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Abstract. This paper proposes a decentralized method for navigation
of multiple robots, each of which has different abilities, by a single leader
robot in 3D space, especially focusing on the connectivity maintenance.
We assume a swarm of robots whose sensing ranges, maximum speeds
and maximum accelerations are different. For such robots, we propose a
control method for maintaining the whole connectivity by each agent’s
keeping local connectivity in a decentralized way. We also mathematically
prove that the proposed method can enable multiple robots to navigate
in 3D space while keeping the connectivity. Finally, numerical simulation
results are presented to confirm the effectiveness of the proposed method.
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1 Introduction

The robotic swarm consists of multiple robots and requires their cooperation
to achieve specific tasks. It is pointed out that swarm robots are useful due
to their “robustness”, “flexibility” and “scalability” [1, 2]. “Robustness” is a
property that prevents some agents’ failure from depriving the original function
of the whole swarm, and it is important when using the robotic swarm in a
harsh environment. “Flexibility” is a property that allows a robotic swarm to
adapt to various situations and tasks. For example, a large object that is too
large for a single robot to carry could be transported by a multiple robots’
cooperation. “Scalability” is a property that the system still works well even
if the number of agents increases, when each agent determines their action by
only using local information (called “decentralized control”). In decentralized
control, even though each agent acts according to their simple control law, the
whole swarm exhibits good performance due to each agent’s interaction. For
these reasons, robotic swarms are expected to be applied to various situations.

Robotic swarms are used in such tasks as exploration [3], transportation [4],
and surveillance [5]. They have a basic task in common: “moving to the des-
tination while maintaining the swarm structure,” and to realize this task by
decentralized control, each agent needs to get information about the surround-
ings by sensing or communication and to determine their action based on it.
Considering that agents have a physical limit to the sensing/communication dis-
tance, the distance between agents should be kept to such an extent that each
agent can obtain the necessary information.
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There have been some researches on connectivity maintenance control, but
many of them have an assumption that agents have the same capabilities [6,
7]. On the other hand, the robotic swarm consisting of heterogeneous agents
is expected to adapt to a wider variety of tasks as each of them makes use of
their abilities and cooperate with each other. In [8], the authors state that we
have to incorporate heterogeneity into swarm robot systems in order to apply
them to the actual environment. They proposed a swarm system composed of
hand-bots that can climb up or down walls and work as a manipulator, foot-bots
that navigate and carry the hand-bots, and eye-bot to scan the environment and
send information. In [9], a task example for heterogeneous robotic swarms are
shown, in which drones with different abilities monitor several targets which
moves differently.

There are some researches on “heterogeneous” (meaning “agents have dif-
ferent capabilities” in this context) swarms [10]-[12]. In [10], a decentralized
control method is proposed with which agents with different sensing ranges esti-
mate connectivity from the graph Laplacian of the connected graph only using
local information, and move in such a way as to keep connectivity. However, the
research has an assumption that each agent’s sensing range could be enlarged
if needed, and does not consider agents’ physical constraints such as the maxi-
mum speed. On the other hand, [11] proposed a control method for mobile robots
with different sensing range, maximum speed and maximum acceleration. In this
method, a single leader navigates the other agents while maintaining connectiv-
ity, without agents’ communicating or getting information about their surround-
ings, and each agent moves based only on their relative position to neighboring
agents. [12] is the expansion of this research, to which the authors have added
the constraint on agents’ viewing angle, and the stability analysis is proved in
[13]. However, [11, 12] handles moving robots in a 2D plane, and navigations
method for heterogeneous robots in 3D space have not been proposed.

When we use the method [11] to 3D space, we have two main problems. The
first problem is in the vector resolution of the control input. As [11], where the
input vector is decomposed using circular coordinates, let us consider the vector
resolution of the control input using the spherical coordinates. The singular
point in circular coordinates is the point where an agent and its target are in the
same position. Here, this situation cannot physically occur. However, in spherical
coordinates, the singular points are points where an agent comes right above or
below its target, and this situation is likely enough to occur. At this singularity,
the basis vectors are no longer determined uniquely, which is a big obstacle to
maintaining the continuity of the agent’s input vector.

