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a b s t r a c t

Visual properties that primarily attract bottom-up attention are collectively referred to as saliency. In
this study, to understand the neural activity involved in top-down and bottom-up visual attention,
we aim to prepare pairs of natural and unnatural images with common saliency. For this purpose,
we propose an image transformation method based on deep neural networks that can generate new
images while maintaining the consistent feature map, in particular the saliency map. This is an ill-
posed problem because the transformation from an image to its corresponding feature map could
be many-to-one, and in our particular case, the various images would share the same saliency map.
Although stochastic image generation has the potential to solve such ill-posed problems, the most
existing methods focus on adding diversity of the overall style/touch information while maintaining
the naturalness of the generated images. To this end, we developed a new image transformation
method that incorporates higher-dimensional latent variables so that the generated images appear
unnatural with less context information but retain a high diversity of local image structures. Although
such high-dimensional latent spaces are prone to collapse, we proposed a new regularization based
on Kullback–Leibler divergence to avoid collapsing the latent distribution. We also conducted human
experiments using our newly prepared natural and corresponding unnatural images to measure overt
eye movements and functional magnetic resonance imaging, and found that those images induced
distinctive neural activities related to top-down and bottom-up attentional processing.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the remaining enigmas in the mammalian visual sys-
em is the mechanisms in dynamic control of its processing
esources; the animal visual system is equipped with an efficient
ystem to extract useful information from a tremendous amount
f visual information input to the retina, that is, visual atten-
ion. Elucidating visual attention mechanisms is also important
or developments of human harmonic systems; for example, the
etection of driver’s awareness/unawareness of pedestrians is
erious for assuring the security of semi-automatic mobile sys-
ems (Dollar, Wojek, Schiele, & Perona, 2011), and general object
etection with head-mounted cameras is an important issue for
nlarging the applicability of agile robots to a variety of industrial
cenes (Jiang et al., 2021; Weng et al., 2021). For awake animals,
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nc-nd/4.0/).
there are presumably two streams of attentional processing. One
is bottom-up processing, which is assumed to process the char-
acteristic portions of images or image-series with high priority.
Saliency maps have been developed for comprehensively repre-
senting the image regions to attract mostly bottom-up attention
as heat maps (Harel, Koch, & Perona, 2006; Itti, Koch, & Niebur,
1998). The other is top-down processing, which is assumed to
process the contexts and scenes by checking them in light of
prior knowledge and past experiences of individuals. There is
a series of studies that discussed the relationship between the
saliency map and voluntary eye movements (Itti, 2005, 2006;
Veale, Hafed, & Yoshida, 2017; Yoshdia et al., 2010). Since the
two kinds of processing above are mixed in the awake animal’s
visual processing, however, it has been a long-term challenge
to dissociate them and then to examine them distinctively in
research on mammalian visual processing.

Keeping the above background in mind, the purpose of this
study is to develop an image transformation method for prepar-
ing a set of image pairs that have the same visual saliency map
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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ut are natural on one side and unnatural images with minor
ontext information on the other side. If the saliency map well
epresents the bottom-up attention, the generated and unnatural
mage would exhibit comparable or even better consistency with
he eye movements in an awake and overt environment, but have
ess association with the top-down context. That is, we assume
he top-down attention would be reduced to a large extent when
e look at unnatural images with destroyed context information.
he validity of this assumption was examined by behavioral
xperiments with human subjects. After checking the validity, we
erformed human experiments with functional magnetic reso-
ance imaging (fMRI); the comparison between fMRI-based brain
ctivities when looking at natural and unnatural images provides
s with an insight into neural bases involved in top-down and
ottom-up attention, respectively.
Although some prior works proposed to estimate the saliency

ap of a given natural image, based on deep learning tech-
iques (Kruthiventi, Ayush, & Babu, 2017; Pan et al., 2017), there
as been no study to propose an inverse transformation from a
aliency map to natural/unnatural images. Since the transforma-
ion from an image to its saliency map is many-to-one, due to the
ower dimensionality of the saliency map space, image genera-
ion constrained on a specific saliency map is a typical ill-posed
roblem. This observation would make the generation of multiple
mages that share the same saliency map seemingly easy, but
t is not so in practice, because generated images are prone to
ose their diversity due to mode collapse in general generative
rocesses, or too complicated ones due to the high-dimensional
rtifacts usually introduced during the inverse process. Such gen-
rated images would not work for our purpose; we expect the
mage transformation transforms from a natural image to an
nnatural one such that local structures therein are destroyed
o enable human observers not to understand the context of the
riginal images. To obtain such pairs, the diversity in terms of
ocal structures of images is of our focus.

To achieve diversity in the image generation, existing studies
ntroduced perturbations to the network, with stochastic masking
uch as Dropouts (Isola, Zhu, Zhou, & Efros, 2017) and stochastic
ampling at the level of intermediate representations (Kingma
Welling, 2013). Among those, BicycleGAN (Zhu et al., 2017)

uccessfully generated pairs of images with different styles, us-
ng stochastic sampling based on a combination of variational
utoencoder (VAE) (Kingma & Welling, 2013) and generative
dversarial network (GAN) (Goodfellow et al., 2014). The same
uthors utilized a technique of latent regressor (LR) to realize
diverse transformation between the image pair. Although this
ethod is suitable for image generation with different styles,

t could not be used for our purpose, because its skip connec-
ions (Ronneberger, Fischer, & Brox, 2015) worked for making
ocal structures consistent between the pair of images by preserv-
ng the spatially local image features. This is an advantage when
ransforming styles or touches, which are mostly global features
f images, but is a disadvantage when generating unnatural im-
ges in which local structures such as local shapes or colors must
e collapsed to destroy context information.
In the present study, we developed a new image transfor-

ation method based on deep neural networks (DNNs), that
ransforms a given natural image to an unnatural and decon-
tructed image, while their saliency maps are kept very similar.
onsidering possible applications to examining the human vi-
ual attentional system, we needed to emerge diversity in local
tructures of generated images. To this end, we proposed a new
ullback–Leibler (KL) divergence-based regularization to prevent
he latent distribution of relatively large degrees of freedom
DOFs) from being collapsed. In the existing implementation of
he KL divergence-based regularizer, it was averaged over mul-
iple DOFs. In our implementation, however, we introduced a
225
Fig. 1. Aim of the study. Our main objective is to develop a deep learning-based
image transformation method to generate a deconstructed image from a given
natural image, both with the consistent visual saliency map. In the upper panel,
an example input image (left) and the corresponding generated image (right)
are shown. In the lower, visual saliency maps of the images in the upper, each
estimated by fθ , are shown.

regularization term with high DOFs intact, which was effective
in diverse image generation.

Fig. 1 exemplifies our image transformation results. To demon-
strate the utility of the generated images by our deconstruction
method, we performed human behavioral experiments including
measurements of overt eye movements, to see if our method
could generate artificial images that were unnatural enough but
simultaneously associated with comparable eye movements.
Moreover, we performed non-invasive brain imaging experiments
with functional magnetic resonance imaging (fMRI), in which a
different set of subjects passively viewed the images and we
compared the brain activities during the natural and unnatural
(generated) image presentation. The experimental results sug-
gested that our DNN-based image transformation could be a new
tool to elucidate the distinctive networks in the human visual
system between bottom-up and top-down attention.

The major contributions of our study are as follows:

• A new concept of image transformation that transforms
some features and maintains others. In particular, the trans-
formed features are context and local structure, while the
maintained feature are saliency maps. To realize this idea,
a new loss function is introduced that encourages the im-
age generator (deconstructor) to output an image whose
saliency map is similar to that of the original image.

• Another methodological contribution is a device to enrich
the local variability in terms of color contrasts and shapes
by enlarging the latent space to a three-dimensional tensor.
This latent space expansion allows the generator to produce
a variety of fake images with different local colors and
shapes.

• The applicability of our new methodology was examined
in several experiments with human subjects. The behav-
ioral experiments suggested that the deconstructed images
evoked eye movements comparable to or even better than
the original natural images, but the context was not per-
ceived. The fMRI experiments suggested a possible dissoci-
ation of the functional basis between bottom-up and top-
down attention.

The remaining parts are organized as follows. In Section 2,
we introduce related works that are important for presenting our
method. In Section 3, we propose our method of deep learning-
based image deconstruction with maintained saliency map. Hu-
man experimental methods are also described. In Section 4, we
evaluate our deconstructed images in a quantitative manner. In
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ddition, we show human behavioral experimental results, as
ell as human brain imaging results. Section 5 is devoted to
onclusion of our work.

