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Neural Text Generation with Artificial Negative Examples

to Address Repeating and Dropping Errors

Keisuke Shirai†, Kazuma Hashimoto∗††, Akiko Eriguchi∗†††, Takashi Ninomiya††††

and Shinsuke Mori†††††

Neural text generation models that are conditioned on a given input (e.g., machine

translation and image captioning) are typically trained through maximum likelihood

estimation of the target text. However, models trained in this manner often suffer

from various types of errors when making subsequent inferences. In this study, we

propose suppressing an arbitrary type of error by training the text generation model

in a reinforcement learning framework; herein, we use a trainable reward function that

can discriminate between references and sentences, containing the targeted type of

errors. We create such negative examples by artificially injecting the targeted errors

into the references. In the experiments, we focus on two error types; repeated and

dropped tokens in model-generated text. The experimental results demonstrate that

our method can suppress generation errors, and achieves significant improvements on

two machine translation and two image captioning tasks.
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1 Introduction

Conditional neural text generation models are expected to generate human-readable text that

accurately describes information from a given source (Sutskever et al. 2014; Vinyals et al. 2015).

These models are trained in a supervised fashion, by providing them with ground-truth symbols

(Williams and Zipser 1989). Conversely, when making inferences (i.e., during testing), the models

usually generate text in a left-to-right fashion; notably, these text generation models suffer from

various generation errors. For example, the models unnecessarily repeat tokens, and will drop

or lose informative tokens. We refer to these two error types as repeating and dropping errors.

In this study, our goal is to design a training framework that could explicitly suppress a specific
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type of generation error.

We focus on a reinforcement learning (RL) framework proposed by Ranzato et al. (2016),

and incorporate a reward function to penalize erroneous text generation during training. The

RL framework has recently been applied to several text generation tasks, and research has been

conditioned on the design of task-oriented reward functions (Wu et al. 2016; Zhang and Lapata

2017; Rennie et al. 2017). More recent studies (Dai et al. 2017; Gu et al. 2018) have proposed

training a discriminative reward function (i.e., a discriminator) in generative adversarial network

frameworks. However, these reward functions are not designed to handle a specific type of

generation error.

To answer our research question, we propose a new RL framework that suppresses an arbitrary

type of generation error. Figure 1 illustrates the overview of our method. First, we train a reward

function that discriminates between references and sentences, containing the targeted type of

error. To train such a discriminator, we introduce artificially generated negative examples by

injecting the specific type of error into the references (Figure 1 (a)). The trained discriminator is

then expected to capture the targeted errors according to Ranzato et al. (2016), a text generation

model learns to generate text while suppressing the specified error type (Figure 1 (b)). In this

study, we consider two error types: repeating and dropping errors. We provide examples of these

error types in a translation task in Table 1. We demonstrate that our method can suppress these

errors and improve the generation performance on two tasks each for translation and captioning.

Fig. 1 The overview of our method.
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Repeating error example

Source 幽門形成術を行わない分節胃切除術は術後のＱＯＬの点で優れていた

Reference Segmental gastric resection without pyloroplasty was superior in terms of QOL.

Model output
It was concluded that segmental gastrectomy without pyloroplasty was superior to

postoperative quality of life(QOL) in terms of postoperative quality of life(QOL).

Dropping error example

Source
ＨＭ１８は加速粒子がＨ，Ｄに限られ，主に１１Ｃ，１８ＦなどＰＥＴ用核種の製造
に利用される

Reference
Particles accelerated in HM18 are limited to H and D, and which are mainly used

for preparation of nuclides for PET such as 11C and 18F.

Model output HM18 is mainly used for the production of positron nuclides such as 11C, 18F, etc.

Table 1 Error generation examples of neural text generation model in a Japanese-to-English translation

task. The tokens with a solid line are repeated by the generation model. The tokens with a

dashed line are dropped from a source sentence at the decoding step.

Our contributions are three-fold.

• We propose a novel RL framework that suppresses text generation errors by specifically

targeting an error type. We show that our method can suppress two types of generation

errors: repeating and dropping errors.

• Our method can be expansively applied to the existing RL framework using other func-

tions, such as GLEU, to further boost its generation performance.

• Our analyses show that the proposed method functions more effectively then traditional

methods do, as the training example size becomes smaller and more generation errors

appear.

2 Neural Text Generation

2.1 Maximum likelihood training

In conditional neural text generation models, an encoder encodes the source-side information

s (e.g., a source sentence in machine translation (Sutskever et al. 2014) or an image in image

captioning (Vinyals et al. 2015)) into an intermediate representation hs, and then, a decoder is

trained to generate a reference r = (r1, r2, · · · , rn) conditioning on hs. To train the model in a

supervised manner, we follow the maximum likelihood estimation (MLE) objective, as

LMLE = −
n∑

j=1

log p(rj |r<j , s). (1)
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In this study, we focus on two generation tasks: machine translation and image captioning.

At the time of inference, the text generation model generates a target-side sentence, t =

(t1, t2, · · · , tn′). When generating the j-th token, the model follows a categorical distribution,

p(tj |t<j , s), to generate a token. To generate a better sentence, we use various decoding tech-

niques, including beam search.

2.2 Reinforcement learning

Next, we describe the RL framework proposed in Ranzato et al. (2016). When training the

text generation model in the RL framework, we consider the generation model as an agent and

the categorical distribution at the j-th decoding step, p(tj |s, t<j), as a policy; here, tj is the j-th

token generated by the model. We then choose a token from the categorical distribution as an

action. After generating a complete target sentence, t = (t1, t2, · · · , tm), REINFORCE (Williams

1992) was used to define the loss function, as follows.

LRL = −
m∑
j=1

{log p(tj |s, t<j)(R(s, t) − b(s, tj))}, (2)

where R is a reward function, and b is a baseline network (Sutton and Barto 2018) that is used

to reduce the variance of the gradients.1 However, using only Equation (2) causes the training to

become unstable (Wu et al. 2016). Thus, the following joint loss function was used.