The second problem is about decentralized control. In [11], the leader’s speed
constraint is a constant and can be uniquely determined from each follower’s
ability, which is known in advance by the leader. However, when trying to apply
the same method to our study, the leader’s constraint will include the variables
that only followers could obtain. Specifically, the leader would have to know
the angle θi(t) (introduced in Chapter 3.3), which the leader cannot obtain
without assuming the unlimited sensing range. We will have to use a centralized
control system where the leader can obtain each follower’s measured value with
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communication. Moreover, another problem also occurs that the leader’s speed
constraint is no longer determined uniquely and depends on time.

In this paper, based on the study [11], we propose a control method that can
solve the problems above. In other words, we propose a decentralized control
method in which a single leader robot navigates the other robots, each of which
has different capabilities, while maintaining connectivity in 3D space. We assume
that each agent has a different sensing range, maximum speed, and maximum
acceleration and does not use the communication with other agents.

2 Problem Setting

2.1 Modeling of Agents

We consider a leader-follower navigation problem in 3D space D ∈ R3 with no
obstacles. The robotic swarm consists of a single leader and n followers, and
followers are numbered 1, 2, . . . , n while the leader is numbered n + 1. These
numbers are set only for the convenience of description, and agents do not rec-
ognize them in the actual situation. We define sets of indices of all agents as
A = {1, 2, . . . , n+ 1}, and of all followers as F = {1, 2, . . . , n}.

We define a position vector and control input for agent i ∈ A at time t as xi(t)
and ui(t) respectively, and its equation of motion is described as ẋi(t) = ui(t).

We assume that each follower i ∈ F has the following physical constraints
about their input vector and its time derivative:

∥ui(t)∥ ≤ Ui, ∥u̇i(t)∥ ≤ Ai, ui(t): Continuous. (1)

Here, we define u̇i(t) as the larger of left and right derivative of ui(t) at
time t, so we do not need to think of acceleration constraints. If we consider
the flying robot as the agent, the actual flying robot has a limit to speed and
acceleration, so we assume that they cannot do such movements that exceed the
limit. In addition to that, the input vector should be continuous for controlling
the actual robots. The leader agent does not have those constraints above, other
than the next section’s speed constraint.

We assume that each follower i ∈ F can measure with an on-board sensor its
relative displacement xij(t) to any agent j ∈ A in the neighborhood area Si(t),
where xij(t) := xj(t)−xi(t) and Si(t) = {X(t) ∈ D | ∥xi(t)−X(t)∥ ≤ ρi, ρi >
0}. Here, ρi is the sensing range of agent i and is not necessarily uniform for
all agents. We also assume that followers can always get the vertically upward
direction ez on the inertial frame. In addition, we assume that as long as an
agent in Si(t) is staying there, each follower can distinguish it from the other
agents inside Si(t).

2.2 Connectivity of Agents

We use graph theory to describe connectivity between agents [11].
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Fig. 1. ij semi-connection.

Fig. 2. Connectivity expression as
a directed graph.

Fig. 3. Sensing radius ρi and design parameters ρ′i, ρ
′′
i , ρ

′′′
i for agent i.

We define a group of nodes as N := {N1, N2, . . . , Nn+1}, and a group of
directed edges between nodes at time t as E(t). A directed graph can be described
G(t) = N × E(t), and we describe a directional branch from Nj to Ni as Eji ∈
E(t). If Eji exists, we call Nj a parent of Ni, and call Ni a child of Nj . If a path
can be tracked along directional branches (like Ekj , Eji), it is called a directed
path. If Nn+1 has no parent and every node in N other than Nn+1 has only one
parent, G(t) is called a spanning tree with a root Nn+1 We define the following
leader semi-connectivity [11].

Definition 1 (Leader Semi-Connectivity). If Eji exists, i ∈ A and j ∈ A
are ij semi-connected (Fig. 1). If there is a directed path from Nn+1 to Ni,
follower i ∈ F is leader semi-connected. A swarm of agents is leader semi-
connected if all followers are leader semi-connected. In other words, the directed
graph G(t) is leader semi-connected if G(t) has a spanning tree with a root Nn+1.

Fig. 2 is an example of directed paths for a robot swarm with five followers.
Here, followers A, B, C are leader semi-connected while D, E are not.

Next, we add an assumption about the initial position at time t = 0. As-
sumption 1 is an assumption for the initial position of each followers.

