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Abstract 

Coupled bistate multipartite systems are extensively studied as a versatile model in 

the field of information thermodynamics. As such systems are functionalized via the 

interaction among the particles, mutual information is a key property in their 

operation. In this study, we analyze a simple numerical model comprising a set of 

coupled double quantum dots, where the disconnection of the elements is 

represented by the removal of Coulomb interaction between the quantum dots. We 

calculate the mutual information in the model system, as the Kullback–Leibler 

divergence between the connected and disconnected status, through the probability 

distribution of the electronic states from the master transition-rate equations. We 

reasonably demonstrate that the increase in the strength of interaction between the 

quantum dots leads to higher mutual information, owing to the larger divergence in 

the probability distributions of the electronic states. Our numerical model could be 

a useful basic tool for the investigations of information-driven systems. 
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1. Introduction 

 

 In the context of information thermodynamics [1–5], the mutual 

information is defined as the difference between the actual Shannon entropy of the 

system and that in the absence of the correlations among the random variables, and 

represents the intensity of inter-variable correlations [6–10]. In other words, 

mutual information is the divergence between the actual probability distribution 

and that for the independence of the variables, to quantify the reduction in 

uncertainty for the states of the system on making measurements. Bipartite, 

four-state configurations are a handy model employed for the investigations in the 

field of information thermodynamics [11–16]. Quantum dots [17–21], often referred 

to as artificial atoms, are an adopted candidate for a material component of such 

setups [11,22–27]. The discretized density of states in quantum dots, owing to the 

three-dimensional confinement of electrical carriers, enables single-electron 

manipulation [28–30], which may make the discussions clear in information 

statistical mechanics. We previously studied a coupled double quantum dot system 

as an autonomous information engine, calculating the steady-state entropy 

production rate in each component, heat and electron transfer rates via the 

probability distribution of the four electronic states from the master transition-rate 

equations, to acquire device-design principles toward the realization of 

corresponding practical energy converters [31]. As this system strongly relies on the 

interaction between the quantum dots, mutual information is a key property in the 

operation of information engines. In the present study, we carry out simulations to 

analyze the mutual information between the quantum dots, to provide a simple but 

practically useful model setup for numerical investigations of information-driven 
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systems. 

 

 

2. Theory and Calculation Methods 

 

 The model setup of the present study comprises two quantum dots and 

three thermal/electronic reservoirs around as schematically depicted in Figure 1. 

Each quantum dot can contain up to one electron. One quantum dot with an 

electronic potential energy X functions as an electronic detector by "checking" 

whether an electron is in the other quantum dot through capacitive interaction 

strength or Coulomb interaction energy U between the two quantum dots. This 

"detector dot" is kept at a temperature TD and connected to thermal and electronic 

reservoirs, both having the same temperature TD and an electronic potential energy 

D. The other quantum dot with an electronic potential energy Y is connected to two 

reservoirs through electrical leads and enables an electrical current flow. This 

"system dot" is kept at a temperature TS and connected to two thermal and 

electronic reservoirs both at TS with electronic potential energies H and L (H > L). 

It should be noted that by such a connecting configuration, this quantum-dot 

system realizes a non-equilibrium steady state, and is productively active, 

performing work in exchange for the decrease in thermal energy (the thermoelectric 

engine mode operation) or the increase in entropy (the environmental information 

engine mode operation) of the reservoirs, as living bodies [31]. The potential-energy 

relations among the components in the setup are schematically shown in Figure 2 

for clarification. This double-quantum-dot configuration as a whole can drive 

electrical current between the reservoirs of H and L through the system dot, even 
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in the direction from L to H against the potential slope and thus generate work by 

properly setting the transition or tunneling rates across the interfaces between the 

quantum dots and reservoirs, as shown in Reference 31. Each quantum dot has an 

electronic state 0 or 1, where 1 and 0 mean that the dot is filled or not filled (i.e., 

empty) with an electron, respectively. In this way, the total electronic state (x, y) will 

be (0, 0), (0, 1), (1, 0), or (1, 1). For the state (1, 1), the electronic potential energy in 

the quantum dots will increase to X + U and Y + U for the detector and system dots, 

respectively, due to Coulomb repulsion. We set the time resolution fine enough so 

that no simultaneous or diagonal jump, such as a transition from (0, 0) to (1, 1), is 

assumed in our bipartite setup. 