. Preliminaries and related works

.1. Saliency map

A saliency map is a heat map that visualizes the salient regions
n images or movies, such to attract mainly bottom-up attention.
here have been a number of studies to present the way to
onstruct saliency maps (Harel et al., 2006; Itti et al., 1998;
an et al., 2017). Among those, Itti and colleagues presented a
omputational model to obtain a saliency map, in which low-
evel image/movie features such as color, contrast, orientation,
nd motion direction are integrated (Itti et al., 1998). The usage
f Gaussian pyramid with different spatial scales allowed their
ethod to extract locally salient regions whose feature values
re different from those of their surroundings. These basic oper-
tions correspond to the functions of simple cells that work as
irst-order filters and complex cells that work as second-order
ilters, which are assumed to consist of mammalian early visual
ystems (Anzai, Ohzawa, & Freeman, 1999; Ohzawa & Freeman,
986). Since the saliency map well reproduces eye gaze dis-
ribution (fixation map) of humans, it has been recognized as
epresentation of salient regions that attract eye gaze (Itti, 2005).
n this study, we used the Itti’s computation model registered
n the GBVS toolbox (Harel et al., 2006), which exhibited good
onsistency with the fixation map (KL = 1.03), according to
IT300 benchmark (Bylinskii et al., 0000).

.2. SALICON and SalGAN

SALICON is a large-scale dataset containing pairs of natu-
al images of various scenes and their corresponding saliency
aps annotated by humans (Jiang, Huang, Duan, & Zhao, 2015).
ach saliency map was estimated based on trajectories of cursors
perated by multiple human annotators registered in Amazon
echanical Turk. The dataset was designed for machine learning
ompetitions; it consisted of 10,000 pairs of training data, 5000
airs of verification data, and 5000 natural images for testing
with no saliency map).

SalGAN is a GAN-based estimation method of saliency maps
Pan et al., 2017), which was trained using the SALICON dataset,
nd showed comparable performance with those by other model-
ased methods in the MIT300 benchmark (Bylinskii et al., 0000).

.3. Stochastic image generation

Here, we introduce the existing approaches to diverse image
eneration or transformation.

.3.1. Pix2Pix
Pix2Pix is a well-known method for image-to-image transla-

ion; that is, an image could be generated from an input label
mage (Isola et al., 2017). One typical application of Pix2Pix is
o generate a painted image from an input image that only in-
ludes the outline of the image. This paining problem is ill-posed,
ecause what color would be used for a texture surrounded by
utline is not unique. Pix2Pix used two techniques to solve such
n ill-posed image generation problem. One is to use Dropout to
enerate diversity in the image generation, and the other is to
mploy U-net-based generator to make the generated image to
ell maintain the structures of the input label image, in which
ulti-scale skip connections are effective.
 c

226
2.3.2. Variational autoencoder
Variational autoencoder (VAE) is a stochastic generation model

that introduces latent space to the intermediate representation
(Kingma & Welling, 2013). It has an encoder–decoder architec-
ture, in which the encoder reduces dimensionality into an inter-
mediate representation that also includes a latent space, while
the decoder reconstructs the input to compensate for the stochas-
tic factor in the intermediate representation. To avoid excessive
randomness, VAE encourages the posterior of the latent variable
not to diverge from the standard normal distribution (with mean
0 and variance 1). This idea is good for stability in learning,
whereas the stochastic image generation by the decoder may
sometimes work harmfully for generating clear images.

2.3.3. Posterior collapse
A phenomenon called posterior collapse occurs especially

when the KL regularization term works more powerfully than the
primary objective like the minimization of reconstruction errors,
so that the whole optimization process falls into a local opti-
mum (He, Spokoyny, Neubig, & Berg-Kirkpatrick, 2019; Huang,
Tan, Lacoste, & Courville, 2018). In such a local optimum, the
posterior distribution of the latent variable p(z|x) becomes the
ame as the prior distribution p(z), so that the latent variable z
orks as just a random number to obey the standard normal dis-
ribution, regardless of the input x. This causes input information
o be neglected when the decoder attempts to reconstruct the
nput. Because of this, balancing the regularization term and the
bjective term has been a handcraft issue.
Moreover, in the conventional implementation, the KL regu-

arization term was averaged over the latent variables which may
ave multiple degrees of freedom (DOFs) and over training sam-
les in mini-batches (Kingma & Welling, 2013). Since this aver-
ged regularizer encourages the latent variables to take correlated
alues with each other, the image generation/transformation may
ack diversity, leading to difficulty in decoder learning.

When the mean µ has a large variation dependent on the
nput, and the variance σ2 is close to 0, in the latent space of
he intermediate representation, the reconstruction error in the
ecoder would be small; in this extreme case, VAE just reduces
o autoencoder (AE). The KL regularization term can be seen to
ork against this model reduction, and hence work to facilitate

earning under a good tuning of the balancing hyperparame-
er (Bowman et al., 2015). Several studies have attempted to
void the issue of posterior collapse, by, for example, carefully
esigning loss functions (Xu & Durrett, 2018), quantizing the
atent space (van den Oord, Vinyals, et al., 2017), and so on.

.3.4. VAEGAN
VAEGAN is a combination of VAE and GAN, each of which

akes up for their respective weak points (Larsen, Sønderby,
arochelle, & Winther, 2015). GAN (Goodfellow et al., 2014; Rad-
ord, Metz, & Chintala, 2015) generates relatively clean images
hrough indirect learning based on adversarial losses, in which a
air of networks, a generator and a discriminator, compete with
ach other, so that the latter works as the regularizer for the
ormer. However, GAN is prone to lose diversity due to mode
ollapse and may suffer from instability due to the gradient
limination. This defect can be eased by combining GAN with
AE. On the other hand, blurring of generated images, which is a
ajor issue of VAE, can be eased by GAN.

.3.5. BicycleGAN
BicycleGAN is an image transformation method in which pre-

ransformed and post-transformed images are conditioned on
heir individual label images. The architecture of BicycleGAN

onsists of VAE, GAN, and LR (Latent Regressor) (Zhu et al., 2017).
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Fig. 2. Our architecture to generate deconstructed images with maintained saliency. It consists of three kinds of networks. The encoder network (red) is similar to
that in VAE. The map generator network (green) is an encoder–decoder network to transform from an input image x to an output saliency map, whose intermediate
epresentation is zθ . There are two generators (purple), one is to generate a reconstructed input image, Gφ , and the other is to generate a transformed image, Gψ .
he two purple modules, Gφ and Gψ , share their weights, i.e., they are the same. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
R was introduced to maintain the bijection (one-to-one) rela-
ionship between two latent variables incorporated into a pair
f VAEs. The loss function for the LR part was added to the
oss functions of VAE and GAN. This combined loss function was
xpected to work well for generating diverse images from a pair
f random numbers sampled in the dual latent space. BicycleGAN
sed VAE and GAN to generate realistic images, while LR was also
ncorporated to generate more diverse images. Consequently, this
ethod exhibited excellent image transformation performance
ith good naturalness and diversity, whose balance-taking had
een thought as of a typical dilemma.
Although all the above methods have shown excellent perfor-

ance in the image-to-image transformation, they have mostly
ocused on transformation of styles or touches, which are global
eatures over the whole image, whereas local image structures
ike shapes or colors have been maintained. Such an image trans-
ormation in the level of global features was realized by main-
aining the local features; for example, BicycleGAN used skip-
onnections (Ronneberger et al., 2015) that transmit spatially
ocal features extracted by the lower-layer networks to higher-
ayer networks. This technique was indeed effective in learning
he global structures of images, though they cause a lack in local
iversity in the generated images.

.4. Techniques for improving image generation

We here describe a couple of techniques to improve the qual-
ty of image generation.

.4.1. Feature matching
If there is a couple of networks, like in many image transfor-

ation methods, one simple technique to keep good correspon-
ence between the two networks is to minimize the difference in
he output between their corresponding intermediate layers (Sal-
mans et al., 2016). Here, the intermediate layers are expected
o represent image features. By measuring loss in the level of
mage features, instead of that in the level of input/output pixels,
he image transformation or image discrimination can be robust
gainst positional deviation, so that the generated images are less

lurred.

227
2.4.2. Inception module
A conventional idea has been like: the deeper, the better,

in the fields of DNN-based image processing. However, there is
an opposite idea; that is, we can employ multiple and parallel
small-sized network modules, called inception modules, each
consisting of multiple convolution layers and a pooling layer, and
an integration over the outputs from those modules becomes the
whole-network output (Szegedy, Ioffe, Vanhoucke, & Alemi, 2017;
Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). This makes it
possible to enlarge the network effective size without increasing
its depth, thus expecting enlargement in the image generation
capacity while keeping efficiency in training the whole network.

3. Method

3.1. General learning scheme

Fig. 2 depicts the proposed architecture for image transforma-
tion. It consists of three major modules, saliency map generator,
image reconstructor, and image deconstructor, which in total
generate a reconstructed color image x̂ ∈ R3×H×W and a trans-
formed color image y ∈ R3×H×W , given an input color image x ∈

R3×H×W , where we expect x̂ and y to have similar saliency maps.
H and W denote the height and width of the input, reconstructed,
and transformed images. This architecture enables us to obtain a
diversely deconstructed but still clear image which has a similar
saliency map to that of the input image.