Assumption 1 (Initial Placement) We define a positive constants ρ′i, ρ′′i ,
ρ′′′i satisfying 0 < ρ′′′i < ρ′′i < ρ′i < ρi, where ρ′i and ρ′′i are criteria for switching
the control input and ρ′′′i is equivalent to the lower limit for the distance between
agent i and the agent which agent i is following (Fig. 3). For follower i ∈ F , we
set regions S′

i(t) and S′′
i (t) as follows:

S′
i(t) := {X(t) ∈ D | ∥xi(t)−X(t)∥ ≤ ρ′i},

S′′
i (t) := {X(t) ∈ D | ∥xi(t)−X(t)∥ ≤ ρ′′i }.
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and define their boundary as ∂S′
i(t), ∂S

′′
i (t), respectively.

We set Bi(t) := S′
i(t) \ {∂S′

i(t) ∪ S′′
i (t)} and assume that all followers have

at least one other agent in Bi(t), do not have any other agents in S′′
i (t), and are

static (ui(0) = 0), at the time t = 0. We also assume that at least one follower
includes the leader in Bi(t) at t = 0.

2.3 Control Objective

In this paper, we propose a decentralized control method and leader’s constraint
to keep the state where, for any t ≥ 0, each agent satisfies the physical constraints
(1), and every follower is leader semi-connected. The leader is assumed to obtain
the followers’ properties (ρi, ρ

′
i, ρ

′′
i , ρ

′′′
i , Ui, Ai) off-line in advance, and to move

within the speed constraint shown below. Each follower can only use information
about itself and its relative position to other agents within its sensing range.

3 Proposed Method

We show a method for creating and maintaining a spanning tree structure of G(t).
In this method, each follower chooses one other agent as a target, and makes
efforts to keep semi-connectivity with it, which leads to leader semi-connectivity
of all agents. We also give them some degrees of freedom for changing the swarm
shape. The proposed method consists of three parts: leader’s speed constraint,
selection of a target agent, and control inputs for maintaining connectivity.

3.1 Leader’s Speed Constraint

In order to maintain leader semi-connectivity, we constrain the leader’s speed
∥un+1(t)∥ as ∥un+1(t)∥ ≤ Un+1, where Un+1 is determined by:

Un+1 ≤ min
i∈F

Ui, Un+1 ≤ min
i∈F

√
Aihi/{

√
5(2 +

√
3)} (2)

where hi := min {ρi − ρ′i, ρ
′′
i − ρ′′′i }. The first constraint is for obeying followers’

speed constraints and is derived from the proof of Theorem 2. The second one
is for acceleration constraints and arises from the proof of Theorem 4.

3.2 Target Selection Process

Each follower i ∈ F chooses as its target the first agent which has passed ∂S′
i(t) or

∂S′′
i (t) at t > 0. If multiple agents become the target candidates simultaneously,

the target will be selected from them randomly. From Assumption 1, no followers
start moving earlier than the leader, so the spanning tree of G(t) is created
through this process. We define ti as the time when agent i has determined its
target, and the target does not change after that.
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Fig. 4. Local basis vectors eir(t),eiθ(t),eiϕ(t) of agent i.

3.3 Control Input

We express the control input ui(t) to follower i ∈ F as follows (Fig. 4):

ui(t) = uir(t)eir(t) + uiθ(t)eiθ(t) + uiϕ(t)eiϕ(t). (3)

Here, eir(t) is defined as eir(t) := xij(t)/ri(t) for ri(t) > 0, where ri(t) :=
∥xij(t)∥ and agent j is the target of agent i. We also define θi(t) as the angle
measured from ez to eir(t), which ranges from 0 to π. In addition, eiθ(t) is
an unit vector which is on the same plane as eir(t) and ez and is orthogonal to
eir(t).　Also, eiθ(t) faces toward the direction in which θi(t) increases. Further,
eiϕ(t) is an unit vector which faces such direction that eir(t), eiθ(t), eiϕ(t) make
a right-handed coordinate system. Note that eiθ(t) and eiϕ(t) cannot be uniquely
determined when sin θi(t) = 0. If ri(t) = 0, we set eir(t) = eiθ(t) = eiϕ(t) = 0.