λMIXED LMLE + (1 − λMIXED) LRL, (3)

where λMIXED is a hyperparameter that controls the strength of the two signals.

2.3 Generation errors

Neural text generation models suffer from various types of errors, such as repeating, dropping,

grammatical, and mis-ordering errors. Among them, repeating and dropping errors have been

most frequently addressed in previous research (Mi et al. 2016; Malaviya et al. 2018; Holtzman

et al. 2020; Welleck et al. 2020). As a preliminary experiment, we trained a neural machine

translation model with the MLE objective on the WAT’15 Workshop on Japanese-to-English

translation tasks (Nakazawa et al. 2016); additionally, we manually checked 100 examples that

were randomly sampled from the translation results on the test dataset. We found that 17

sentences contained repeating errors, wherein some tokens were repeated unnecessarily, and 13

sentences contained dropping errors, wherein some tokens were dropped from their reference

1 Based on Ranzato et al. (2016), we used a linear regression model as the baseline network.
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sentences.2 We also observed that the model trained with the widely used RL approach in Wu

et al. (2016) improve the BLEU scores (Papineni et al. 2002), but did not specifically suppress

the above two types of errors.3 Based on these observations, we aimed to improve the generation

performance of the text generation model by suppressing these two common types of errors.

3 Approach

We propose to suppress the targeted type of errors using the RL framework. Our main

objective was to design an R in Equation (2) that provides negative rewards to the generated

text, if the text contains the targeted type of errors, and positive rewards to the text otherwise.

We used a discriminator to instantiate such an R function. We trained the discriminator by taking

references as positive examples and erroneous sentences as negative examples. We prepared these

negative examples by artificially injecting the targeted errors into the references. We describe

the negative examples in Section 3.1 and the discriminator in Section 3.2.

3.1 Artificial negative examples

Our aim was to prepare a discriminator that is capable of specifically focusing on one error

type. The discriminator requires negative examples, such that they always contain the targeted

type of error. We created such negative examples directly from the references using an error-

generating function, e = Ctype(r); here, e is a sentence containing an error of a specific type, and

r is a reference. We designed Ctype depending on the error type on which we focused. We refer

to e as an artificial negative example (ANE).

In this study, we designed two types of ANEs to handle repeating and dropping errors. Table 2

shows a reference sentence and its negative examples for each of the two types.4 In the following

section, we describe the design of the ANEs.

Artificial repeating sentence We created ANEs for repeating errors by modifying the ref-

erence sentences to repeat their tokens. In general, such repeated tokens do not always appear

consecutively in model-generated sentences; therefore, we propose the Ctype function as follows.

Given a reference r with length n, Crepeat(r) returns an artificial repeating sentence by duplicating

i consecutive tokens, starting from the j-th token, at k randomly selected positions. We randomly

2 These 100 translation examples are sampled from the RNN-based NMT (RNMT) result in Section 5.1. The

error examples in Table 1 were sampled from these translation results.
3 Specific details are provided in Section 5.2.
4 Although the tokens were split at a word-level in this example, we applied our method at the subword-level

in our experiments.
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Reference A man is known by the company he keeps .

Artificial repeating sentence
A man is known by the company by the company he keeps

by the company .

Artificial dropping sentence A man is known he keeps .

Table 2 Examples of artificial negative examples. Three consecutive tokens “by the company” are

repeated in the repeating example, while they are dropped in the dropping example.

chose i from (1, 2, · · · ,mrep), j from (1, 2, · · · , n−i+1), and k from (1, 2, · · · , nrep) for each exam-

ple; here, mrep is the maximum number of consecutive tokens, and nrep is the maximum number

of duplications. The k random positions were selected from (1, 2, · · · , j−1, j+ i−1, · · · , n−1, n)

to avoid breaking the original consecutive tokens. In Table 2, three consecutive tokens “by the

company,” (i = 3) starting from the 5-th token (j = 5), were repeated twice (k = 2), and were

inserted after the 7-th token, “company,” and the 9-th token, “keeps,” of the reference. We set

the hyperparameters (mrep, nrep) = (4, 4). We instead set mrep = n if n was smaller than nrep.

Artificial dropping sentence We created ANEs for dropping errors by modifying the refer-

ence sentences to drop consecutive tokens. Given a reference r with length n, Cdrop(r) returns

an artificial dropping sentence by dropping i consecutive tokens, starting from the j-th token.

We randomly chose i from (1, 2, · · · ,mdrop) and j from (1, 2, · · · , n − i + 1) for each example,

where mdrop is the maximum number of consecutive tokens. In the example that is presented in

Table 2, three consecutive tokens (i = 3), starting from the 5-th token (j = 5), were dropped. We

set the hyperparameter mdrop = 4. This setup allowed us to drop i randomly chosen consecutive

tokens (i = 1, 2, · · · , 4). We instead set mdrop = n if n was smaller than mdrop and larger than

2. Cdrop returns an end-of-sentence token if n equals to 1.

3.2 Discriminator

We trained the discriminator using references and their ANEs. Our discriminator was a binary

classifier that accepted a pair of source s and its target sentence (either r or e = Ctype(r)) as

the input and a real value in [0, 1] as the output. We minimized the following loss function as

follows.

LDIS = −Es,r[log D(s, r)] − Es,e[log(1 − D(s, e))], (4)

where D denotes the discriminator. During the discriminator training, we called Ctype(r) every

time we processed r in a mini-batch. Once the discriminator training was completed, we used the

trained discriminator D as R(s, t) in Equation (2) by freezing its parameters, such that R(s, t)
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could output a reward value for a generated sentence t to train the text generation models.