The saliency map generator fθ is a module that estimates
its visual saliency map based on the input image x and is also
used to estimate the visual saliency map of the stochastically
generated image y. Although there is a number of definitions
of visual saliency map, we used the one presented by Itti and
colleagues (Itti et al., 1998), because of its general recognition in
the field of computational neuroscience. Fig. 3 shows its encoder–
decoder architecture, and the whole network was trained by min-
imization of adversarial loss and feature matching loss, Eq. (1).

The middle layer representation zθ ∈ RC×H/22×W/22 of the
saliency map generator fθ was expected to include essential fea-
tures for generating saliency maps, and then used for augmenting
the inputs to the generator modules, Gφ and Gψ . The size of zθ
was comparable to that of the latent variable in the image recon-
structor, i.e., zφ ∈ R2C×H/22×W/22 , to allow it to have information
sufficient for reconstructing the input image. C is the number of
channels (in our particular implementation, C = 8).
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Fig. 3. Saliency map generator. This module outputs a visual saliency map,
given an input image. It has been pre-trained based on the supervised dataset,
consisting of pairs of a natural image taken from the SALICON dataset and the
corresponding saliency map obtained by the method by Itti and colleagues (Itti
et al., 1998). Note that the sole encoder part was used in the network in Fig. 2
for generating deconstructed images.

3.2. Training details

Here, we describe the loss functions used for training the three
odules; saliency map generator fθ = {Eθ ,Gθ }, image reconstruc-

or fφ = {Eφ,Gφ}, and image deconstructor fψ = {Gψ }. Note that
he image generator is represented by a sole decoder Gψ , which
s actually the same as the decoder of the image reconstructor Gφ .

.2.1. Saliency map generator
This module transforms an input image into its saliency map,

nd is trained to minimize the following loss function:

θ = LFM
θ + λAdvθ LAdv

θ , (1)

here λAdvθ is a pre-determined constant, a hyperparameter, to
alance the two loss terms. They are defined by

FM
θ (Eθ ,Gθ ,Dθ ) = E

[∑
l

∥Dl
θ (x, t) − Dl

θ

(
x, xmap

)
∥2

]
, (2)

Adv
θ (Eθ ,Gθ ,Dθ ) = E

[
− log

(
Dθ

(
x, xmap

))]
, (3)

where x and t are a natural image taken from SALICON and its
corresponding saliency map calculated by the Itti’s method (Itti
et al., 1998), and xmap ∈ R1×H×W is the output of the saliency map
generator for x, i.e., xmap = fθ (x). Dθ

(
x, xmap

)
denotes the output

of the discriminator, which attempts to discriminate between a
real pair (x and t), whose ideal output is one, and a fake pair
(x and xmap), whose ideal output is zero. Dl

θ denotes the feature
vector of the lth layer of the discriminator Dθ . Note that the
intermediate representation, zθ , of fθ was used as inputs for fφ
and fψ .

3.2.2. Image reconstructor
The loss function of the image reconstructor module fφ is given

by

Lφ = LFM
φ + λKLLKL

φ + λAdvφ LAdv
φ , (4)

which consists of three terms, LFM
φ , LKL

φ and LAdv
φ . λKL and λAdvφ are

redetermined constants (hyperparameters).
The first term, LFM

φ , is the feature matching loss, given by

FM
φ (Eφ,Gφ,Dφ) = E

[∑
l

∥Dl
φ(x) − Dl

φ

(
x̂
)
∥2

]
, (5)

here Dl
φ denotes the feature vector of the lth layer of the

iscriminator Dφ , and x̂ is the output of the image reconstructor
hen x is input, i.e., fφ (x, zθ ). Here, the feature matching loss is
sed as a reconstruction error between the input image x and the
econstructed image x̂.
228
The second term, LKL
φ , is a regularization term for the latent

variable, given below, which is different from the conventional
KL regularization term.

LKL
φ (Eφ) = DKL

(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)

+DKL
(
N (E[σ2

i ], V[µi]) ∥ N (α, (1 − α)I)
)
. (6)

ere, N (0, I) denotes a standard normal distribution. This stan-
ard normal prior has been used in many existing VAE-based
mage transformation (Zhu et al., 2017). Its benefit mainly comes
rom the calculation efficiency; the constraint loss in terms of the
L-divergence can be calculated in a closed form based on the
ean and variance that are outputs of the VAE encoder. We can
se a different distribution as a latent prior. In the case of general
rior, however, it would be difficult to perform backpropagation-
ased training of the VAE encoder, because we need to evaluate
he difference in the higher order statistics between the prior and
he empirical distribution represented by the VAE encoder. To
void such a difficulty, we simply introduced the standard normal
rior to the VAE latent space. See Section 3.4 for more details.
The third term, LAdv

φ , is the adversarial loss, given by

Adv
φ (Eφ,Gφ,Dφ) = E

[
− log

(
Dφ

(
x̂
))]
, (7)

where Dφ
(
x̂
)
is the discriminator output when the reconstructed

image x̂ is the input. Here, the ideal output of Dφ for an input x̂
is zero. This loss was effective in generating clearer images.

3.2.3. Image deconstructor
Since there is no ground truth for a deconstructed image,

we trained the image deconstructor module, the sole generator,
indirectly as to minimize the following loss function:

Lψ = λlatentLlatent
ψ + λmapLmap

ψ + λAdvψ LAdv
ψ , (8)

where λlatent, λmap and λAdvψ are the predetermined constants (hy-
perparameters). Note that λlatent is not necessarily one, because
we need to balance Lφ (Eq. (4)) and Lψ (Eq. (8)) when training
the same generator, Gφ = Gψ .

The first term, Llatent
ψ , is the latent reconstruction error, given

by

Llatent
ψ (Eφ,Gψ ) = E

[
∥ε − Eφ (y) ∥2

]
, (9)

where Eφ (y) is the output of the encoder of the image reconstruc-
tor for y, which is in turn the output of the image deconstructor
Gψ (ε, zθ ). This term encourages the consistency of the latent
variable ε when going through a network consisting of the gener-
ator Gψ and Eφ , but alleviates mode collapse and helps a diversity
of the image deconstructor. Although this loss function is defined
by Eφ , only the parameters of the image deconstructor part Gψ
were updated based on Eq. (9), as in BicycleGAN.

The second term, Lmap
ψ , is the loss between the saliency map

for the input image x and that for the stochastically generated
image y, measured in terms of binary cross-entropy (BCE):

Lmap
ψ (Gψ , Eθ ,Gθ ) = E[−{fθ (x) log (fθ (y))

+ (1 − fθ (x)) log(1 − fθ (y))}]. (10)

The third term, LAdv
ψ , is the adversarial loss, given by

LAdv
ψ (Gψ ,Dψ ) = E

[
− log

(
Dψ (y)

)]
, (11)

where Dψ (y) is the output of the discriminator Dψ for the input

y; because y is a fake image, its ideal output would be zero.
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.2.4. Discriminators
In addition to the three major modules, we employed three

iscriminators for improving three generated images, xmap, x̂ and
for a given input image x. The individual discriminator was

rained to discriminate if the input was a real image (or image
air) or a fake image (or image pair).
Adv
θ = E [log (Dθ (x, t))] + E

[
log

(
1 − Dθ

(
x, xmap

))]
, (12)

LAdv
φ = E

[
log

(
Dφ (x)

)]
+ E

[
log

(
1 − Dφ

(
x̂
))]
, (13)

LAdv
ψ = E

[
log

(
Dψ (x)

)]
+ E

[
log

(
1 − Dψ (y)

)]
. (14)

s in BicycleGAN, the discriminators Dφ and Dψ are independent,
nd not conditioned by the label image (here, t).

.3. Latent matrix

In BicycleGAN, the latent variables were vectors of relatively
mall dimensionalities, so that they could include little positional
nformation. This caused that latent variables tended to carry
lobal information of the images like styles and touches, and
hen, the output images likely shared local information like con-
exts and local structures with the input images. As a result,
t was difficult for generated images to have a wide variety, in
hich local shapes/colors and then context information had been

argely changed. In this study, we made it easy for the latent
ariables to have positional information, changing the latent vari-
bles from vectors to feature maps of three-dimensional matrix
tensor), each of which is called a latent matrix. In addition, we
id not use a fully-connected layer to convert a latent matrix
nto a one-dimensional vector; in the existing VAE learning, a
ully-connected layer to convert a latent vector into another low-
imensional vector was employed (Zhu et al., 2017) and then
ositional information of the latent vector was diminished.
Since it is difficult to quantitatively evaluate unnaturalness of

enerated images, on the other hand, it is also difficult to set the
oss function for the latent matrix. We then assumed that images
ith large complexity in its local shapes and colors are of high
nnaturalness.

