	yielded 1754 bp of aligned positions for 18S.
100	The best-fit model, GTR+I, was identified based on the corrected Akaike information
101	criterion using PartitionFinder v2.1.1 [13] with the 'all' algorithm. The ML tree was

102	calculated using IQ-free v2.1.3 [14] with nonparametric bootstrapping (BS) conducted with
103	1000 replicates. BI tree and Bayesian posterior probabilities (PP) were estimated using
104	MrBayes v3.2.7a [15]. Two independent runs for four Markov chains were conducted from 2
105	million generations, and the tree was sampled every 100 generations. The parameter estimates
106	and convergence were checked using Tracer v1.7.1 [16], and then the first 5001 trees were
107	discarded based on the results. Although we performed another phylogenetic analysis based
108	only on COII sequences (nematode species and accession numbers of the COII sequences
109	used for the analyses are listed in Supplementary Table 2), most of the support values of the
110	branches were weak (data not shown). Thus, we omitted this result from the discussion of the
111	study.
112	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded
112 113	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in
112 113 114	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in Fig. 1. The monophyly of Japanese <i>Sulcascaris</i> sp. + Mediterranean <i>S. sulcata</i> was strongly
 112 113 114 115 	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in Fig. 1. The monophyly of Japanese <i>Sulcascaris</i> sp. + Mediterranean <i>S. sulcata</i> was strongly supported by both analyses ($PP = 1.0$; $BP = 100\%$).
 112 113 114 115 116 	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in Fig. 1. The monophyly of Japanese <i>Sulcascaris</i> sp. + Mediterranean <i>S. sulcata</i> was strongly supported by both analyses (PP = 1.0; BP = 100%). We also calculated the net genetic distances between Japanese (LC705332–LC705335)
 112 113 114 115 116 117 	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in Fig. 1. The monophyly of Japanese <i>Sulcascaris</i> sp. + Mediterranean <i>S. sulcata</i> was strongly supported by both analyses (PP = 1.0; BP = 100%). We also calculated the net genetic distances between Japanese (LC705332–LC705335) and Mediterranean (MN991205–MN991209, MN713883–MN713921) populations of
 112 113 114 115 116 117 118 	Both ML and BI phylogenetic inference based on the 18S DNA sequence dataset yielded almost identical topologies; therefore, the BI tree with BI and ML support values is shown in Fig. 1. The monophyly of Japanese <i>Sulcascaris</i> sp. + Mediterranean <i>S. sulcata</i> was strongly supported by both analyses (PP = 1.0; BP = 100%). We also calculated the net genetic distances between Japanese (LC705332–LC705335) and Mediterranean (MN991205–MN991209, MN713883–MN713921) populations of <i>Sulcascaris</i> nematodes. The calculation was conducted with MEGA 5 using the 501 bp of

120 between the Japanese and Mediterranean *Sulcascaris* populations was 9.6%.

121	Phylogenetic analysis based on the 18S sequences suggested close affinity between the
122	Japanese Sulcascaris species and Mediterranean S. sulcata. On the other hand, remarkable
123	net genetic distances (9.6%) of COII sequences between the Japanese Sulcascaris species
124	and Mediterranean S. sulcata populations were detected. This value exceeded the COII
125	genetic distance among three sibling species of the Anisakis simplex complex (A. simplex s.
126	s., A. pegreffii and A. berlandi) (4.5%–6.1%) [17]. Thus, the present L4 specimens likely
127	represent an undescribed species of the genus Sulcascaris.
128	This is the first record of Sulcascaris species from Y. japonicum (Pectinidae). Since nine
129	species of pectinid scallops have been reported as intermediate hosts of S. sulcata from the
130	waters of Australia, the United States and Brazil, and the Mediterranean Sea [1, 18],
131	pectinid scallops may also serve as the primary intermediate hosts for the present
132	Sulcascaris species. The western coast of the Satsuma Peninsula, which includes the
133	sampling site of the L4 specimens, is one of the great-scale spawning grounds of
134	loggerhead turtles in the northern Pacific Ocean, and a number of female loggerhead
135	turtles visit the coast to lay eggs during May-August from their foraging areas [19]. Thus,
136	infection of bivalve and gastropod mollusks by the larvae of Sulcascaris sp. may be caused
137	by the intakes of their eggs deposited with feces of the female loggerhead turtles, similar