Our discriminator D comprises two types of encoders: source-side and target-side. The source-

side encoder encodes source-side information s into a fixed-size vector hs. The target-side encoder

receives hs, and encodes the target sentence t = (t1, t2, · · · , tn) into a sequence of representations

Ht = (ht
1, h

t
2, · · · , ht

n). Once Ht is calculated, we compute ĥt as ĥt = maxpool(Ht). The

discriminator finally obtains output y, as

y = fsigmoid(WofReLU(Whĥ
t + bh) + bo).

Here, Wh ∈ Rdh/2×dh , bh ∈ Rdh/2, Wo ∈ R1×dh/2, and bo ∈ R1 are learnable parameters, and

dh is the dimension of ht. fReLU is the rectified linear unit (ReLU), and fsigmoid is the logistic

sigmoid function.

4 Experimental Settings

4.1 Datasets

Regarding machine translation, we conducted experiments on Japanese-to-English (Ja-En)

and German-to-English (De-En) tasks. For the Ja-En task, we used the Asian scientific paper

excerpt corpus (ASPEC) from WAT’15. Specifically, we used train-1.txt and train-2.txt

for training, dev.txt for development, and test.txt for testing, according to Hashimoto and

Tsuruoka (2019). Both Japanese and English sentences were preprocessed as recommended in

WAT’15.5 For the De-En task, we used the datasets provided by WMT’166 as well as all par-

allel corpora (Europarl v7, Common Crawl corpus, and News Commentary v11) for training;

NewsTest2013 for development; and NewsTest2014 for testing.

Regarding image captioning, we conducted experiments on two datasets: MS COCO (Lin

et al. 2014) and Flickr30K (Plummer et al. 2015). For training, developing, and testing, we

followed the splits provided by Karpathy and Fei-Fei (2015).

We used SentencePiece (Kudo and Richardson 2018) to tokenize sentences and build vo-

cabularies. We empirically chose a vocabulary size of 16, 000 for each language in the Ja-En

translation task; 16, 000 for both languages in the De-En translation task, because these lan-

guages share an alphabet (Sennrich et al. 2016); and 2, 000 for the MS COCO and Flickr30K

captioning tasks. The vocabulary also contained three special tokens: ⟨s⟩, which signaled the

5 http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2015/baseline/dataPreparationJE.html
6 http://www.statmt.org/wmt16/translation-task.html
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Dataset
Vocabulary size # examples

Source Target Train Dev Test

WAT’15 16,000 16,000 2,000,000 1,790 1,812

WMT’16 16,000 4,548,880 3,000 3,003

MS COCO —— 2,000 82,787 5,000 5,000

Flickr30K —— 2,000 29,000 1,014 1,000

Table 3 Dataset statistics and vocabulary sizes V .

beginning, ⟨/s⟩, which signaled the end of a sentence, and ⟨unk⟩ for out-of-vocabulary tokens.

Table 3 shows the statistics regarding the different datasets. During training in machine transla-

tion, we removed all empty sentences and any sentence pairs, whose maximum length was longer

than 80, from the training dataset.

4.2 Models

4.2.1 Machine translation

Text generation model For the translation tasks, we used two types of translation models:

RNMT model (Bahdanau et al. 2015) and the Transformer (Vaswani et al. 2017). Our RNMT

model is an attention-based NMT model with a 2-layer bidirectional long short-term memory

(LSTM) (Hochreiter and Schmidhuber 1997) encoder and a 2-layer unidirectional LSTM decoder.

We used the attention mechanism proposed by Bahdanau et al. (2015). The hidden state size

and embedding size were both set to 512.

Our Transformer comprises a 6-layer encoder and 6-layer decoder. The hidden state size and

number of heads were set to 512 and 8, respectively. To add positional information, we used

a positional encoding technique with sine and cosine functions, as proposed by Vaswani et al.

(2017).

Discriminator For the discriminator, we used a 2-layer unidirectional LSTM for the source-

side and target-side encoders, with dh = 512.

4.2.2 Image captioning

Text generation model For the image captioning tasks, we used a simple show-and-tell model

(Vinyals et al. 2015). We used ResNet-152 (He et al. 2016), which was pre-trained on an ImageNet

classification dataset (Russakovsky et al. 2015), as an encoder by freezing its model parameters

to only extract features, and used a 512-dimensional 1-layer unidirectional LSTM as a decoder.

Once an image feature f i ∈ R2048 is extracted, the decoder state ht
0 is initialized as ht

0 = Wif
i+bi;

here, Wi ∈ R512×2048 is a weight matrix, and bi ∈ R512 is a bias vector.
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Discriminator For the discriminator, we projected the feature vector f i into a fixed-size vector

hs as hs = WDf i +bD, where the weight matrix WD ∈ R512×2048 and a bias vector bD ∈ R512 are

learnable parameters. We used a unidirectional LSTM as the target-side encoder, with dh = 512.

4.3 Training strategies

4.3.1 Training discriminators

We used Adam (Kingma and Ba 2014) with an initial learning rate of 1.0 × 10−3 and a

weight decay at a rate of 1.0× 10−6. We assessed its accuracy on the development dataset every

1, 000 iterations, and halved the learning rate when the accuracy worsened. The training was

concluded after the learning rate was halved five times. We chose the best models based on those

with the best accuracy with the development dataset. For the development dataset, we created

one negative example for each reference sentence.

4.3.2 Training text generation models

The training of the text generation models can be divided into two steps: a pre-training step

with MLE loss Equation (1) and reinforcement learning step with RL loss Equation (3) and the

pre-trained model, following the steps outlined in Wu et al. (2016).