.4. Processing for the minibatch of KL regularization terms

The increase in the component number of the loss function
akes it difficult to balance by means of heuristic tuning of
yperparameters, often leading to the phenomenon of posterior
ollapse with a relatively strong KL regularization.
Let the latent variable obey a D-dimensional normal distribu-

ion:

(µi, σ2
i I) i = 1, 2, . . . , N (15)

hich is assumed to be independent among samples in a mini-
atch. Here, N is the number of samples in this minibatch (in our
mplementation, N = 10), while µi and σ2

i are the mean and
ariance of the latent variable, respectively, for the ith sample.
ote here that the mean and variance of each latent variable are
ssumed to be random variables conditioned on the input image,
lthough they are in practice deterministic variables and outputs
f the encoder neural network.
The conventional KL regularization term is given by[
DKL(N (µi, σ2

i I) ∥ N (0, I))
]
, (16)

here E denotes the expectation over the empirical distribution
n the minibatch.

It is obvious that the regularization based on Eq. (16) en-
ourages all the latent variables in the minibatch to approach
ndividually to the standard normal distribution; with poor hy-

erparameter tuning, it causes posterior collapse, leading to loss a
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f information associated with the input image. To avoid this, we
eveloped a new regularizer by considering the variance of the la-
ent variables, according to the reparameterization trick (Kingma
Welling, 2013):[
N (µi, σ2

i I)
]

= E
[
(µi + εi · σ i)2

]
−

(
E [(µi + εi · σ i)]

)2
= V [µi] + E

[
σ2
i

]
, (17)

here εi is a D-dimensional random number sampled from the
-dimensional standard normal distribution, while E and V de-
ote the expectation and variance over the empirical distribution
f samples in the minibatch. Note that the left-hand side just
enotes the empirical variance of the latent variables.
Since we have assumed that the latent variables obey nor-

al distributions with different means and different variables,
heir marginal distribution over the minibatch becomes an N-
component normal (Gaussian) mixture distribution. Under the
simplification that this Gaussian mixture distribution can be ap-
proximated by a single-mode normal distribution, the KL regular-
ization term becomes:

DKL
(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)
. (18)

On the other hand, a too strong regularization based on Eq. (18)
results in V[µi] → 0, E[σ2

i ] → 1 or V[µi] → 1, E[σ2
i ] → 0.

To avoid such posterior collapses, we introduced a new regu-
larization term, given by Eq. (19) with a pre-determined hyper-
parameter 0 < α < 1, which encourages the individual latent
distributions not to overlap with each other.

Although the second term in Eq. (19) is just a heuristic, thanks
to this term, there is no need to take a careful balance between
the reconstruction error and the KL regularization term. As a con-
sequence, the new regularization term has significantly reduced
the time and effort for tuning the hyperparameter.

DKL
(
N (E[µi], V[µi] + E[σ2

i ]) ∥ N (0, I)
)

+ DKL
(
N (E[σ2

i ], V[µi]) ∥ N (α, (1 − α)I)
)
. (19)

In comparison to the well-established ridge (L2) regulariza-
ion, we found the new regularization, Eq. (19), exhibited
ncreased diversity and improved sharpness of the generated
mages.

.5. Implementation details

The inception module was used for each layer of the networks.
e used PatchGAN (Isola et al., 2017) for the discriminators Dφ

nd Dψ , and also used a technique called minibatch standard
eviation. The minibatch standard deviation (Karras, Aila, Laine,
Lehtinen, 2017) is a technique to introduce perturbations to the

ast layer of the discriminators, based on the standard deviation
ver the minibatch. Without this perturbation, discriminators can
asily identify fake inputs, because the diversity of fake images
s often collapsed leading to peaky distribution that is quite
ifferent from the real image distribution.
The saliency map generator fθ was pre-trained using the su-

ervised dataset of pairs of a natural image taken from the
ALICON dataset and the corresponding saliency map obtained by
he Itti’s method (Itti et al., 1998), and used with the fixed weights
hen training the entire architecture for image deconstruction.
ll images, including those used for pretraining of the saliency
ap generator fθ , were downscaled to the half in height and
idth, i.e., to the size of 96 × 128 (pixels). When training the
aliency map generator, we used saliency maps of 96 × 128
pixels) for supervised outputs; they were obtained by applying a
ownscaling after generating higher resolution saliency maps of
92 × 256 (pixels) for the original high resolution natural images

ccording to the Itti’s method (Itti et al., 1998). Each building
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lock was composed of 3 inception modules and 2 pooling layers;
or example, it had five modules: the first inception module, the
irst up-sampling (down-sampling) block, the second inception
odule, the second up-sampling (down-sampling) block, and the

hird inception module. The last layer of each encoder reduced
he dimensionality from 256 to 16, so the size of the latent
ariables zφ was set to [N, 16, 24, 32]. Here, N is the size of
he minibatch (N = 10), and the size of the intermediate rep-
esentation zθ of the saliency map generator fθ was set to 8.
urther details of the network architecture are presented in the
ppendix A.
We set the hyperparameter values to λAdvθ = 0.1, λKLφ = 10,

Adv
φ = 0.1, λlatentψ = 0.1, λmap

ψ = 0.001 and λAdvψ = 0.01. Since
AN sometimes causes loss in diversity due to the mode collapse,
e set the hyperparameters so that the discriminator becomes
lightly stronger than the generator. The minibatch size was set
o 10 and the learning rate to 0.0003, and Adam (Kingma & Ba,
014) was used to optimize the network parameters.

.6. Human experiments

To demonstrate the utility of our image transformation-based
ethodology for investigating the neural mechanisms involved

n top-down and bottom-up visual attentions in awake ani-
als/humans, we conducted human behavioral and non-invasive
rain imaging experiments.
All human experiments described in this section were done

n accordance with the Declaration of Helsinki (World Medi-
al Association, 1964) and approved by the two ethics commit-
ees of Graduate School of Informatics, Kyoto University (Kyoto,
apan) and Advanced Telecommunications Research Institute In-
ernational (ATR) (Kyoto, Japan). The fMRI experiment was also
pproved by the safety committee of ATR. All subjects were vol-
nteers, had normal or corrected-to-normal vision and provided
ritten informed consent to participate in the experiment.
First, we conducted a human behavioral experiment of a vi-

ual discrimination task to examine the degree of naturalness
f the original natural images and the artificially generated im-
ges. We obtained 10,000 pairs of natural images from the SALI-
ON database and their corresponding transformed images with
aliency map maintained, and then selected the top 400 image
airs with the smallest mean squared error (MSE) between the
riginal natural image x and its reconstructed image x̂. These
00 pairs, 800 images in total, were used as experimental stim-
li. Eight subjects observed each image on a computer display
or three seconds and responded by pressing a computer key
f they understood the context of the displayed image. Each
ubject performed two sessions consisting of 200 natural and
00 transformed/generated images. Any pair of the generated
nd the corresponding natural image was not presented in the
ame session, and the order of the images was randomized but
ommon across the eight subjects.
Next, in a separate behavioral experiment, eye movements

ere measured while another set of human subjects viewed
atural and generated images. Thirteen subjects (eight females,
ges 20∼29), who had no ocular (color) dysfunctions and normal
r corrected-to-normal sight (more than 0.5 vision) were par-
icipated. Each still image was presented for 4 s on a 23.6-inch
onitor (Iiyama ProLite B2409HDS, Mouse Computer Co. Ltd.,
okyo, Japan), and the subjects watched it overtly at a distance of
.6 m from the display in a dark room. A chin rest was used and
he visual angle of each image was 32.5◦. Eye movements were
easured with 120 Hz by an LED-based eye tracker (Tobii Pro X3-
20, Tobii Technology, Tokyo, Japan). Each subject participated
n eight sessions, each of which consisted of 12 natural images,
2 generated images, 12 shuffled images, and 12 shuffled images
 d
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whose spatial frequency amplitudes were maintained from those
of the original natural images (hereafter referred to as ‘amp’
images). Each shuffled image was created by pixel-wise shuffling
from the original natural image, but the color of each pixel was
not changed, and each amp image was obtained by applying
additional constraints so that the image was similarly shuffled but
the amplitude of each spatial frequency band was maintained at
that of the original natural image (Fourier transform was applied
for normalization: the maximum and minimum amplitudes were
0 and 1, respectively). The order of presentation of the four cat-
egories of images was random but common across the subjects.
When evaluating how well the saliency map of a specific image
represents its associated eye movements, we first obtained the
fixation density map (FDM) by applying kernel density estimation
using non-isotropic Gaussian kernels to the histogram of eye gaze
points of 13 subjects as they viewed the image, and then took the
KL divergence between the FDM and the normalized saliency map
(corresponding to a probabilistic density map).