We set ui(t) = 0 for t < ti, and design the control input for t ≥ ti as follows:

1. The case of sin θi(t) ̸= 0
(a) ρ′′′i ≤ ri(t) ≤ ρ′′i :

uir(t) = a′i(ri(t)− ρ′′i ), uiθ(t) = uiϕ(t) = 0 (4)

(b) ρ′′i < ri(t) < (ρ′′i + ρ′i)/2:

uir(t) = 0, uiθ(t) = 2kiliσi(t)U
′
i(t)(ri(t)− ρ′′i ) sin θi(t)/(ρ

′
i − ρ′′i )

uiϕ(t) = 2
√
1− k2i liσi(t)U

′
i(t)(ri(t)− ρ′′i ) sin θi(t)/(ρ

′
i − ρ′′i )

(5)

(c) (ρ′′i + ρ′i)/2 ≤ ri(t) < ρ′i:

uir(t) = 0, uiθ(t) = 2kiliσi(t)U
′
i(t)(ρ

′
i − ri(t)) sin θi(t)/(ρ

′
i − ρ′′i )

uiϕ(t) = 2
√

1− k2i liσi(t)U
′
i(t)(ρ

′
i − ri(t)) sin θi(t)/(ρ

′
i − ρ′′i )

(6)

(d) ρ′i ≤ ri(t) < ρ′i + U ′
i(t)/(2ai):

uir(t) = ai(ri(t)− ρ′i), uiθ(t) = kiσi(t) sin θi(t)uir(t)

uiϕ(t) =
√

1− k2i σi(t) sin θi(t)uir(t)
(7)
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(e) ρ′i + U ′
i(t)/(2ai) ≤ ri ≤ ρ′i + U ′

i(t)/ai:

uir(t) = ai(ri(t)− ρ′i), uiθ(t) = kiσi(t) sin θi(t)(U
′
i(t)− uir(t))

uiϕ(t) =
√

1− k2i σi(t) sin θi(t)(U
′
i(t)− uir(t))

(8)

2. The case of sin θi(t) = 0
Though eiθ(t) and eiϕ(t) cannot be uniquely determined, we do not have to
consider the direction of these basis vectors when we set uiθ(t) = uiϕ(t) = 0.
Then (3) gives ui(t) = uir(t)eir(t), and we set uir(t) the same as (4)–(8).

Here, ai := Vi/(ρi − ρ′i), a
′
i := Vi/(ρ

′′
i − ρ′′′i ), ki, σi(t) ∈ [−1, 1], U ′

i(t) :=
max0≤τ≤t |uir(τ)|. Further, li and Vi are defined as follows:

li := min

{
1,

(ρ′i − ρ′′i )Ai

2
√
9 + 2

√
6V 2

i

}
, Vi := min

{
Ui,

√
Aihi√

5(2 +
√
3)

}
. (9)

In (9), Vi corresponds to the more stringent speed constraint imposed on the
leader. ki ∈ [−1, 1] is an arbitrary constant which can be set for each agent, and
determines the length of the input components in the direction of eiθ and eiϕ.

From the definition of uir(t) when ri(t) ≥ ρ′i, we obtain ri(t) = ρ′i+uir(t)/ai.
Since ai > 0 and uir(t) ≤ U ′

i(t), ri(t) ≤ ρ′i + U ′
i(t)/ai holds as long as ij semi-

connectivity is kept. Then, since ri(t) > ρ′′′i also holds, we just need to consider
the input for ρ′′′i ≤ ri(t) ≤ ρ′i+U ′

i(t)/ai. The parameter σi(t) ∈ [−1, 1] represents
how wide agents spread. The larger |σi(t)| is, the wider they spread.

3.4 What is Guaranteed by the Proposed Method

Under Assumption 1, when each agents moves according to the mentioned method,
all followers are leader semi-connected for all t ≥ 0, satisfy the physical con-
straints (1) for all t ≥ ti, and keep semi-connectivity to their target.

4 Mathematical Proof

Now, we prove that each follower keeps semi-connectivity with its target and
satisfies its physical constraints (1) under the control method in section 3. We
assume that agent i’s target is j and agent j’s velocity vector is expressed as
uj(t) = ujr(t)eir(t) + ujθ(t)eiθ(t) + ujϕ(t)eiϕ(t) using agent i’s basis vectors.

Theorem 1 (Semi-connectivity with the target). Suppose Assumption 1
holds and ui(t) is set according to (3)–(8). If ∥uj(t)∥ ≤ Un+1, then ρ′′i −
Un+1/a

′
i ≤ ri(t) ≤ ρ′i + Un+1/ai.