In the pre-training step, we used Adam with an initial learning rate of 1.0 × 10−3 and a

weight decay with a rate of 1.0 × 10−6, unless stated otherwise. Each mini-batch contained 128

examples. We assessed its perplexity on the development dataset every 1, 000 iterations, and

halved the learning rate if the perplexity worsened. We finished the training when we halved the

learning rate five times. For the Transformer, we used AdamW (Loshchilov and Hutter 2019)

with a weight decay with a rate of 1.0 × 10−4. When using AdamW, we scheduled the learning

rate as follows.

lr =

lrini + step× lrmax−lrini
Nwm

if step ≤ Nwm

lrmax × η(step) otherwise
, (5)

where

η(step) = 0.5 + 0.5 × cos(π × step−Nwm

Nwm ×Ncl
).

This scheduling comprised two steps: a linear warmup step from lrini to lrmax, for the first Nwm

iterations, and a cosine annealing step from lrmax to 0, for Nwm ×Ncs iterations. We used em-

pirically tuned hyperparameters as (lrini, lrmax, Nwm, Ncs) = (5.0×10−6, 5.0×10−4, 4, 000, 24).

Each mini-batch contained 512 examples for the Transformer. For the pre-training step, we
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clipped the gradients (Pascanu et al. 2013) with a value of 1.0, and used the label-smoothing

technique (Szegedy et al. 2016) with a rate of 0.1. We chose the best models based on the lowest

perplexity with the development dataset.

During the reinforcement learning step, we used a stochastic gradient descent with momentum.

For the translation tasks, we tuned the learning rate of each model with a momentum rate of 0.9.

For the captioning tasks, we consistently used a learning rate of 5.0 × 10−2 with a momentum

rate of 0.9. During this step, we extracted 20, 000 iterations to fine-tune the parameters of the

generation model. We continued to use the same gradient clipping and label-smoothing techniques

as outlined above. Each mini-batch contained 64 examples. In particular, we carefully tuned

λmixed in Equation (3).7 We report the inferences of our model as generated by a beam search

with a width of 10.

4.4 Evaluation metrics

One goal of this study is to suppress the frequency of repeating and dropping errors. To

quantitatively evaluate these errors in the model’s output, we used REP and DROP scores

(Malaviya et al. 2018). In this section, we first describe these two metrics in detail, and then,

introduce our task-specific metrics.

4.4.1 REP score

The REP score calculates the number of n-gram repetitions that are included in a model-

generated sentence t, given its reference r, as follows.

REP(r, t) =
σ(t, r)∑

w∈V r(ww) +
∑

s∈V n
r
r(s)

,

where

σ(t, r) =λ2

∑
s∈V n

r ,t(s)≥2

max{0, t(s) − r(s)}

+ λ1

∑
w∈V

max{0, t(ww) − r(ww)}. (6)

V n
r is the set of all n-grams included in the reference. r(ww) and r(s) indicate the frequency of

consecutive 1-grams w and n-grams s of the reference, respectively, and t(ww) and t(s) are those

of the machine-generated sentence t. λ1 and λ2 are hypeparameters.

7 Specifically, we searched the values in a coarse-to-fine fashion in {0.5, 0.3, 0.1, 7.5×10−2, 5.0×10−2, 2.5×10−2,

1.0× 10−2, 7.5× 10−3, 5.0× 10−3, 2.5× 10−3, and 1.0× 10−3}.
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The REP score is defined for each n-gram separately; however, in this study, we propose using

an extended REP (eREP) score that evaluates consecutive 1-gram and n-grams (n = 2, 3, 4).

The eREP score is calculated as follows.

eREP(r, t) =
σ(t, r)∑

w∈V t(ww) +
∑

s∈V n
t
t(s)

,

where

σ(t, r) =
4∑

n=2

λn

∑
s∈V n

t ,t(s)≥2

max{0, t(s) − r(s)}

+ λ1

∑
w∈V

max{0, t(ww) − r(ww)}.

V n
t is the set of all n-grams included in the machine-generated sentence t. We weight the repeti-

tions of n-grams equally (λn = 1). For the eREP score, a lower value is better.

4.4.2 DROP score

For the machine translation tasks, the DROP score calculates the number of source tokens

that are not covered (i.e., included) in the model-generated sentences. A word alignment tool is

used to identify which source tokens are aligned with their referent, and to calculate the ratio

of those not aligned with the generated text (hypothesis). In other words, this study aims to

evaluate how well the source information is covered, and to assess if the DROP score is defined

as follows:

DROP(cref, chyp) = 1 − 1

|cref|
∑
i∈cref

in(i),

where cref and chyp represent the set of source token indices in the source-reference and source-

hypothesis alignments, respectively. in(i) is a function that returns 1 if an index i is included in

chyp and 0 otherwise. For the DROP score, a lower score is better, as is the case for the eREP

score.

For the captioning tasks, however, the DROP score was not applicable, because no source

sentence exists. For our experiment, we instead used ROUGEL (Chen et al. 2015) to evaluate

the number of dropping errors that were found in the model’s output. In ROUGEL, contrary

to the DROP score, a higher score is better. During our preliminary experiment, to assess

the relationship between the DROP score and ROUGEL, we calculated the Pearson correlation

coefficient between ROUGEL and DROP on the RNMT’s WAT’15 Ja-En result. We confirmed

a negative moderate correlation (−0.430) between these two metrics, suggesting that we can use
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ROUGEL, instead of the DROP score, for the captioning tasks.

4.4.3 Task-specific metrics

We used BLEU and METEOR (Malaviya et al. 2018) for the translation tasks, and BLEU

and CIDEr (Vedantam et al. 2015) for the captioning tasks. For the captioning tasks, we used

publicly available code8 to calculate the BLEU and CIDEr scores. Note that, for the captioning

tasks, we report BLEU-1,2,3,4.

4.5 Model configurations

– MLE is the baseline model trained by the MLE loss in Equation (1).

– RL-DREP, RL-DDROP are our proposed models trained by the RL framework in Equation (3)

with our proposed discriminator. The text generation model parameters were initialized using

the MLEbaseline. RL-DREP and RL-DDROP were trained to suppress repeating and dropping

errors with discriminators DREP and DDROP, respectively.

