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In the online metric matching problem, there are servers on a given metric space and
requests are given one-by-one. The task of an online algorithm is to match each request
immediately and irrevocably with one of the unused servers. In this paper, we pursue
competitive analysis for two variants of the online metric matching problem. The first
variant is a restriction where each server is placed at one of two positions, which is
denoted by OMM(2). We show that a simple greedy algorithm achieves the competitive
ratio of 3 for OMM(2). We also show that this greedy algorithm is optimal by showing
that the competitive ratio of any deterministic online algorithm for OMM(2) is at least 3.
The second variant is the online facility assignment problem on a line. In this problem,

the metric space is a line, the servers have capacities, and the distances between any
two consecutive servers are the same. We denote this problem by OFAL(k), where k is
the number of servers. We first observe that the upper and lower bounds for OMM(2)
also hold for OFAL(2), so the competitive ratio for OFAL(2) is exactly 3. We then show
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lower bounds on the competitive ratio 1 +
√

6 (>3.44948), 4+
√

73
3

(>4.18133) and 13
3

(>4.33333) for OFAL(3), OFAL(4) and OFAL(5), respectively.

Keywords: Online algorithm; competitive analysis; online metric matching; online facility

assignment problem.

Mathematics Subject Classification 2020: 68W27, 68W40

1. Introduction

Online problems capture the nature of real-time computation, in which pieces of
input, generally called requests, are given to an algorithm one-by-one, and an online
algorithm must decide how to deal with the current request before receiving the next
one. This decision is irrevocable in that an algorithm may not change it later. The
performance of online algorithms are typically measured by competitive analysis,
which was initiated by Sleator and Tarjan [27] who applied it to the list update
problem and the paging problem. Informally speaking, an online algorithm A is
c-competitive (or the competitive ratio of A is at most c) if the cost of A’s output is
at most c times worse than the optimal cost.

Kalyanasundaram and Pruhs [14] and Khuller et al. [17] independently intro-
duced and studied the online metric matching problem, which is an online variant
of the minimum cost bipartite matching problem. In this problem, n servers are
placed on a given metric space. Then n requests, which are points on the metric
space, are given to the algorithm one-by-one in an online fashion. The task of an
online algorithm is to match each request immediately with one of n servers. If a
request is matched with a server, then it incurs a cost which is equivalent to the
distance between them. The goal of the problem is to minimize the sum of the costs.
Papers [14, 17] presented a deterministic online algorithm (called Permutation in
[14]) and showed that it is (2n − 1)-competitive and optimal.

In 1998, Kalyanasundaram and Pruhs [15] posed a question whether one
can have a better competitive ratio by restricting the metric space to a line
(1-dimensional Euclidean space), and introduced the problem called the online
matching problem on a line. They gave two conjectures that the competitive ratio of
this problem is 9 and that the Work-Function algorithm has a constant competitive
ratio, both of which were later disproved in [12, 18], respectively. This problem has
been extensively studied [2, 3, 13, 23, 25, 26] and the currently best upper bound
is O(log n) [23, 26] achieved by the Robust Matching algorithm [25]. The best lower
bound had been 9.001 [12] for more than 15 years, but very recently it was improved
to Ω(

√
log n) [24].

In 2020, Ahmed et al. [1] proposed a problem called the online facility assignment
problem and considered it on a line, which we denote by OFAL for short. In this
problem, all the servers (which they call facilities) and requests (which they call
customers) lie on a line, and the distance between every pair of adjacent servers is
the same. Also, each server has a capacity, which is the number of requests that can
be matched to the server. In their model, all the servers are assumed to have the
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same capacity. Let us denote by OFAL(k) the OFAL problem where the number
of servers is k. Ahmed et al. [1] showed that for any k, a greedy algorithm is 4k-
competitive for OFAL(k) and a deterministic algorithm Optimal-fill is k-competitive
for any k > 2.

1.1. Our contributions

In this paper, we study a variant of the online metric matching problem and the
online facility assignment problem when the number of servers is a small constant.

We first consider the online metric matching problem where all the servers are
placed at one of two positions in the metric space, which we denote by OMM(2).
This is equivalent to the case where there are two servers with capacities. We show
that a simple greedy algorithm achieves the competitive ratio of 3 for OMM(2). To
do so, we first give two properties that the worst case inputs satisfy, and show that
the competitive ratio of the greedy algorithm is at most 3 for such inputs. We also
show that any deterministic online algorithm for OMM(2) has a competitive ratio
at least 3, giving a matching lower bound.

We also study OFAL(k) for small k. We first remark that the above results for
OMM(2) hold also for OFAL(2), which implies a matching upper and lower bound
on the competitive ratio of 3 for OFAL(2). We then show lower bounds on the
competitive ratio for OFAL(k) when k = 3, 4, and 5. Specifically, we show lower
bounds 1+

√
6 (>3.44948), 4+

√
73

3 (>4.18133) and 13
3 (>4.33333) on the competitive

ratio for OFAL(3), OFAL(4) and OFAL(5), respectively. We remark that our lower
bounds 1 +

√
6 for OFAL(3) and 4+

√
73

3 for OFAL(4) do not contradict the above-
mentioned upper bound of Optimal-fill by Ahmed et al. [1], since their upper bounds
are with respect to the asymptotic competitive ratio, while our lower bounds are
with respect to the strict competitive ratio (see Sec. 2.3).

1.2. Related work

As mentioned before, Kalyanasundaram and Pruhs [14] studied the online met-
ric matching problem and showed that the algorithm Permutation is (2n − 1)-
competitive and optimal. Probabilistic algorithms for this problem were studied in
[7, 21].