138	to S. sulcata [1, 3, 20]. Ylistrum japonicum inhabits sandy sea bottoms at depths of 10–50
139	meters, similar to <i>H. ternatanus</i> [21, 22]. Thus, bivalve and gastropod mollusks inhabiting
140	the same habitat would be potential hosts of the larval Sulcascaris sp. Given that female
141	loggerhead turtles do not feed during internesting periods [23], they may not intake the
142	infected molluskan hosts. Thus, transmission to the female loggerhead turtles from
143	molluskan intermediate hosts may not occur in this area.
144	The genus Ylistrum is currently composed of two species, Y. japonicum and Y. balloti
145	[24]. Ylistrum balloti has also been reported as an intermediate host of S. sulcata in Australia
146	[1]. These two scallop species are important food sources in Japan and Australia, and raw
147	scallops or raw adductor meats have high commercial value. Recently, unprecedented
148	numbers of S. sulcata infections in the adductor muscle of captured sea scallops were
149	reported in the United States [25], and the infected adductor muscles exhibited brownish
150	lesions. Because the lesions may decrease the market acceptance of the meats, regular
151	monitoring of the prevalence and intensity of Sulcascaris infections is required in these
152	countries to predict the impact of the infections on the market. Although no impact of the
153	infections on human health has been reported, a possible risk of an allergic reaction induced
154	by the consumption of dead larvae for consumers is also noted [20]. Future studies regarding
155	the human immunological responses on the proteins derived from Sulcascaris species are

156	also required.
157	
158	Declaration of Competing Interest
159	The authors declare that they have no conflict of interest with the contents of this article.
160	
161	Acknowledgments
162	The authors are grateful to Eguchi Fishermen's Cooperative (Kagoshima Prefecture) for
163	providing the larval specimens of Sulcascaris species, to two anonymous reviewers for
164	constructive comments and suggestions on the manuscript, and to T. Takano (Meguro
165	Parasitological Museum) for providing useful information about the molluskan intermediate
166	hosts. We also thank Elsevier Language Editing Services for editing a draft of this manuscript.
167	
168	References
169	[1] M. Santoro, E. Marchiori, M. Palomba, B.D. Uberti, F. Marcer, S. Mattiucci, The
170	Mediterranean mussel (Mytilus galloprovincialis) as intermediate host for the anisakid
171	Sulcascaris sulcata (Nematoda), a pathogen parasite of the Mediterranean loggerhead turtle
172	(Caretta caretta), Pathogens 9 (2020) 118. https://doi.org/10.3390/pathogens9020118.
173	[2] M. Machida, K. Yoshida, Larval anisakine nematode, Sulcascaris sulcata, from Japanese

- 174 marine mollusc, Jpn. J. Parasitol. 33 (1984) 365–368.
- 175 [3] G.N. Berry, L.R.G. Cannon, The life history of *Sulcascaris sulcata* (Nematoda:
- Ascaridoidea), a parasite of marine molluscs and turtles, Int. J. Parasitol. 11 (1981) 43–54.
- 177 https://doi.org/10.1016/0020-7519(81)90024-2.
- 178 [4] M. Santoro, E. Marchiori, D. Iaccarino, B. degli Uberti, R. Cassini, F. Di Nocera, A.
- 179 Cerrone, G. Galiero, F. Marcer, Epidemiology of *Sulcascaris sulcata* (Nematoda: Anisakidae)
- 180 ulcerous gastritis in the Mediterranean loggerhead sea turtle (*Caretta caretta*), Parasitol. Res.
- 181 118 (2019) 1457–1463. https://doi.org/10.1007/s00436-019-06283-0.
- 182 [5] J. Suzuki, R. Murata, A review of anisakiasis and *Anisakis* larvae in Japan: from the
- 183 prevalence and risk of *Anisakis* infections to the identification of *Anisakis* larvae, Ann. Rep.
- 184 Tokyo Metr. Inst. Pub. Health. 62 (2011) 13–24.
- 185 [6] J.R. Lichtenfels, J.W. Bier, P.A. Madden, Larval anisakid (Sulcascaris) nematodes from
- 186 Atlantic molluscs with marine turtles as definitive hosts, Trans. Amer. Micros. Soc. 97 (1978)
- 187 199–207. https://doi.org/10.2307/3225593.
- 188 [7] J.F.A. Sprent, Ascaridoid nematodes of amphibians and reptiles: *Sulcascaris*, J. Helminth.
- 189 51 (1977) 379–387. https://doi.org/10.1017/S0022149X00007744.
- 190 [8] M. Holterman, A. van der Wurff, S. van der Elsen, H. van Megen, T. Bongers, O.
- 191 Holovachov, J. Bakker, J. Helder, Phylum-wide analysis of SSU rDNA reveals deep