To further demonstrate the utility of our image deconstruction
method, a functional magnetic resonance imaging (fMRI) exper-
iment was conducted to measure brain activity while subjects
viewed the four categories of still images. As the image stimuli,
we selected 96 image pairs from the 400 image pairs used in
the first behavioral experiment, which had the smallest mean
squared error (MSE) between the original natural image x and its
reconstructed image x̂. Five healthy subjects (four females, ages
1 ∼ 48) participated in the experiment. At the beginning of

each trial, a fixation cross was displayed for 2–4 s, followed by
one of four different visual stimuli (natural, generated, shuffled,
or amp) flashing at 2.5 Hz for 4 s Each subject performed 8
sessions, each session consisting of 12 natural, 12 generated, 12
shuffled, and 12 amp image trials and 4 test trials. The order of
trials was random but common across the five subjects. The test
trials were introduced to ensure that the subjects were engaged
in the experiment; a natural image with an additional red cross
was presented and subjects were instructed to press a button.
Results showed that only one subject failed to respond to the test
image twice (2/32, error rate: 6.3%), while the other four subjects
responded to the test image 100% correctly.

Neuroimaging data was acquired with a 3T Siemens Prisma
scanner (Siemens Healthcare GmbH, Erlangen, Germany) with
the standard 64 channel phased array head coil. Whole-brain
functional images were collected with a multiband echo EPI se-
quence (TR = 1000 ms, TE = 30 ms, flip angle = 50, field of
view = 100 mm), and 66 slices (voxel size 2× 2× 2.5 mm) were
cquired per volume. High resolution T1-weighted structural im-
ges (TR = 2250 ms, TE = 3.06 ms, voxel size 1×1×1 mm) using
tandard MPRAGE sequence were also obtained.
All imaging analyses were conducted using SPM12 (Welcome

epartment of Cognitive Neurology, UCL, London, UK) in MATLAB
MathWorks Inc., Natick, USA). For preprocessing, all functional
mages were realigned and resliced to the reference functional
olume, coregistered to the individual high-resolution anatomical
mage, spatially normalized to the standard East Asian Brain
emplate with a resample voxel size of 2×2×2 mm, and spatially
moothed with a Gaussian kernel filter (FWHM, 8 mm). After
reprocessing, we conducted statistical imaging analysis using a
eneralized linear model (GLM).
We examined BOLD signals when the subjects were observing

he natural and three kinds of unnatural images using a boxcar
egressor for each condition, aligned to the onsets of the image
resentation trials with 4 s. duration. Although the unnatural
ondition included the generated, shuffled, and shuffled with the
aintained spatial frequency amplitude (amp) images, we inte-
rated the last two classes, because there was no characteristic

ifference in evoked fMRI activities between the two classes. Each



K. Fujimoto, K. Hayashi, R. Katayama et al. Neural Networks 155 (2022) 224–241

y
m

0
c
n

4

4

r

h
c
c
c
i

p
t
i
i
a

Fig. 4. Images generated by the proposed method. The left and right panels are for different input images; images used for training the image deconstructor (left)
and those not used for the training (right). On each row, the images are as follows: the input natural image x, the reconstructed image x̂, the deconstructed image

which is the result of the transformation to an unnatural image while maintaining the visual saliency, the saliency map of the input image xmap , and the saliency
ap of the deconstructed image ymap , from the left column to the right column.
Fig. 5. Diversity in the deconstructed image. Even when the same input was provided to the trained network (the left panel, a pair of a natural image and its
saliency map), it could generate a variety of deconstructed images (the right panel, they well maintained the input saliency map).
boxcar function was then convolved with the canonical hemo-
dynamic response function and entered as an orthogonalized re-
gressor into a standard generalized linear convolution model. The
six motion parameters produced during realignment were also
used as regressors in the imaging analysis to account for residual
effects of scan-to-scan head motions. Due to the small sample
size, we applied a multi-subject conjunction analysis (FWE, p <
.05) to localize the brain voxels that were distinctively activated,
ommonly over the subjects, during the observations between the
atural, generated, and the other (shuffled + amp) images.

. Results

.1. Quality of the generated images

Fig. 4 presents images generated by the proposed method. The
econstructed images x̂ in the second column well reconstructed
the input image x overall, while some details were distorted. In
the deconstructed images y in the third column, on the other
and, local shapes and local colors in the input images were well
ollapsed, while keeping their saliency maps ymap in the fifth
olumn similar to the original ones xmap shown in the fourth
olumn. These observations were consistent regardless of the
nput image being in the training data or in the validation data.

Fig. 5 demonstrates the diversity in the deconstructed images
roduced by our method. Since the latent distribution is close
o the standard normal distribution, a variety of deconstructed
mages could have been obtained by the latent variable with
ts sufficient stochasticity. The global arrangement of the objects
greed with that of the input image, whereas the local structures
231
Table 1
Cosine similarity (CS) between the saliency map predicted by our saliency map
generator (SMG) and those obtained by the Itti’s method. We examined the
Itti’s saliency map with two different spatial resolutions; one is of high spatial
resolution of 192 × 256, and the other is low spatial resolution of 96 × 128.
We used 5000 natural images registered in the validation dataset in SALICON.
Since this matrix of CS is symmetric and the diagonal elements should be the
unity, we signified unnecessary entries by the mark –.

SMG Itti(192 × 256) Itti(96 × 128)

SMG – 0.960 ± 0.019 0.898 ± 0.050
Itti(192 × 256) – – 0.921 ± 0.042
Itti(96 × 128) – – –

and colors of the deconstructed images were fairly distant from
those of the input image, which was preferable for our objective.

The local colors were blurred and cluttered. This would have
occurred because of the relatively large DOFs of the latent space
we used. Since the mapping from the original colored object
space to the color-based saliency space is many-to-one, there
was an innumerable number of possible local color assignments
to produce the same color-based saliency map. This character is
also preferable for us because the object color is one of the most
informative features for understanding the context of the whole
image.

Because the performance of our image deconstructor depends
on that of the saliency map generator (SMG), generalization ca-
pability of the SMG not only for natural images but also for gen-
erated (deconstructed) images was examined. Table 1 shows the
results. Although the cosine similarity (CS) between the saliency
map predicted by our SMG and that by the Itti’s method with the
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Fig. 6. Generated images after applying ablations to the proposed method. Input images (left-most panel), generated images by our proposed method (‘ours’,
second-left panel), our method but with the conventional KL regularization term (Eq. (19)) (‘conventional KL term’, second-right panel), and our method but trained
without the map loss function (Eq. (10)) (‘without Lmap

ψ ’, right-most panel).
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Table 2
Fréche Inception Distance (FID) and Cosine Similarity (CS) between saliency
maps. Each FID score represents the one over 5000 test images. Note that those
test images were not used for training each of the three image transforma-
tion/generation methods. In the case of the CS score, the mean and standard
deviation (SD) over 5000 test images are shown. Since the FID score is given for
each method, there is no SD shown. The results for a lower image resolution of
48 × 64 are also shown. In the lower spatial resolution case, our method’s CS
was significantly improved over those of its ablated ones, while in the higher
spatial resolution case of 96 × 128, its improvement over that without the map
oss function was incremental.
Model FID CS

48 × 64 96 × 128 48 × 64 96 × 128

Ours 269.16 322.95 0.931 ± 0.020 0.908 ± 0.029
Conventional KL term 125.46 176.00 0.968 ± 0.012 0.950 ± 0.019
Without Lmap

ψ 264.19 319.11 0.913 ± 0.026 0.903 ± 0.030

low resolution of 96 × 128 (pixels) was slightly lower, the general
oncordance between the saliency map predicted by our SMG and
hat by the Itti’s method was satisfactorily high, suggesting the
eliable generalization of the SMG. The relatively low CS between
he SMG-based saliency map and that of the Itti’s with the low
esolution occurred, possibly because of the underlying resolution
iscrepancy between the two saliency maps. Actually, the size
f the SMG output was 96 × 128, while the Itti’s low-resolution
aliency map was obtained by downscaling after getting a high-
esolution saliency map by inputting a high-resolution natural
mage. Note that we used images and saliency maps of the con-
istent resolution of 96 × 128 (pixels) in this study; this was due
o the restriction of the computer resources.