 

 The time evolution of the probability of the state p(x, y) can be generally 

written as a master equation: 
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for the electron transfer on the detector dot and 

 

 
xxx fW ,10    (4) 

 

and 

 

  
xxx fW  1,01    (5) 

 

for the system dot in this model. Note again that for the jumps, either x or y is fixed 

at each time step.   is the electronic tunneling rate between the detector dot and 

its reservoir. We assume the density of states in the detector-side reservoir to be 

uniform so that   is independent of y. 

x  is the tunneling rate between the 

system dot and its reservoirs where  = H or L corresponds to the higher- or 

lower-potential reservoir, respectively. In contrast, we assume nonuniform profiles 

of the density of states in the system-side reservoirs so that 

x  depends on x. 

Fermi distribution functions for the detector and system dots have forms of: 
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respectively. For simplicity, the Boltzmann constant is set to unity or absorbed into 

the temperatures throughout this paper. We then determine the steady-state 

probability distribution of p(x, y) for the four electronic states through the master 

transition-rate equations of Equation (1). 

 

 For the disconnected model, we consider the probability distribution of the 

states q(x, y) in the system under consideration that corresponds to p(x, y) for the 

case U = 0, where the interactive information between the quantum dots is removed. 

Incidentally, as a consequence of U = 0, q(x, y) = q(x)q(y) holds, where q(x) = q(x, 0) + 

q(x, 1), q(y) = q(0, y) + q(1, y). We then define the mutual information in the coupled 

double quantum dot system, via the Kullback–Leibler divergence, as: 
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where     , || ,KLD p x y q x y  is the Kullback–Leibler divergence between the 

probability distributions p(x, y) and q(x, y). 
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3. Results and Discussion 

 

 Figure 3 presents a set of our calculation results for the mutual information 

of the coupled double quantum dot system in dependence on the capacitive 

interaction strength or quantum-dot Coulomb repulsion energy U for varied 

temperatures of the detector side TD, for the cases D = X − U/2 and D = X + U/2 

(adopted from Reference 31). It should be noted that, because there are too many 

conditional parameters to change for the numerical calculations, we intentionally 

provided some restrictions among the parameters in this study. It is observed for all 

TD's that as U increases, the mutual information increases. This resulted trend 

seems reasonable in the view of the integration of information in the system; 

stronger interaction between the quantum dots provides a higher degree of 

integrated information. The mutual information is observed to be strongly 

dependent on TD or the relative difference between TS and TD. Lower TD provides 

higher mutual information for a given U. This trend can be attributed to the fact 

that under the fixed-TS conditions, lower TD and thus larger difference between TS 

and TD provides higher electron-transport selectivity, functioning towards the same 

directionality as larger U. With no interaction between the quantum dots, U = 0, the 

four probabilities of the states almost equivalently share the pie, q(x, y) = 0.25. In 

the large-U regime, the repulsive interaction between the quantum dots tends to 

eliminate p(1, 1). For the condition D = X - U/2, for larger U, p(0, 0) and p(0, 1) 

approach 0.5 while the other probabilities of the states go to zero, owing to the deep 

reservoir level for the detector dot and Y locating in the middle of H and L for the 

system dot. This situation provides the limit of mutual information as 

20.5ln(0.5/0.25) = ln2 ~ 0.693, as observed in Figure 3 (a). On the other hand, for 
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the condition D = X + U/2, for larger U, p(1, 0) approaches unity while the others go 

to zero, because of the large reservoir-to-dot potential drop for the detector dot. This 

situation provides the limit of mutual information as 1ln(1/0.25) = ln4 ~ 1.386, as 

observed in Figure 3 (b). We adopt the condition D = X + U/2 in the following 

calculations for higher mutual information. 

 

 We plot the mutual information for various tunneling rates in Figure 4. We 

varied the tunneling rates for the electron-flow direction against the potential 

differences H

0  and 
L

1  while fixing the tunneling rates in the direction down the 

potential slopes 
H

1  and L

0 . As seen in this set of mutual-information results, the 

mutual information is moderately dependent on the antisymmetric relative 

amplitudes of the electronic tunneling rates, i.e., that H

0  and 
L

1  are larger than 

H

1  and L

0 . This type of antisymmetry was essential for the operation of the 

coupled double quantum dot system as an information engine and strongly 

influenced the information-engine efficiency [31]. However, it is observed that this 

is not the case for the mutual information, and it works even for the nonsymmetric 

case, H

0  = L

0  = 
H

1  = 
L

1  = 0.1. 