- 192 phylogenetic relationships among nematodes and accelerated evolution toward crown clades,
- 193 Mol. Biol. Evol. 23 (2006) 1792–1800. https://doi.org/10.1093/molbev/msl044.
- 194 [9] T. Takano, T. Iwaki, T. Waki, R, Murata, J. Suzuki, Y. Kodo, K. Kobayashi, K. Ogawa,
- 195 Species composition and infection levels of *Anisakis* (Nematoda: Anisakidae) in the skipjack
- 196 tuna Katsuwonus pelamis (Linnaeus) in the Northwest Pacific, Parasitol. Res. 120 (2021)
- 197 1605–1615. https://doi.org/10.1007/s00436-021-07144-5.
- 198 [10] S.A. Nadler, D.S.S. Hudspeth, Phylogeny of the Ascaridoidea (Nematoda: Ascaridida)
- 199 based on three genes and morphology: hypothesis of structural and sequence evolution, J.
- 200 Parasitol. 86 (2000) 380–393. https://doi.org/10.1645/0022-
- 201 3395(2000)086[0380:POTANA]2.0.CO;2.
- 202 [11] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular
- 203 evolutionary genetic analysis using maximum likelihood, evolutionary distance, and
- 204 maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.
- 205 https://doi.org/10.1093/molbev/msr121.
- 206 [12] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7:
- 207 improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772–780.
- 208 https://doi.org/10.1093/molbev/mst010.
- 209 [13] R. Lanfear, P.B. Frandsen, A.M. Wright, T. Senfeld, B. Calcott, PartitionFinder 2: New

- 210 methods for selecting partitioned models of evolution for molecular and morphological
- 211 phylogenetic analyses, Mol. Biol. Evol. 34 (2017) 772–773.
- 212 https://doi.org/10.1093/molbev/msw260.
- 213 [14] B.Q. Minh, H.A. Schmidt, O. Chernomor, D. Schrempf, M.D. Woodhams, A. von
- 214 Haeseler, R. Lanfear, IQ-TREE 2: New models and efficient methods for phylogenetic
- inference in the genomic era, Mol. Biol. Evol. 37 (2020) 1530–1534.
- 216 https://doi.org/10.1093/molbev/msaa015.
- 217 [15] F. Ronquist, M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget,
- L. Liu, M.A. Suchard, J.P. Huelsenbeck, MrBayes 3.2: Efficient Bayesian phylogenetic
- inference and model choice across a large model space, Syst. Biol. 61 (2012) 539–542.
- 220 https://doi.org/10.1093/sysbio/sys029.
- 221 [16] A. Rambaut, A.J. Drummond, D. Xie, G. Baele, M.A. Suchard, Posterior summarization
- in Bayesian phylogenetics using Tracer 1.7, Syst. Biol. 67 (2018) 901–904.
- https://doi.org/10.1093/sysbio/syy032.
- 224 [17] A. Valentini, S. Mattiucci, P. Bondanelli, S.C. Webb, A.A. Mignucci-Giannone,
- 225 M.M.Colom-Llavina, G. Nascetti, Genetic relationship among *Anisakis* species (Nematoda:
- 226 Anisakidae) inferred from mitochondrial COX2 sequences, and comparison with allozyme
- data, J. Parasitol. 92 (2006) 156–166. https://doi.org/10.1645/GE-3504.1.

- 228 [18] F. Marcer, F. Tosi, G. Franzo, A. Vetri, S. Ravagnan, M. Santoro, E. Marchiori, Updates
- 229 on ecology ad life cycle of Sulcascaris sulcata (Nematoda: Anisakidae) in Mediterranean
- 230 grounds: molecular identification of larval infecting edible scallops, Front. Vet. Sci. 7 (2020)
- 231 64. https://doi.org/10.3389/fvets.2020.00064.
- 232 [19] Herpetological Society of Japan (ed.), Amphibians and Reptiles of Japan, Sunrise
- 233 Publishing, Hikone, 2021.
- [20] M. Santoro, M. Palomba, M.V. Modica, Larvae of *Sulcascaris sulcata* (Nematoda:
- Anisakidae), a parasite of sea turtles, infect the edible purple dye murex Bolinus brandaris in
- 236 the Tyrrhenian Sea, Food Control 132 (2022) 108547.
- 237 https://doi.org/10.1016/j.foodcont.2021.108547.
- 238 [21] I. Hayami, Family Pectinidae, in: T. Okunani (ed.), Marine Mollusks in Japan, second
- 239 ed., Tokai University Press, Hiratsuka, 2017, pp. 534–541, 1190–1197.
- 240 [22] T. Okutani, Family Melongenidae, in: T. Okunani (ed.), Marine Mollusks in Japan,
- second ed., Tokai University Press, Hiratsuka, 2017, pp. 274, 940.
- 242 [23] H. Tanaka, K. Sato, Y. Matsuzawa, W. Sakamoto, Y. Naito, K. Kyroyanagi, Analysis of
- 243 possibility of feeding of loggerhead turtles during interesting periods based on stomach
- temperature measurements, Nippon Suisan Gakkaishi 61 (1995) 339–345.
- 245 https://doi.org/10.2331/suisan.61.339.