Proof : This can be proved in the same way as Theorem 1 in [12]. ⊓⊔

Theorem 2 (Maximum speed). Suppose ui(t) is set according to (3)–(8). If
∥uj(t)∥ ≤ Un+1, then ∥ui(t)∥ < Un+1.
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Proof : If t < ti, the theorem clearly holds since ui(t) = 0. We discuss the
case t ≥ ti. From Theorem 1, ρ′′ − Un+1/a

′ ≤ r ≤ ρ′ + Un+1/a holds and,
combining it with the control inputs (4)–(8), we can say that the velocity in the
target direction uir satisfies |uir| ≤ Un+1.

1. The case of sin θ = 0 or ρ′′ − Un+1/a
′ < r ≤ ρ′′:

Since uiθ = uiϕ = 0, ∥ui∥ = |uir| < Un+1 holds.
2. The case of sin θ ̸= 0 and ρ′′ < r < ρ′ + U ′/a:

(a) ρ′′ < r < (ρ′′ + ρ′)/2: From 0 < (r − ρ′′)/(ρ′ − ρ′′) < 1/2, |l| ≤ 1, and
|σ| ≤ 1, the following holds:

∥ui∥2 = u2
iθ + u2

iϕ = 4l2σ2U ′2
(

r − ρ′′

ρ′ − ρ′′

)2

sin2 θ < U ′2.

Because of |uir| ≤ Un+1 and U ′
i(t) := max0≤τ≤t |uir(τ)|, we obtain

U ′
i(t) ≤ Un+1. Therefore, ∥ui∥ < Un+1 holds.

(b) (ρ′′ + ρ′)/2 ≤ r < ρ′: From 0 < (ρ′ − r)(ρ′ − ρ′′) ≤ 1/2, |l| ≤ 1, and
|σ| ≤ 1, the following holds:

∥ui∥2 = u2
iθ + u2

iϕ = 4l2σ2U ′2
(

ρ′ − r

ρ′ − ρ′′

)2

sin2 θ ≤ U ′2.

Using U ′ < Un+1, we obtain ∥ui∥ < Un+1.
(c) ρ′ ≤ r < ρ′ + U ′/(2a): From (7), |uir| < U ′/2 holds. Using U ′ < Un+1,

we obtain |uir| < Un+1/2. From |σ| ≤ 1, the following holds:

∥ui∥2 = u2
ir + u2

iθ + u2
iϕ = (1 + σ2 sin2 θ)u2

ir ≤ 2u2
ir < U2

n+1/2

Therefore, ∥ui∥ < Un+1 holds.
(d) ρ′ + U ′/(2a) ≤ r < ρ′ + U ′/a: From (8), U ′/2 ≤ uir < U ′ holds. From

|σ| ≤ 1, the following holds:

∥ui∥2 = u2
ir + σ2 sin2 θ(U ′ − uir)

2 ≤ u2
ir + (U ′ − uir)

2

= 2

(
uir −

U ′

2

)2

+
U ′2

2
< U ′2

Combining it with U ′ < Un+1, ∥ui∥ < Un+1 holds.

Therefore, it is proved that if ∥uj(t)∥ ≤ Un+1, ||ui(t)|| < Un+1 holds. ⊓⊔

Theorem 3 (Continuity of the control input).
Suppose Assumption 1 holds and ui(t) is set according to (3)–(8). If ∥uj(t)∥ ≤
Un+1, then ui(t) is continuous for any t.

Proof : If t < ti, ui is always zero and the theorem clearly holds. We discuss the
case t ≥ ti.
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1. The case of sin θ ̸= 0:
Since ∥uj∥ ≤ Un+1, |ujr| ≤ Un+1 and |uir| ≤ Un+1 holds. Hence ṙ = ujr −
uir is bounded and then r is continuous for any t. Because uir, uiθ, uiϕ are
continuous for r, these are also continuous for t.
The basis vectors eir, eiθ, eiϕ change according to θ̇i and ϕ̇i, which are the
relative velocity between agents i and j in the directions of eiθ and eiϕ
respectively. Here, ϕ̇i corresponds to the angular velocity around the Z-axis
(See Fig. 4), and define the counterclockwise direction (viewed from +Z
direction) as positive.
Using r > 0 and sin θ ̸= 0, θ̇ and ϕ̇ is expressed as θ̇ = (ujθ − uiθ)/r,

ϕ̇ = (ujϕ − uiϕ)/(r sin θ). Since ∥uj∥ ≤ Un+1 and ∥ui∥ ≤ Un+1, they can
be defined as bounded values. Therefore, the time derivative of basis vectors
ėir = θ̇eiθ+ ϕ̇ sin θeiϕ, ėiθ = −θ̇eir+ ϕ̇ cos θeiϕ, ėiϕ = −ϕ̇(sin θeir+cos θeiθ)
are also bounded values, so eir, eiθ, eiθ is continuous for any t.
From the discussion above, u̇i = u̇ireir + uirėir + u̇iθeiθ + uiθėiθ + u̇iϕeiϕ +
uiϕėiϕ can be defined as bounded values and ui(t) is continuous for any t.