 

 Here, we investigate the influence of the energy levels’ relative positions 

among the system dot and its reservoirs. Figure 5 shows the mutual information of 

the coupled double quantum dot system with varied H and L to Y, keeping H − L 

constant. The mutual information is observed to be significantly influenced by the 

relative positions of the energy levels of H and L to Y. For all of the three cases, 
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p(1, 0) approaches to unity for larger U, which is the dominant factor for the mutual 

information. On the other hand, q(1, 0) is smaller for higher H and L relative to Y, 

owing to the dominance by q(0, 1) and q(1, 1), which provides higher mutual 

information through Equation (8). The plateau in the region U = 1~2 observed in 

the curve for the condition H = 3.1, L = 2.9 can be explained as follows. Figure 6 

plots p(x, y) in dependence on U for the condition H = 3.1, L = 2.9. As observed, the 

evolution of p(0, 1), which is the dominant factor for the increase in the mutual 

information in the small-U regime, by U is damped around the region U = 1~2 

because the electronic energy level Y + U approaches H and L. This situation of 

the relation of energy levels starts the escape of the electron from the system dot out 

to its reservoirs, and allows the entrance of the electron into the detector dot from 

its higher reservoir level, in the existence of the electronic inter-dot Coulomb 

repulsion by U. By contrast, the conditions H = 0.2, L = 0.4 and H = 1.1, L = 0.9 

exhibit no such an intermediate plateau in the evolution of mutual information by U, 

as observed in Figures 3−5, because Y + U is always higher than H and L. After 

the point U = 2, where Y + U overlaps with H and L, p(1, 0) steeply increases and 

becomes the dominant factor to recover the increase in the mutual information until 

reaching unity. Incidentally, it is observed in Figure 6 that after the conversion of 

the gradients between p(0, 1) and p(1, 0) around U = 1~2, as explained above, p(1, 0) 

overtakes p(0, 1) exactly at the point U = 4, where the electronic potential energy 

difference D − X for the detector dot equals (the middle of H and L) − Y for the 

system dot, and thus the absorbing driving forces into the dots are leveled. 

 

 

4. Conclusions 
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 In this study, we carried out a series of numerical simulations for the 

mutual information in a model coupled double quantum dot system with an 

artificial function to "check" the electronic state of each other via the Coulomb 

interaction. The evolutions of the mutual information of the system in dependence 

on U for various setup conditions were quantitatively analyzed in relation to the 

probability distributions of the electronic states. It was reasonably observed that 

the mutual information increases with U, because stronger interaction between the 

quantum dots provides a higher degree of integrated information. The mutual 

information of the system was observed strongly dependent on the relative 

temperatures of the detector and system sides owing to the influence of the 

electron-transport selectivity, while moderately insensitive to the antisymmetric 

relative amplitudes of the electronic tunneling rates. The mutual information is also 

found to be significantly influenced by the relative positions of the energy levels of 

H and L to Y, due to the drastic turnover of the dominant electronic states. Our 

numerical model could be a simple but useful numerical tool for the future 

investigations of information-driven systems. 
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Figure captions 

 

Figure 1. Schematic illustration of the model coupled double quantum dot system. 

 

Figure 2. Schematic diagram of the relationship among the potential energy levels 

in the components of the coupled double quantum dot system model setup. 

 

Figure 3. Mutual information MI in the coupled double quantum dot system in 

dependence on the capacitive interaction strength between the quantum dots U for 

various temperatures of the detector quantum dot TD for the cases (a) D = X – U/2 

and (b) D = X + U/2 under the condition X = Y = 1, H = 1.1, L = 0.9, TS = 1,   = 

100, H

0  = 
L

1  = 10, and 
H

1  = L

0  = 0.1. QD stands for quantum dot. 

 

Figure 4. Mutual information MI in dependence on the capacitive interaction 

strength between the quantum dots U for various tunneling rates H

0  and 
L

1 , 

under the condition X = Y = 1, H = 1.1, L = 0.9, TD = 0.1, TS = 1,   = 100, and 
H

1  

= 
L

0  = 0.1. 

 

Figure 5. Mutual information MI in dependence on the capacitive interaction 

strength between the quantum dots U for various relative energy-level positions H 

and L to Y, keeping H – L = 0.2 constant, under the condition X = Y = 1, TD = 0.1, 

TS = 1,   = 100, H

0  = 
L

1  = 10, and 
H

1  = L

0  = 0.1. 
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Figure 6. Probability of the state p(x, y) in the coupled double quantum dot system 

in dependence on the capacitive interaction strength between the quantum dots U 

under the condition X = Y = 1, H = 3.1, L = 2.9, TD = 0.1, TS = 1,   = 100, H

0  = 

L

1  = 10, and 
H

1  = L

0  = 0.1. 
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Figure 5 
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Figure 6 

 

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

p(0, 0)

p(0, 1)

p(1, 0)

p(1, 1)

P
ro

b
a
b

il
it

y
 o

f 
th

e 
st

a
te

 p
(x

, 
y)

 (
-)

QD capacitive interaction strength U (arb. u.)