5 Results

We report the scores in the range of [0, 100]. The symbol † follows a score if the system

produced a significant improvement against MLE (p < 0.05). In our experiments, a statistical

significance test was performed using the paired bootstrap resampling method (Koehn 2004).

5.1 Suppressing the targeted errors

In this section, we present the results obtained using the discriminator to suppress repeating

and dropping errors. For the RL-DREP and RL-DDROP models, we chose the best models based

on the scores from the development datasets that we would like to improve (e.g., the eREP score

was used for RL-DREP).

We first present the accuracy of our discriminators because the discriminator plays a key role

in our method. Table 4 reports the binary classification accuracy for the development datasets.

DREP achieved over 96% accuracy for all of the tasks, whereas the accuracy of DDROP was not

as high as that of DREP. A possible reason for this is that identifying the dropped tokens in a

sentence is an inherently more difficult task than identifying the n-gram repetitions.

Table 5 shows the main results from the translation tasks. RL-DREP consistently improved

8 https://github.com/tylin/coco-caption
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its eREP scores, with the exception that the MLE-based Transformer in the De-En task had

much less room for improvement. RL-DDROP also consistently improved its DROP scores for

both the RNMT and Transformer models. When receiving rewards from the discriminator,

namely DREP and DDROP, the text generation models learned to suppress the repeating and

dropping errors. Note also that RL-DREP tended to increase the BLEU and RL-DDROP tended

to increase the METEOR, with some exceptions. For the former, we consider that reducing the

number of repetitions using RL-DREP led to higher n-gram precision; thus, the model was able

to achieve higher BLEU scores. For the latter, this is presumably because METEOR is based on

unigram precision and recall, and thus, places more weight on recall than precision. Therefore,

suppressing the dropping errors and restoring dropped tokens using RL-DDROP contributed to

the improvements in the METEOR score.

Table 6 shows the results from the image captioning tasks. Again, note that RL-DREP signifi-

cantly improved the eREP scores, leading to better BLEU-1,2,3,4 scores for both the COCO and

Flickr30K tasks. Alternatively, RL-DDROP did not achieve significant improvements in ROUGEL.

One possible reason arises from the diversity of the text in the captioning task (Dai et al. 2017).

Task DREP DDROP

WAT’15 Ja-En 96.34 77.60

WMT’16 De-En 96.77 73.08

MS COCO 99.14 87.25

Flickr30K 98.63 82.17

Table 4 Accuracy of the discriminator on the development dataset.

Task Model eREP (↓) DROP (↓) BLEU (BP) METEOR

WAT’15 Ja-En

RNMT

MLE 2.78 15.03 25.28 (1.000) 31.31

RL-DREP 2.53 † 15.03 25.50 (1.000) 31.19

RL-DDROP 2.67 14.63 † 25.24 (1.000) 31.34

Transformer

MLE 2.00 12.46 28.58 (1.000) 33.09

RL-DREP 1.83 † 12.24 † 28.93 † (1.000) 33.27 †
RL-DDROP 2.03 11.95 † 28.75 (1.000) 33.45 †

WMT’16 De-En

RNMT

MLE 1.09 3.87 24.65 (1.000) 29.71

RL-DREP 0.78 4.07 24.60 (0.993) 29.57

RL-DDROP 0.89 3.59 † 24.56 (1.000) 29.87 †

Transformer

MLE 0.30 3.45 27.19 (0.973) 31.64

RL-DREP 0.31 3.36 † 27.39 † (0.973) 31.72 †
RL-DDROP 0.31 3.17 † 27.35 (0.979) 31.78 †

Table 5 Results on the translation tasks.
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Task Model eREP (↓) ROUGEL BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

MS COCO

MLE 7.42 49.80 64.71 47.09 34.41 25.69 82.77

RL-DREP 6.51 † 49.95 66.16 † 48.21 † 35.35 † 26.54 † 83.06

RL-DDROP 7.59 49.63 64.20 46.36 33.69 25.02 82.02

Flickr30K

MLE 9.25 43.35 60.52 41.78 28.64 19.47 41.24

RL-DREP 5.51 † 42.53 62.90 † 43.80 † 30.29 † 20.76 40.75

RL-DDROP 6.80 † 43.54 61.74 43.20 29.93 20.63 42.29

Table 6 Results on the captioning tasks.

That is, identifying whether the dropping error occurred in a sentence would be an easy task for

the discriminator; however, generating such tokens would be difficult for the generation model.

We also observed that the balancing factor λmixed was preferred to be smaller for RL-DREP

than for RL-DDROP. This indicates that the generation model relies more on the reward from

DREP than from DDROP, which explains why RL-DREP produced more expected results than

RL-DDROP in the captioning tasks.9

We show examples of the generation performance of the RNMT-based models in the WAT’15

Ja-En translation task in Table 7. In Example (A), RL-DREP successfully suppressed the repeated

tokens that were found in MLE and generated a non-repetitive sentence. In Example (B), RL-

DDROP satisfactorily restored the dropped tokens in MLE, and thus, generated a more informative

sentence.

We report the computation time of each model on the translation tasks in Table 8. For all

the experiments, we used an Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz and a single GPU;

NVIDIA GeForce GTX 1080 Ti. Note that the pre-training step (MLE) required 50,000 iterations

for the RNMT and 100,000 iterations for the Transformer, whereas the reinforcement learning

step required 20,000 iterations for both models.

5.2 Incorporating an off-the-shelf reward function

In Section 5.1, we report that our proposed discriminator can suppress the targeted type

of errors. We investigate how the performance of existing reward functions compare with our

discriminators to further improve the generation performance by incorporating them. Taking

GLEU (Wu et al. 2016) as an example of existing rewards, we propose the following joint reward

function.