To evaluate the efficiency of our method, we measured the
omputational time required for the image deconstructor to learn
single input image in terms of FLOPs (number of floating-point
perations). In our case of the input image size of 96 × 126, the
aliency map generator, encoder, decoder and the discriminator,
equired 8.4 GFLOPs, 3.85 GFLOPs, 4.60 GFLOPs, and 0.97 GFLOPs,
espectively. When we used NVIDIA DGX A100 (40 GB), it took
pproximately 8 h for learning with 30 epochs and approxi-
ately 5 mins to transform 10,000 natural images by the trained
etwork.
There are two important components in our proposed method;

ne is the newly presented KL regularization term LKL
φ (Eq. (19),

onventional methods used Eq. (16)), and the other is the map
oss function Lmap

ψ (Eq. (10)) used to keep the saliency to be main-
ained in the generated image. Here, we performed an ablation
tudy to examine how well the two components above worked.
Fig. 6 displays the generated images by our proposed method,

ur method but with the conventional KL regularization term,
232
nd our method but trained without the map loss function. When
e used the conventional KL regularization (Eq. (16)) instead of
ur newly developed KL regularization (Eq. (19)), the generated
mages y became similar to the reconstructed ones x̂, probably
because the image deconstructor emphasized on the encoded
features of the input images, zθ , much more on the stochastic
eatures z . This is a typical example of posterior collapse; the reg-
larizer was too strong to generate diverse images. If we remove
he map loss function (Eq. (10)) from the loss function of the
mage deconstructor (Eq. (8)), the generated images were fairly
iverse and unnatural, but their saliency maps were a little apart
rom those of the input images (Fig. 6 (right-most)). In contrast
o those, our proposed method generated diverse and unnatural
mages, whereas their saliency maps were consistent with those
f the input images (Fig. 6 (second-left)). Such favorable charac-
ers were owing to the newly developed KL regularization term,
hich was also effective in avoiding local optima in the training
f the image deconstructor, and the map loss to keep the saliency
ap not to be much changed.
These visual inspections were further supported in a quanti-

ied manner. Table 2 shows the Fréche Inception Distance (FID),
hich has been used for evaluating the naturalness of the gen-
rated images in the field of image transformation/generation
Heusel, Ramsauer, Unterthiner, Nessler, & Hochreiter, 2017),
nd Cosine Similarity (CS) of a pair of saliency maps between
he input image and the deconstructed image. A low (high)
ID score suggests the naturalness (unnaturalness) of the trans-
ormed/generated images in terms of the distribution difference
rom the set of input images. A low (high) CS score suggests that
he saliency map of the input image xmap and the one of the
transformed/generated image ymap are quite different (similar).
Our image deconstructor incorporated several techniques devel-
oped in the field of natural image transformation/recognition,
such as feature matching, inception module, PatchGAN, and mini-
batch standard deviation. Further ablation study supported their
effectiveness in generating unnatural images with high variability
(Appendix D).

To further examine the image deconstruction performance of
our method, we compared our method with a couple of exist-
ing image transformation methods, Pix2Pix [1] and AdaIN [2].
Although AdaIN is an image style transformation method, and
hence cannot deal in principle with ill-conditioned problem like
our image deconstruction, we examined a modified version of
AdaIN by attaching an additional loss function to facilitate the
maintenance of the saliency map; this additional loss is given as

map
Lψ , being the same as the one used in our method.
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Fig. 7. Images generated by a couple of existing methods. These results show when testing the Pix2Pix (left panels) and AdaIN (right panels) methods after trained
with the same image dataset as in our image deconstruction method. In the left panel, an original natural image, an image generated by Pix2Pix, the saliency map
of the original image, and the saliency map of the generated image, are shown from the left to the right on each column. In the right panel, a natural, content
image, a natural style image, an image generated by AdaIN, the saliency map of the input content image, and the saliency map of the generated image, are shown
from the left to the right on each column.
Table 3
Cosine Similarity (CS) between the saliency map of an input natural image
and that of a generated image. This table shows the saliency map consistency
between the input image (or the content image in the case of AdaIN) and the
output image.
Model CS

Ours 0.908 ± 0.029
Pix2Pix 0.911 ± 0.028
AdaIN 0.890 ± 0.037

We trained Pix2Pix to transform an input saliency map to an
utput natural image, based on a training dataset of pairs of nat-
ral images (in SALICON) and the corresponding saliency maps;
he latter was obtained according to the Itti’s method. Fig. 7(left)
hows the artificial images generated by Pix2Pix, which were
ound to be likely burred but still natural-like images that cor-
esponded to the input saliency maps. The generator in Pix2Pix
as of the U-net architecture with multi-resolution skip connec-
ions, while the image generation process from a saliency map
o an artificial image would not have necessarily required such
shape-reserving transformation. Actually, the images generated
y Pix2Pix maintained the global/local structures from those of
he original natural images; this was different from what we
xpected.
In our implementation of AdaIN, we chose a couple of natural

mages randomly from the natural image set (i.e., SALICON), and
et either one as a content image and the other as a style image.
he objective of the AdaIN training is to transform the content
mage into the one of the style image-like style. The images gen-
rated by AdaIN maintained the global structures of the content
mages, but their styles looked similar to those of the style images
Fig. 7(right)).

Table 3 shows the Cosine Similarity (CS) between the saliency
ap of the input (in the case of Pix2Pix) or the content image

in the case of AdaIN), and that of the generated image (in
oth cases). We see that the saliency map of the Pix2Pix-based
enerated image was more similar to the input saliency map than
hat by our method; this was natural, because the objective of
233
the Pix2Pix training was to perform the inverse process of the
generation of saliency maps from natural images. However, the
generated image by Pix2Pix was much similar to the original
natural image, which was apart from our purpose. On the other
hand, the saliency map of the AdaIN-based generated image less
maintained than that by our method, though the AdaIN and our
method used the same loss function to maintain the saliency map.

Appendix E describes further details of the implementations
of Pix2Pix and AdaIN used here.

These results suggested that our proposed method was effec-
tive in generating diverse deconstructed/unnatural images while
keeping their saliency maps similar to those of the corresponding
input images.

4.2. Behavioral experiment results

In the visual discrimination task, each subject was asked to
answer whether the presented image was natural or not in its
context. Fig. 8 shows the results of the visual discrimination task.
The fairly high accuracy for the 400 image pairs (97.9 ± 5.3%,
SD is over the eight subjects) suggests that the original images
taken from SALICON was deemed natural enough, whereas our
generated images were deemed unnatural enough. Fig. 9 shows
examples of generated images with a high accuracy rate (judged
to be unnatural) in the behavioral experiment.

Next, we measured eye movements during thirteen human
subjects were looking at natural, generated, shuffled, and shuf-
fled but maintained spatial frequency amplitudes (amp) images.
Fig. 10 shows the KL divergence, averaged over the 13 sub-
jects, between the FDMs and the saliency maps. As there was
no characteristic difference in eye movements between for the
shuffled and for the amp images, they were merged together.
The similarity between the FDM and the Itti’s saliency map was
highest when the generated images were presented, which was
significantly better than when looking at natural images. We con-
sider that this difference may be due to the fact that in unnatural
situations where the generated images are presented, the eye
gaze is mainly directed to bottom-up attentive regions in the

images that match the Itti’s saliency map well, whereas in natural
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Fig. 8. Histogram of accuracy for 400 image pairs consisting of natural and
generated images. If each subject answered natural for the original image taken
from SALICON database or unnatural for the generated image, the answer was
considered correct, otherwise incorrect. In the actual experiment, subjects were
asked whether they could understand the context of each image shown on the
computer display. The horizontal axis is the rate of correct answers of the eight
subjects (accuracy rate) and the vertical axis is the number of images for which
the accuracy rate (or correct response rate) was the value on the horizontal axis
(blue: original natural images, orange: generated images). Note that the values
on the horizontal axis are discrete: 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8 and 8/8.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ituations the eye gaze is also attracted to top-down attentional
egions that are not sufficiently represented by the Itti’s saliency
ap. We also found that the FDMs when viewing shuffled images
ere closer to the saliency maps than when viewing natural

mages. This is because the saliency map is uniform in shuffled
mages, and the FDM is distributed around the center of the image
ecause, by default, subjects tended to gaze near the image center
hen presented images without obvious saliency. In fact, the KL
istance to the FDMs with shuffled images became the smallest
ith a single-mode Gaussian density centered on the image’s
enter; in this case, the Gaussian density was estimated based on
ll the FDMs of the four image categories.

.3. fMRI analysis results

We performed differential analysis of brain activities when the
ubjects observed the natural images and the images generated
y our image deconstructor (Fig. 11). When observing the natu-
al images, bilateral extrastriate visual area (BA7/19/37) showed
ignificantly higher activities, but not the primary visual cortex
234
(Fig. 11(a)). In contrast, bilateral primary visual cortices (BA17/18)
and bilateral inferior parietal lobules (BA39/40) showed greater
activities when viewing generated images (Fig. 11(b)).

We also compared the brain activities while viewing the nat-
ural, and the shuffled and amp images (images with preserved
spatial frequency amplitudes). The latter two kinds of images are
as unnatural as the generated images, but do not have the same
saliency maps as the original natural images. The results of the
differential analysis showed no prominent differences between
natural vs. generated and natural vs. shuffled (+ amp) (Fig. 12),
suggesting that the contextual information was collapsed in the
generated images as well as in the shuffled and amp images.