246	[24] G. Mynhedt, A	A. Alejandrino,	L. Puslenik, J.	Corrales, J.M.	Serb, Shell	convergence
-----	--------------------	-----------------	-----------------	----------------	-------------	-------------

- 247 masks biological diversity in gliding scallops: description of *Ylistrum* n. gen. (Pectinidae)
- from Indo-Pacific Ocean, J. Mollus. Stud. 80 (2014) 400–411.
- 249 https://doi.org/10.1093/mollus/eyu038.
- 250 [25] D. Rudder, S. Roman, R.A. Fisher, D. Bushek, D. Munroe, E.A. Bochenek, E. McGurk,
- 251 S. Borsetti, An investigation into the scallop parasite outbreak on the mid-atlantic shelf:
- transmission pathway, spatio-temporal variation of infection and consequences to
- 253 marketability: final report, Marine resource report No. 2019-02, Virginia Institute of Marine
- 254 Science, William and Mary, 2019. https://doi.org/10.25773/m6xq-nq36.

Figure caption

- 260 marker. The numbers on branches represent Bayesian posterior probabilities and bootstrap
- 261 values for maximum likelihood.

263 **Table 1**

264 Morphometric values of L4 specimens of *Sulcascaris* species from Japanese waters. Measurements are shown as the range, followed

Host	Ylistrum japonicum	Hemifusus ternatanus	Chelonia mydas	Caretta caretta	Ylistrum balloti	Spisula solidissima	Argopecten gibbus
Locality	Japan	Japan	-	-	Australia	Atlantic	Atlantic
Body length (mm)	23.6–31.5 (26.5)	34.3-41.5	29–32	19–33	15–44	8.31–45	11.6–23.7
Maximum body width	382–485 (428)	520–620	360–500	400–470	260–750	168–752	294–390
Body width at ventricullus-intestine junction	294–435 (360)	-	300–400	340–470	220–580	-	-
Labia length	71–112 (91) (<i>N</i> = 14)	107-128	90–100	100-130	80–190	50-126	46–71
Interlabia length	44–59 (52) (<i>N</i> = 14)	77–87	60-80	70–90	50-110	29-84	28–46
Distance from cephalic end to nerve ring	197–455 (379) (<i>N</i> = 13)	286–342	430–520	370–550	340–670	248-660	227–382
Distance from cephalic end to excretory pore	72–143 (103) (<i>N</i> = 9)	-	-	-	-	-	-

by the mean in parentheses. All measurements are shown in micrometers (µm) unless otherwise noted.

Esophagus length (mm)	1.7–2.6 (2.2)	2.2–2.6	3.3–4.9	2.5-3.3	1.9–4	1.03-3.58	1.52–2.38
Esophagus width	118–164 (137)	130–140	-	-	-	82–231	96–147
Ventriculus length	396–534 (438)	420-450	480–660	360-510	340-700	218-580	252-403
Ventriculus width	128–228 (183)	130–150	-	-	-	101-300	130–227
Intestinal cecum length	88–192 (133) (<i>N</i> = 13)	110–150	50–160	50–150	50-140	21–147	42–97
Rectum length	133–244 (187) (<i>N</i> = 13)	215-235	-	-	-	101–323	176–201
Distance from tail end to phasmid	68–177 (111) (<i>N</i> = 10)	120–148	100–140	90–130	80–170	76–147	97–122
Tail length	161–259 (207) (<i>N</i> = 14)	240-270	200–220	130–190	120-300	127–222	126–206
Reference	This study (MPM21851, 21852)	[2]	[7]	[7]	[7]	[6]	[6]

- Fig. 1. A Bayesian phylogenetic tree for anisakine nematodes based on the nuclear 18S
- 270 marker. The numbers on branches represent Bayesian posterior probabilities and bootstrap
- 271 values for maximum likelihood.