9 For example, we considered 5.0× 10−3 and 5.0× 10−3 for RL-DREP, and 0.1 and 5.0× 10−2 for RL-DDROP

on the COCO and Flickr30K tasks, respectively.
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Example (A)

Source
Ｉの主なものにシメチジン，ラニチジン，ファモチジンなどがあり，１日１回投与と２
回投与で治癒率に差を認めない。

Reference
There are Cimetidine, Ranitidine, Famotidine, etc. in I, and differences are not recog-

nized at therapeutic ratio in first 1 time administration and 2 time administration.

MLE

There were cimetidine, ranitidine, famotidine, etc. in the main thing of I, and the

differencewas not recognized at 1 time administration and 2 time administration,

and the difference was not recognized.

RL-DREP
There were cimetidine, ranitidine, famotidine, etc. in the main thing of I, and the

difference was not recognized at 1 time administration and 2 time administration.

Example (B)

Source その結果，電気光学特性として，Ｖ１０＝１１．８Ｖ，Ｖ９０＝１８Ｖを得た

Reference The electro‐ optical property obtained was V10=11.8V and V90=18V.

MLE As a result, V10=11.8V and V90=18V were obtained.

RL-DDROP
As a result, V10=11.8V and V90=18V were obtained as the electro‐ optic

characteristics.

Table 7 Generation examples of the RNMT-based models on the Ja-En translation task. The un-

derlined tokens with solid lines represent the repeating error. The underlined tokens with a

dashed line are tokens MLE failed to generate.

Task Model
Time [h]

MLE RL-DREP RL-DDROP

WAT’15 Ja-En
RNMT 7.63 9.42 9.45

Transformer 85.16 20.61 22.24

WMT’16 De-En
RNMT 9.45 10.27 10.56

Transformer 56.13 24.14 24.41

Table 8 Computation time on the translation tasks.

R(s, t) =λRLR
′(s, t)

+ (1 − λRL)GLEU(t, r), (7)

where R′ is one of our reward functions, and GLEU is the GLEU score. GLEU is known to be

effective in improving the BLEU score (Wu et al. 2016). GLEU(t, r) calculates the minimum

of the generated sentence t’s n-gram precision and recall against the reference r. λRL is a

hyperparameter that controls the strength of the two signals. In this section, we use RL-GLEU to

refer to the model that uses only the GLEU as the reward and RL-GLEU-DREP (or RL-GLEU-

DDROP) to refer to the model that uses both the GLEU and its corresponding discriminator. We
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chose the best models based on the best BLEU scores from the development datasets.

Table 9 shows the results from the translation tasks. In the Ja-En task, RL-GLEU contributed

to the improvement in the BLEU, DROP, and METEOR scores. Because the GLEU computed

a recall against the reference, RL-GLEU consequently generated more informative tokens and

improved those scores. Thus, RL-GLEU-DDROP showed less improvement on its DROP score

compared to previous experiments. RL-GLEU-DREP further improved the eREP, particularly

when RL-GLEU deteriorates the eREP score. In the De-En task, the Transformer-based RL-

GLEU-DREP and RL-GLEU-DDROP showed almost the same results as RL-GLEU. This might

be due to the large number of training examples; we will discuss the possible effect of the training

data size in Section 5.4.

Table 10 shows the results from the image captioning tasks. In both the COCO and Flickr30K

tasks, RL-GLEU significantly improved the BLEU and CIDEr scores, but generated more repe-

titions as indicated by the eREP scores. RL-GLEU-DREP achieved further improvements on the

BLEU scores by suppressing the occurrence of repeating errors. RL-GLEU-DDROP, alternatively,

did not improve the performance of RL-GLEU. This may be because it is difficult to suppress

dropping errors even when using both the GLEU and discriminator’s signals, as discussed in

Section 5.1.

Task Model eREP (↓) DROP (↓) BLEU (BP) METEOR

WAT’15 Ja-En

RNMT

MLE 2.78 15.03 25.28 (1.000) 31.31

RL-GLEU 2.84 13.37 † 25.73 (1.000) 32.19 †
RL-GLEU-DREP 2.65 13.81 † 25.83 † (1.000) 31.94 †
RL-GLEU-DDROP 2.96 13.13 † 25.76 † (1.000) 32.28 †

Transformer

MLE 2.00 12.46 28.58 (1.000) 33.09

RL-GLEU 2.02 11.11 † 28.67 (1.000) 33.77 †
RL-GLEU-DREP 1.94 11.30 † 28.99 (1.000) 33.75 †
RL-GLEU-DDROP 1.96 11.05 † 28.92 (1.000) 33.86 †

WMT’16 De-En

RNMT

MLE 1.09 3.87 24.65 (1.000) 29.71

RL-GLEU 0.65 † 2.76 † 24.57 (1.000) 30.08 †
RL-GLEU-DREP 0.59 † 2.86 † 24.70 (0.998) 30.01 †
RL-GLEU-DDROP 0.68 2.85 † 24.72 (1.000) 30.11 †

Transformer

MLE 0.30 3.45 27.19 (0.973) 31.64

RL-GLEU 0.29 3.08 † 27.13 (0.973) 31.74 †
RL-GLEU-DREP 0.30 3.20 † 27.20 (0.970) 31.69 †
RL-GLEU-DDROP 0.29 3.10 27.09 (0.974) 31.69 †

Table 9 Results of the joint models with GLEU on the translation tasks. Note that the MLE results

are the same in Table 5.
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Task Model eREP (↓) ROUGEL BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

MS COCO

MLE 7.42 49.80 64.71 47.09 34.41 25.69 82.77

RL-GLEU 10.65 51.99 † 68.83 † 52.05 † 38.28 † 28.06 † 87.87 †
RL-GLEU-DREP 7.96 52.09 † 70.31 † 53.09 † 39.01 † 28.74 † 89.11 †
RL-GLEU-DDROP 9.04 51.99 † 69.06 † 51.97 † 38.21 † 28.21 † 89.41 †

Flickr30K

MLE 9.25 43.35 60.52 41.78 28.64 19.47 41.24

RL-GLEU 5.65 † 44.08 † 63.02 † 44.41 † 30.79 † 21.19 † 41.54

RL-GLEU-DREP 5.32 † 43.97 63.62 † 44.86 † 31.12 † 21.34 † 41.27

RL-GLEU-DDROP 5.05 † 43.82 63.42 † 44.50 † 30.67 † 20.95 † 41.10

Table 10 Results of the joint models with GLEU on the captioning tasks. Note that the MLE results

are the same in Table 6.