2. The case of sin θ = 0:
Since uiθ = 0 and uiϕ = 0, u̇i is expressed as u̇i = u̇ireir +uirėir + u̇iθeiθ +
u̇iϕeiϕ, where u̇iθ and u̇iϕ derives from (4)–(8).
Using uiθ = 0 and sin θ = 0, ėir is expressed as ėir = (ujθ/r)eiθ, hence we
obtain u̇i = u̇ireir + {(uirujθ)/r + u̇iθ} eiθ + u̇iϕeiϕ.
Here, uir, uiθ, and uiϕ are continuous and bounded for any t regardless of
whether sin θ goes to zero. Since |ujθ| ≤ Un+1, u̇i(t) can be defined as a
bounded value regardless of the directions of eiθ and eiϕ, therefore ui(t) is
continuous for any t.

In conclusion, it is proved that ui(t) is continuous for any t if ∥uj(t)∥ ≤ Un+1.
⊓⊔

Theorem 4 (Maximum Acceleration). Suppose Assumption 1 holds, ui(t)
is set according to (3)–(8), and σ(t) is constant. If ∥uj(t)∥ ≤ Un+1, then ∥u̇i(t)∥ <
Ai.

Proof : If t < ti, ui is always zero and the theorem clearly holds. We discuss the
case t ≥ ti. When sin θ ̸= 0, the acceleration vector u̇i is expressed as u̇i = (u̇ir−
θ̇uiθ−ϕ̇ sin θuiϕ)eir+(θ̇uir+u̇iθ−ϕ̇ cos θuiϕ)eiθ+(ϕ̇ sin θuir+ϕ̇ cos θuiθ+u̇iϕ)eiϕ.

1. The case of sin θ ̸= 0 and ρ′′ − Un+1/a
′ < r(t) ≤ ρ′′:

∥u̇i∥2 = u̇2
ir + (θ̇2 + ϕ̇2 sin2 θ)u2

ir = a′2ṙ2 +
u2
jθ + u2

jϕ

r2
a′2(r − ρ′′)2

≤ a′2{(ujr − uir)
2 +

(r − ρ′′)2

r2
(U2

n+1 − |ujr|2)}.

Since (ujr−uir)
2 ≤ (|ujr|+Un+1)

2 and (r−ρ′′)2/r2 ≤ (ρ′′/ρ′′′−1)2 := c(> 0),
we get the following:

∥u̇i∥2 ≤ a′2
{
(|ujr|+ Un+1)

2 + c(U2
n+1 − |ujr|2)

}
= a′2

{
(1− c)|ujr|2 + 2Un+1|ujr|+ (1 + c)U2

n+1

}
.
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For 0 ≤ |ujr| ≤ Un+1, ∥u̇i∥2 gets the maximum value 4a′2U2
n+1 at |ujr| =

Un+1. Since Vi <
√
Ah/2, Un+1 ≤ Vi, and h ≤ ρ′′ − ρ′′′, it is proved that

∥u̇i∥2 ≤ 4a′2U2
n+1 < A2.

2. The case of sin θ ̸= 0 and ρ′′ < r(t) < (ρ′′ + ρ′)/2:

u̇iθ = klσU ′ 2

ρ′ − ρ′′

{
ujr sin θ +

r − ρ′′

r
(ujθ − uiθ) cos θ

}
u̇iϕ =

√
1− k2lσU ′ 2

ρ′ − ρ′′

{
ujr sin θ +

r − ρ′′

r
(ujθ − uiθ) cos θ

}
.