In addition, brain activity was compared while the subjects
were observing the generated and the shuffled/amp images
(Fig. 13). Note that they shared the same color histogram. When
the subjects observed the generated images, bilateral extrastriate
cortices (BA18/19) showed significantly higher activation than
when they observed the shuffled/amp images.

5. Discussions

5.1. Limitation in the methodology

The diversity of the generated deconstructed images was due
to the distribution of the latent variable. To this end, we applied
a regularization term to facilitate the distribution of all the latent
variables to approach the standard normal distribution. When
we examined the latent distribution, we found it had larger
kurtosis than that of normal distribution, while its expectation
and variance were close to 0 and 1, respectively. This has arisen
because we encouraged the latent distribution over a minibatch,
which should be a mixture Gaussian distribution, to approach to
a unimodal Gaussian distribution. This may be improved by con-
sidering the KL divergence under an assumption that the target
latent distribution is approximated by a multi-modal distribution
like mixture Gaussian with several components.

We also examined a technique to add the adversarial loss
which makes all the latent distributions individually close to nor-
mal distributions (Makhzani, Shlens, Jaitly, Goodfellow, & Frey,
2015; Mescheder, Nowozin, & Geiger, 2017; Rosca, Lakshmi-
narayanan, Warde-Farley, & Mohamed, 2017). Although we found
that the latent distributions well approached the standard normal
distributions, there arose posterior collapse by ignoring the input
information in the posterior latent distribution. Because of this,
we have given up to proceed to this direction.

Since the latent distribution is important for the diversity of
the generated images, the development of further sophisticated
regularizer remains as a future study.
Fig. 9. Generated unnatural images. The generated image y were considered as sufficiently unnatural in the behavioral experiment, whereas they shared very
onsistent visual saliency maps with the original images x.
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Fig. 10. The difference between the fixation density map (FDM) and the saliency map. Box-plots of KL divergence between the FDM based on eye movements of
13 subjects and the saliency map calculated by the Itti’s method. Each box extends from the lower to upper quartiles, with a horizontal line at the median. The
whiskers show 1.5×IQR, and cross markers indicate the outliers. The presented images were categorized natural, generated, and others (shuffled and shuffled but
maintaining spatial frequency amplitude (amp)). Student t test showed that the FDM for the generated images was significantly more similar to the Itti’s saliency
map than the other images’ FDM (natural: p = 1.26e−15 , others: p = 5.37e−7) and the FDM for the shuffled images was significantly more similar to the saliency
map than the FDM for the natural images (p = 1.12e−12).

Fig. 11. Differential brain activity analysis between viewing the natural images and viewing the generated images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 7/19/37, left: MNI coordinate = −44,−74,−6, right: 55,−66,−6) showed significantly higher activations
(panel (a)). During the artificial image viewing, in contrast, the bilateral primary visual cortices (BA17/18, left: −6,−84,−12, right: 10,−78,−6), the bilateral inferior
parietal lobules (BA39/40, left:,−48,−58, 46, right: 50,−50, 42) showed greater activities (panel (b)). The results are based on a multi-subject conjunction analysis
(FWE, p < 0.05) and visualized using xjView toolbox (https://www.alivelearn.net/xjview).
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Fig. 12. Differential brain activity analysis between viewing the natural images and viewing the shuffled images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 7/19/37, left: MNI coordinate = −44, 76,−6, right: 44,−76,−2), and the bilateral dorsolateral frontal
ortices (BA9, left: −48, 6, 38, right: 40,14,28) showed significantly higher activations (panel (a)). During the shuffled image viewing, in contrast, the bilateral primary
isual cortices (BA17/18, left: −6,−90, 20, right: 6,−86, 16), the bilateral inferior parietal lobules (BA39/40, left:,−56,−58, 36, right: 54,−50, 44) showed greater
ctivities. The results are based on a multi-subject conjunction analysis (FWE, p < 0.05) and visualized using the xjView toolbox.
Fig. 13. Differential brain activity analysis between viewing the generated images and viewing the shuffled images. While the subjects observed the natural images,
the bilateral extrastriatal cortices (Broadmann areas (BAs) 18/19, left: MNI coordinate = −42,−76,−6, right: 44,−78,−4) showed significantly higher activations.
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.2. Neuroscientific implications

In this study, we conducted two kinds of behavioral experi-
ents. The results from the visual discrimination task of image
ontext suggested that our image deconstructor produced col-
apsed images with loss of context information. The results from
ye movement measurement experiments also indicated that our
mage deconstructor retains the saliency map of the original im-
ge well, as the fixation density map (FDM) representing the eye
ovements corresponded best to the Itti’s saliency map. In con-

rast, the FDM for the natural images did not resemble the Itti’s
aliency map. These results support the hypothesis that the Itti’s
aliency map mainly represents bottom-up attentional regions,
ut that eye movements are also modified by top-down attention,
specially for the natural images. Based on this hypothesis, the
mages artificially generated by our image deconstructor could
e used to dissociate the neural activity involved in bottom-up
ttention, even in overt image observation environments.
 f

236
Although the main objective of this study is to present a new
ool for computational neuroscientists to investigate the visual
ttention system, we conducted our own human non-invasive
maging experiments to demonstrate the usefulness of our tool.
he results of the fMRI experiments showed that the brain ac-
ivities while viewing the natural and the shuffled images were
imilar to those seen when comparing the natural and gener-
ted images, suggesting that the generated images lost context
nformation that could be recognized by humans. The results of
he differential analysis of brain activities for the two types of
nnatural images, the generated and the shuffled image, showed
ignificantly stronger activity in the middle-level visual cortices
ncluding V2 and V3, when the generated images were observed.
his result is interesting because both the generated and shuffled
mages are unnatural, but with a saliency map that is not uniform
or the former but almost uniform for the latter. Although the
resent imaging study was preliminary and these results require

urther evaluation studies, we believe that our proposed method
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Table A.4
Detailed architectures of the sub-networks used in our image deconstructor. Block(Cin , Cout , k, activation) means a single block (Fig. A.14(a)), where Cin , Cout , and k
ean the sizes of input channel, output channel, and kernel, respectively, and activation signifies the activation function. ‘Down’ and ‘Up’ mean a downsample and
n upsample module (Fig. A.14(b)(c)), respectively, and ‘Inc(C)’ means an inception module of its input/output channel size being C . ‘Conv(Cin , Cout , k)’ means a block
rom which the batch normalization and the activation function were removed from a normal Block module. ‘DeConv(Cin , Cout , k)’ is a deconvolution block with a
igmoidal activation function. The deconvolution block used in the ‘Map Decoder’ and ‘Decoder’ employed convolution operations that were transformed from those
n the corresponding convolution Block.
Map generator Encoder Decoder Discriminator

Block(3, 64, 1, L) Block(3, 64, 1, L) Block(24, 256, 1, L) Block(3, 32, 1, L)
Inc(64), Down Inc(64), Down Inc(256), Up Inc(32), Down
Inc(128), Down Inc(128), Down Inc(128), Up Inc(64), Down
Inc(256) Inc(256) Inc(64) Inc(128)
Block(256, 8, 1, L) Conv(256, 16, 1) DeConv(64, 3, 1), Sigmoid DeConv(129, 1, 1), Sigmoid
Block(8, 256, 1, L)
Inc(256), Up
Inc(128), Up
Inc(64)
DeConv(64, 1, 1), Sigmoid
d
c
t

may provide a novel experimental tool to dissociate the neural
bases involved in bottom-up and top-down attention.

6. Conclusion

In this study, we presented a new deep learning-based image
ransformation method with a relatively large latent space, which
utput deconstructed images based on the input natural images
ith maintaining the saliency maps of the input images. As a
ew latent regularization, KL regularization was proposed for the
istribution of all latent variables, avoiding the collapse of the
atent distribution and stabilizing the learning process.

The results of the behavioral analyses well validated that our
ew image transformation is effective in destroying contextual
nformation embedded in natural images while preserving local
tructures. In addition, the results of fMRI experimental study
uggested that different brain networks were evoked between
hen natural images were presented and when deconstructed

mages with the consistent saliency maps were presented.
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ppendix A. Detailed network architectures of the proposed
ethod

First, we present specifications of the modules used in our
NN-based image deconstructor (Fig. A.14). A Block was a con-
olution layer employing a leaky ReLU or no activation function
panel (a)). In a Downsample (an Upsample) module, the chan-
el size C , image height H , and image width W were halved

(doubled) between the input and output (panel (b) and (c), re-
spectively). We did not change the size of channel, image height,
or image width, in our inception modules (panel (d)).