5.3 Comparison with related studies

In the field of machine translation, there are two domains of research that share similarities

with our research direction: (i) methods based on coverage and (ii) methods based on the gen-

erative adversarial network (GAN). The coverage-based method (Mi et al. 2016; Tu et al. 2017;

Malaviya et al. 2018) uses attention history to reduce the number of repeating and dropping

errors. Alternatively, the GAN-based method (Gu et al. 2018; Yang et al. 2018a) utilizes ad-

versarial training with a discriminator to train the generation model, to generate more natural

sentences. In this section, we conduct further experiments to compare the performance of these

alternate methods with that of ours. In this section, we focus on the RNMT model.

5.3.1 Comparison with the coverage-based method

We first conducted experiments using the coverage-based model. We decided to use the

coverage vector (Tu et al. 2017), which stores the attention history and uses it in the decoding

process to more effectively utilize untranslated source words. We used neural network-based

coverage, which uses RNNs to model the coverage vector, and set the coverage dimension as 10

following the procedures outlined in (Tu et al. 2017). Although Tu et al. (2017) used a gated

recurrent unit as an activation function, we used LSTM, and empirically confirmed that LSTM

performs well in this context. We refer to this model as CovVec.

Table 11 shows the results of this comparison. For both the two translation tasks, we can

see that CovVec successfully improved the eREP and DROP scores from the MLE results, as

expected. Compared to Table 5, the eREP scores were close to those of RL-DREP (2.53 in the

Ja-En task and 0.78 in the De-En task), and the drop scores are reasonably higher than those of

RL-DDROP (14.63 in the Ja-En task and 3.59 in the De-En task). However, the CovVec did not

produce any significant improvements in the BLEU and METEOR scores in our experiments,
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Task Model eREP (↓) DROP (↓) BLEU (BP) METEOR

WAT’15 Ja-En

MLE 2.78 15.03 25.28 (1.000) 31.31

CovVec 2.51 14.97 25.22 (1.000) 31.25

GGD 2.88 14.98 25.41 (1.000) 31.48 †

WMT’16 De-En

MLE 1.09 3.87 24.65 (1.000) 29.71

CovVec 0.86 3.79 24.66 (1.000) 29.58

GGD 0.87 3.74 † 24.75 (1.000) 29.79 †

Table 11 Results of the coverage-based and GAN-based models. Note that the MLE results are the

same in Table 5.

although RL-DREP in the Ja-En task achieved an improvement in BLEU. We consider that

this improvement results from the following fact. By fine-tuning the parameters of MLE, our

model was able to concentrate on suppressing the targeted type of errors for erroneous sentences,

and continue to generate the same sentences for other, non-problematic sentences. When we

checked the translations of RL-DREP and MLE, we found that RL-DREP tended to generate

nearly identical translations of MLE for some source sentences, supporting our view.

5.3.2 Comparison with the GAN-based method

Next, we conducted experiments on the GAN-based model. We decided to use the Gumbel-

Greedy decoding (GGD) method (Gu et al. 2018), which bridges the generation model and

discriminator using the Gumbel-Softmax estimator (Jang et al. 2017). The hyperparameters

(Ng, Nd) in (Gu et al. 2018) were set to (1, 1). We refer to this model as GGD.

The results of this comparison are shown in Table 11. For BLEU and METEOR, the GGD

consistently improved both scores from the MLE results. Furthermore, the GGD had worse the

eREP scores, but improved the DROP scores in the Ja-En task; conversely, in the De-En task, the

GGD improved both scores. This indicates that the GGD generation model did not always learn

to suppress both repeating and dropping errors. One possible reason for this is that the type of

error that the discriminator handled can differ meaningfully, as the frequency of each error type

included in machine-generated sentences changes depending on the task and generation model.

5.4 Varying training set size

We have confirmed that our proposed method performs effectively to suppress the targeted

type of errors on the WAT’15 Ja-En translation task, as well as the COCO and Flickr30K cap-

tioning tasks, but is less effective in the WMT’16 De-En task, especially during joint training

with the GLEU. One possible reason is that the size of the training dataset in the De-En transla-
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tion task was sufficiently large to train the language model well and suppress the targeted errors

caused by data sparseness. We hypothesize that our method would be more effective when the

training dataset is small; as in such a situation, the traditional language model would not be

trained well, and would produce more errors.

To verify this hypothesis, we conducted experiments by varying the training dataset size

exponentially (1/1, 1/2, 1/4, 1/8) for the WMT’16 De-En translation task. For the sake of

simplicity, we changed only the training dataset size, and set the same hyperparameters as those

used in Section 5.2. Figure 2 shows the results of this comparison. Note that the 1/1 case is the

same as that in Section 5.2. Figure 2 (a), (b), and (d) show that the results meet our expectation;

namely when the size of the training dataset is smaller, our strategy is more effective with respect

to the eREP, DROP, and BLEU scores. In Figure 2 (c), in contrast, RL-GLEU-DREP is less

effective because the Transformer language model appears to be sufficiently strong to suppress

most of the repetitions, even with the smallest training dataset.