Calculating ∥u̇i∥2 with the formulae above and evaluating it with (r −
ρ′′)2/r2 < 1, |k| ≤ 1, and |σ| ≤ 1, we get the following:

∥u̇i∥2 <

(
2lU ′

ρ′ − ρ′′

)2 {
u2
jr + (ujθ − uiθ)

2(|ujθ − uiθ|+ |ujϕ − uiϕ|)2
}

≤
(

2lU ′

ρ′ − ρ′′

)2 {
(u2

jr + u2
jθ) + u2

iθ

+2|ujθ||uiθ|+ (|ujθ|+ |ujϕ|+ |uiθ|+ |uiϕ|)2
}
.

Since ∥uj∥ ≤ Un+1 and ∥ui∥ ≤ Un+1, we get |ujr|+ |ujθ|+ |ujϕ| ≤
√
3Un+1

and |uiθ| + |uiϕ| <
√
2Un+1. Using them, we can further evaluate ∥u̇i∥2 as

∥u̇i∥2 < (2lU ′/(ρ′ − ρ′′))2{4 +
(√

3 +
√
2
)2}U2

n+1 = (9 + 2
√
6)(2lU ′Un+1/

(ρ′ − ρ′′))2. Using (9) and U ′ < Un+1 ≤ Vi, ∥u̇i∥2 < A2 holds.

For the other cases (including the case sin θ = 0), we can also prove ∥u̇i∥2 <
A2 in the same way of evaluation as the two cases above. ⊓⊔

From Theorem 1–4, it is shown that the followers can keep leader semi-
connected and satisfy all of their physical constraints (1).

5 Simulation

We show the simulation results for the proposed navigation method. We set the
number of followers as n = 10, sampling period as 0.001 s, and σi(t) as constants.
We set the follower parameters as shown in Table 1. Here, the leader’s speed
constraints derived from (1) give Un+1 = 0.6000 m/s.

In this simulation, we consider a situation where a leader’s trajectory includes
drastic turns, and confirm that followers satisfy their physical constraints. The
leader moves at its max speed Un+1 [m/s]. The leader starts from X = Y = Z =
0 m, and change its direction at 20 s, 50 s, 120 s, 160 s, and stops at 190 s.

Each agent’s trajectory is shown in Fig. 5(a). The black line corresponds to
the leader’s trajectory. Fig. 5(b), 5(c), and 5(d) show the results of the simula-
tion, each of which corresponds to the values of distance indicators ri(t)/ρi, speed
indicators ∥ui(t)∥/Un+1, acceleration indicators ∥u̇i(t)∥/Ai, and θi for each fol-
lower, respectively. From Fig. 5(b) we can say that all followers successfully keep
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Table 1. Follower parameters

i 1 2 3 4 5 6 7 8 9 10

ρi [m] 9.0 6.0 8.0 8.0 7.0 7.0 8.0 8.0 7.0 9.0

ρ′i [m] 7.0 4.0 5.5 5.5 5.0 5.5 6.0 5.5 5.0 7.5

ρ′′i [m] 4.0 3.0 4.0 4.5 3.0 3.0 4.0 3.5 3.0 4.0

ρ′′′i [m] 2.0 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.0 2.5

Ui [m/s] 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6

Ai [m/s2] 2.0 2.0 1.5 1.5 2.0 2.5 2.0 1.5 2.0 2.5

ki 0.7 -0.9 0.5 -0.3 0.7 0.1 -0.5 -0.9 0.3 -0.7

σi 1 -1 -1 1 -1 -1 -1 1 1 -1

(a) Agents’ path. (b) Distance from the target.

(c) Followers’ speed. (d) Followers’ acceleration.

Fig. 5. Simulation results.

semi-connectivity with their target. In Fig. 5(d), some followers’ acceleration
values get larger values when the leader changes direction (especially at 50 s and
120 s) or stops moving, but Fig. 5(c) and 5(d) show that all followers still satisfy
their physical constraints.

6 Conclusion

This paper proposed a control method for navigating robots with heterogeneous
capabilities by a single leader in 3D space. In the proposed method, agents
create a spanning tree by choosing the target agent to keep connectivity in a
distributed way, and maintain the tree by keeping local connectivity with their
target. This control method is decentralized, as each follower determines its ac-
tion only using the local information. We have mathematically proved that leader
semi-connectivity of the whole swarm is guaranteed for any leader’s motion (un-
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der the leader’s constraint) in 3D space with no obstacles, and confirmed the
effectiveness of the proposed method by numerical simulation. For future work,
we will try to show the proposed method can be applied to the actual environ-
ment by experiment. In addition, we hope that we could improve the control
method for obstacle avoidance or inter-agent collision avoidance.
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