Table A.4 shows the detailed architectures of the sub-networks

used in our image deconstructor. We did not use an activation
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function for the Encoder output, and used sigmoidal activation
for outputs from other networks. The channel size of the decon-
volution block of the Discriminator was 129, not 128, because the
usage of the minibatch standard deviation increased the channel
size by one. Although we employed multiple Discriminators in
our image deconstructor, they used the common architecture
displayed here, but different parameters adjusted according to
different loss functions. We did not use skip connections between
the Encoder and the Decoder, and used deconvolution block,
instead of full-connection block, for the output from the Encoder.
These modifications were for making the latent space a three-
dimensional tensor, and hence enabling the latent variable to
convey information of local structures. Since there were two
kinds of outputs from the Encoder, µ and σ 2, we employed two
econvolution blocks in parallel for the respective outputs. The
hannel size of the Decoder was 24, because it concatenated
he middle-layer of the Map Generator (channel size = 8), and
the output of the Encoder (dimensionality = 16); the latter was
obtained by the reparametrization trick from its latent variable.

Appendix B. Transformed images obtained by BicycleGAN

Here, we examined if the most related existing image trans-
former, BicycleGAN, could be used for our objective. Fig. B.15
shows the transformed/generated images by the BicycleGAN,
where left and right panels present the results when the original
image was used and not used for training the Bicycle GAN,
respectively. We can see that the reconstructed image was fairly
apart from the original image, and in addition, the saliency map
was not maintained in the image generated by the BycycleGAN
from that of the original image. This was because the saliency
map was of significant short of the information of the original
image, and/or the latent dimensionality of the Bicycle GAN was
as small as 8.

The similarity (in terms of Cosine Similarity (CS)) of the
saliency map between the original image and the corresponding
generated image was 0.883 ± 0.050 for 5000 validation images
that were not used for training. This similarity was significantly
smaller than that by our method (Table 2); in Fig. B.15, we
actually see the saliency maps of some generated images were
fairly different from those of their original images.

Fig. B.16 shows multiple images generated by probabilistic
image generation with multiple random variables applied to the
latent space of the BicycleGAN. The BicycleGAN tends to generate
images with different color painting from that of the original
image; this degenerated variability was due to the relatively low-
dimensional latent space and the skip connections used in U-nets

that consist of the whole image transformer.
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Fig. A.14. Specifications of modules used in our image deconstructor. (a) A Block is a single convolution layer, where Cin , Cout , and k denote the input channel size,
he output channel size, and the kernel size, respectively. When an activation function is signified by L and N , we use a leaky ReLU activation and no activation
identity), respectively. (b) A downsample module. (c) An upsample module. (d) An inception module. [N, C,H,W ] next to a sign ’Previous layer’ (’Next layer’)
eans the size of input (output) features, where N is the sample number in the minibatch, and C , H , and W are the channel size, image height, and image width,

espectively.
Fig. B.15. Image transformation by BicycleGAN. These results show when testing the BycycleGAN after being trained with the same image dataset as in our image
deconstruction method, for several training images (a) and several validation images (b). The latter set of images was not used for training the BycycleGAN. Each
panel shows an original natural image, a reconstructed image, a generated image, the saliency map of the original image, and the saliency map of the generated
image, from the left to the right on each column.
Appendix C. Loss functions for the saliency map

Here, we examined how the generated images would depend
n the loss function used for evaluating the saliency map. In our
238
basic implementation, we used BCE, Eq. (10). Fig. C.17 shows
the results when we used mean squared error (MSE) instead
of the BCE in the training of the saliency map generator. Each
column presents an original natural image, a reconstructed image,
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Fig. B.16. Diversity in the images transformed by the BicycleGAN. Due to the standard normal variable applied to the latent space, the BycycleGAN could produce
images with a certain variability, but they were different mostly in the global features.
Fig. C.17. Image deconstruction when the loss function of the saliency map generator, Eq. (10) was replaced by mean squared error (MSE). We used the same
visualization as in Fig. 4.
Table C.5
Cosine Similarity (CS) between saliency maps. This table shows the CS of the
saliency maps, between of the original image and of the generated image. The
comparison was done for two kinds of loss functions used for training the
saliency map generator.
Model CS

BCE 0.908 ± 0.029
MSE 0.898 ± 0.031

a generated image, the saliency map for the original image, and
the saliency map for the generated image, from the left to the
right on each row.

When we examined the similarity in terms of CS between the
aliency map of an original image and that of the corresponding
enerated image, over the validation set of 5000 images, the
raining with the MSE was slightly lower than that with the BCE,
ut the difference was not significant (Table C.5 and Fig. C.17).

ppendix D. Further ablation study

Our image deconstructor used several techniques that had
een proposed in the field of image transformation; i.e., feature
atching, PatchGAN, minibatch standard deviation, and inception
odule, for improving the performance of our image deconstruc-

or. Table 2 in the main text presents the results of a couple of
blation studies. Here, we present the results of further ablation
tudies; that is, each of the four techniques above was removed
rom the full model of our image deconstructor (Table D.6). This
able suggests that the performance of the image deconstructor,
239
Table D.6
Fréche Inception Distance (FID) (Heusel et al., 2017) in ablation studies. This
table shows the FID score when either of the feature matching, PatchGAN,
minibatch standard deviation, or inception module was removed from the full
model of our image deconstructor.
Model FID

Ours 322.95
Without feature matching 460.47
Without PatchGAN 415.27
Without minibatch standard deviation 321.01
Without inception module 382.15

in terms of the FID score, was substantially worse when we re-
moved feature matching, PatchGAN, or inception module. We also
found that minibatch standard deviation was minorly effective in
our image deconstruction task.

Fig. D.18 shows the images generated by the four kinds of
ablated models; the results are for validation images. Without
the feature matching, the generated images were rough. Without
the PatchGAN, the generated images were blurred, suggesting the
PatchGAN was important for improving local structures of the
generated images. Without the minibatch standard deviation, the
generated images were a little distorted, which was commonly
observed over many generated images. Although Table D.6 sug-
gested a minor improvement by our full model over this ablated
model, we consider the usage of the minibatch standard deviation
was effective in removing such minor distortions. Without the
inception module, the generated images became rough, suggest-
ing the advantage of using the inception module in our image

deconstruction method.
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Fig. D.18. Images produced by our additional ablation studies. Images generated by the full model of our image deconstructor (OURS), and by ablated models without
the feature matching (FM), PatchGAN (PG), minibatch standard deviation (MSD), or inception modules (IM), respectively. In the ablated model IM, INC(n) in Table A.4
as replaced with ‘Block(n, n, 3, L)’; that is, the inception module was replaced with a simpler convolution Block.
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ppendix E. Implementations of Pix2Pix and AdaIN

.1. Pix2Pix

Pix2Pix employs a typical GAN architecture; that is, there
re a couple of modules, Generator and Discriminator, and the
ormer is of an encoder–decoder architecture with the usage of
-net. The input and output of the Generator are a saliency map
nd its corresponding natural image, respectively. The natural
mage was taken from the SALICON dataset, and its corresponding
aliency map was obtained by the Itti’s method. This Generator
as trained to lower a combined loss function of an L1 norm,
hich measures the discrepancy between the original natural

mage (for the input saliency map) and the image generated by
he Generator, and an adversarial loss to fool the Discriminator.
n the other hand, the Discriminator was trained to well dis-
riminate between a pair of a natural (i.e., true) image and its
aliency map and a pair of a generated (i.e., fake) image (output
rom the Generator) and its saliency map (input to the Generator).
s well as in the original implementation of Pix2Pix, we also
ntroduced Dropouts to the Generator training, which was found
o be effective in attaining diversity in the generated images.

.2. AdaIN

AdaIN has an encoder–decoder architecture, but there is no
ncoder training. The Encoder consisted of several convolution
ayers of VGG19 that was pretrained to perform well in the image
lassification task and then fixed. Although the architecture of
he Decoder is of an upright one of the Encoder, the former was
rained based on the loss function below. An input to Encoder was
pair of a content image and a style image, which were randomly
hosen from a set of natural images taken from SALICON. After
btaining a couple of outputs, i.e., the feature vectors, of the
ncoder, when input by a content image and a style image, we
ransformed the feature vector for the content image input such
o make the feature-wise mean and variance to be consistent with
hose of the feature vector for the style image input. Then, this
ransformed feature vector was input to the Decoder. We used
loss function consisting of three terms, to train the Decoder;
ne is the content loss, which measures the Euclidian distance
etween the feature vector when the image generated by the De-
oder was input to the Encoder and the feature vector input to the
240
Decoder to generate the image; second is the style loss, the sum
of the Euclidian distance of the mean and variance of activities
of middle layer units between when the image generated by the
Decoder and the style image were input to the Encoder; and, the
maintenance loss of the saliency map, Lmap

ψ . Note that the third
loss function was not used in the original AdaIN implementation.
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