Fig. 2 The results on the WMT’16 De-En translation task when varying the training size exponentially.
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5.5 Sampling parameters for generating artificial negative examples

In the previous sections, we trained the discriminator with ANEs, and negative examples were

created based on the parameters (i, j, k) described in Section 3.1. However, there is no guarantee

that the generated errors matched the distribution nor tendency of the errors produced by the

generation model in practice; thus, there is a chance that the default parameter settings for

the negative examples might be inappropriate, and tuning the parameters for each model might

obtain further improvement. To examine this, we conducted an additional experiment wherein

we trained the discriminator, and used ANEs with the parameters sampled from the statistics of

the actual generation errors.

We tested this on the WAT’15 Ja-En task using the RNMT model. First, we sampled 100

examples from the translation results of the development dataset. We then examined the phrase

length, starting index of the errors, number of repetitions or droppings of the phrase, and their

parts-of-speech. We found 10 repeating and 28 dropping errors. The statistics of these errors

are shown in Table 12. We then trained the discriminator with ANEs by sampling the phrase

length i in Section 3.1 from the statistics. For the repeating errors, we also sampled the number

of repetitions (k in Section 3.1) from the statistics. For the starting index j in Section 3.1, we

continued to sample the value uniformly, as there was no tendency or regularity for the starting

index of the errors. We present the experimental results of the generation models trained with

the discriminators in Table 13. We add “sampling” to the model names to indicate the enhanced

models introduced in this section. Compared with the results of RL-DREP and RL-DDROP from

Table 5, training the discriminator with ANEs specially tuned for the model has little effect

on the overall performance of the generation model. One possible reason for this is that the

discriminator trained with the negative examples without sampling parameters already had the

ability to capture the errors of the generation models, and thus, performed sufficiently well to

discriminate the errors during the reinforcement learning step.

6 Related work

Training neural text generation models with a discriminator has recently been studied in GAN-

based methods (Dai et al. 2017; Gu et al. 2018; Yang et al. 2018b). These studies utilized the

generative adversarial framework (Goodfellow et al. 2014; Arjovsky et al. 2017) to train sentence

generation models to generate more natural, human-like sentences. Although our framework

can also be considered as such a generator-discriminator framework, there are two points that

differentiate our framework from the GAN-based methods. First, our generator can focus on
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Phrase length Starting index
# of repetitions

or droppings
Part-of-speech

Repeating error

2(4), 3(3), 1(2), 7(1)

5(1), 8(1), 12(1), 14(1),

17(1), 19(1), 22(1), 23(1),

24(1), 27(1), 33(1), 34(1)

1(9), 3(1)
Noun(8), Adverb(1),

Verb(1)

Dropping error

1(13), 3(5), 2(4), 4(4),

9(1)

1(4), 5(3), 10(3), 19(3),

24(2), 26(2), 4(1), 8(1),

12(1), 13(1), 14(1), 15(1),

17(1), 18(1), 28(1), 31(1),

32(1)

1(26), 2(1)

Noun(15), Adjective(5),

Adverb(3), Conjunction(3),

Numeral(2)

Table 12 Statistics of errors sampled from 100 translation results of the RNMT model on the WAT’15

Ja-En task. The number in the parentheses represents the frequency.

Task Model eREP (↓) DROP (↓) BLEU (BP) METEOR

WAT’15 Ja-En

RL-DREP 2.53 15.03 25.50 (1.000) 31.19

RL-DREP+ sampling 2.46 15.75 25.34 (1.000) 30.92

RL-DDROP 2.67 14.63 25.24 (1.000) 31.34

RL-DDROP+ sampling 2.65 14.65 25.16 (1.000) 31.31

Table 13 Results

suppressing a targeted type of error, as the discriminator learns to discriminate that error type

from the references with artificially generated erroneous sentences. The other is that our ANEs

definitely contain errors, whereas the machine-generated sentences in the GAN-based methods

can include correct sentences, as they are sampled from the generation model.

Several studies have used negative examples to train sentence generation model. Focusing

on the use of repetitions, Welleck et al. (2020) proposed the technique of unlikelihood training,

wherein the training objective was to decrease the probability of generating the token that had

appeared in the previous context. He and Glass (2020) collected negative examples from the

model generations, and trained the model to no longer generate them. One advantage of our

method is that our discriminator is trained independent of the sentence generation model; con-

sequently, our method does not require any extra steps to collect negative examples from the

sentence generation model.

Coverage-based methods in machine translation have also aimed to suppress the occurrence of

repeating and dropping errors by focusing on the coverage information regarding the source words

(Mi et al. 2016; Tu et al. 2017; Malaviya et al. 2018). In abstractive summarization, Suzuki and
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Nagata (2017) attempted to address repeating errors by controlling the output words with the

estimated upper-bound frequency of words to be generated. Although our method is not limited

to these two error types, there are two obstacles to overcome for addressing different types of

errors than the ones assessed here. First is the problem of classifying the error type, which can

be as difficult as the actual generation of outputs containing the various types of errors with a

certain frequency. Hence, detecting and classifying all error types would seem to be a difficult

task that is likely to fail. The other main obstacle is designing the corresponding ANEs for these

other error types. This would also be difficult if the errors are difficult to produce based on the

reference sentences that we relied on in this study.

Automatic post-editing aims to edit machine-translated sentences to fix errors, writing styles,

and so on (Freitag et al. 2019; Gu et al. 2019). The task is similar to ours, in that it considers how

model-generated sentences should be improved. However, there are two significant differences.

First, researchers studying automatic post-editing typically use a machine translation model and

post-editing model independently, whereas we consistently trained one model to generate fewer

erroneous sentences. Second, our model explicitly focused on one specific generation error type,

which was not feasible in the previous work.

7 Conclusion

We propose a reinforcement learning-based method that directly suppresses a targeted type

of error, unlike conventional methods. Our method uses a discriminator that captures a specific

type of error, and this discriminator is trained with artificially generated negative examples. We

empirically demonstrate that our approach can effectively reduce the number of repeating and

dropping errors. In future work, it will be of interest to explore the application of our method to

source-side, unannotated data.
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