Besides the problem on a line, Ahmed et al. [1] studied the online facility
assignment problem on an unweighted graph G(V, E). They showed that the greedy
algorithm is 2|E|-competitive and Optimal-Fill is |E|k

r -competitive, where |E| is the
number of edges of G and r is the radius of G. Recently, Muttakee et al. [22] pre-
sented new results for the online facility assignment problem. They showed competi-
tive ratios of the greedy algorithm and Optimal-Fill for grid graphs and Optimal-Fill
for arbitrary graphs. They also studied competitiveness for plane metric and line
metric.

Recently, an extension of the online metric matching problem that allows delay
has been studied enthusiastically. There, an online algorithm is allowed to defer a

2150156-3

D
is

cr
et

e 
M

at
h.

 A
lg

or
ith

m
. A

pp
l. 

20
21

.1
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
Y

O
T

O
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/3
0/

22
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



November 15, 2021 18:20 WSPC/S1793-8309 257-DMAA 2150156

T. Itoh, S. Miyazaki & M. Satake

decision for a given request at the cost of a “time cost” incurred depending on the
waiting time. The goal of the problem is to minimize the sum of a matching cost plus
all the time costs. This problem was first considered by Emek et al. [10]. Randomized
algorithms were studied in [4, 5, 10, 19], and the current best upper and lower

bounds on the competitive ratio are O(log n) [5] and Ω(
√

log n
log log n ) [4], respectively,

where n is the number of points in the metric space. Deterministic algorithms were
studied in [6, 8, 9, 11] and the best known upper bound on the competitive ratio is
O(mlog2( 3

2+ε)) � O(m0.59) [6], where m is the number of requests.
A different version of an online matching problem was initiated by Karp et al.

[16]. In this model, they considered a bipartite graph, where the vertices in one
partition L are given in advance, and the vertices in the other side R are given one-
by-one with edges incident to vertices in L. The task of an algorithm is to match an
arriving vertex with one of unmatched vertices of L or leave it unmatched, and the
goal is to maximize the size of the final matching. Since this problem has application
to ad auction, several variants have been studied in decades. See [20] for a survey.

2. Preliminaries

In Secs. 2.1 and 2.2, we give definitions of the two problems we study and in Sec. 2.3
we give the definition of the competitive ratio.

2.1. Online metric matching problem with two servers

In this section, we define the online metric matching problem with two servers,
denoted by OMM(2) for short. Let (X, d) be a metric space, where X is a (possibly
infinite) set of points and d(·, ·) is a distance function. Let S = {s1, s2} be a set of
servers and R = {r1, r2, . . . , rn} be a set of requests. A server si is characterized by
the position p(si) ∈ X and the capacity ci that satisfies c1 + c2 = n. This means
that si can be matched with at most ci requests (i = 1, 2). A request ri is also
characterized by the position p(ri) ∈ X .

The server set S is given to an online algorithm in advance, while requests are
given one-by-one from r1 to rn. At any time of the execution of an algorithm, a
server is called free if the number of requests matched with it so far is less than
its capacity, and full otherwise. When a request ri is revealed, an online algorithm
must match ri with one of free servers. If ri is matched with the server sj , the pair
(ri, sj) is added to the current matching and the cost d(ri, sj) is incurred for this
pair. The cost of the matching is the sum of the costs of all the pairs contained in
it. The goal of OMM(2) is to minimize the cost of the final matching.

2.2. Online facility assignment problem on a line

In this section, we give the definition of the online facility assignment problem on a
line with k servers, denoted by OFAL(k). The set of servers is S = {s1, s2, . . . , sk}
and all the servers have the same capacity �, i.e., ci = � for all i. The number of
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requests must satisfy n ≤ ∑k
i=1 ci = k�. All the servers and requests are placed on

a real number line, so their positions are expressed by a real, i.e., p(si) ∈ R and
p(rj) ∈ R. Accordingly, the distance function is written as d(ri, sj) = |p(ri)−p(sj)|.
We assume that the servers are placed in an increasing order of their indices, i.e.,
p(s1) ≤ p(s2) ≤ · · · ≤ p(sk). In this problem, any distance between two consecutive
servers is the same, that is, |p(si) − p(si+1)| = d (1 ≤ i ≤ k − 1) for some constant
d. Without loss of generality, we let d = 1.

The task of an online algorithm and the goal of the problem is the same as
OMM(2): The server set is initially known to an algorithm. When receiving a
request, the algorithm must match it with one of free servers, incurring a cost
of the distance between matched server and request. The purpose of the algorithm
is to minimize the matching cost.

2.3. Competitive ratio

To evaluate the performance of an online algorithm, we use the strict competitive
ratio. (Hereafter, we omit “strict”). For an input σ, let ALG(σ) and OPT(σ) be the
costs of the matchings obtained by an online algorithm ALG and an optimal offline
algorithm OPT, respectively. Then the competitive ratio of ALG (for a minimization
problem) is the infimum of c that satisfies ALG(σ) ≤ c · OPT(σ) for any input σ.
The competitive ratio is at least 1, and an algorithm with smaller competitive ratio
is better.

3. Online Metric Matching Problem with Two Servers

3.1. Upper bound

In this section, we define a greedy algorithm GREEDY for OMM(2) and show that
it is 3-competitive.

Definition 3.1. When a request is given, GREEDY matches it with the closest
free server. If a given request is equidistant from the two servers and both servers
are free, GREEDY matches this request with s1.

In the following discussion, we fix an optimal offline algorithm OPT. If a request
r is matched with the server sx by GREEDY and with sy by OPT, we say that r

is of type 〈sx, sy〉. We then define two properties of inputs.

Definition 3.2. Let σ be an input to OMM(2). If every request in σ is matched
with a different server by GREEDY and OPT, namely if each request is of type
〈s1, s2〉 or 〈s2, s1〉, then σ is called anti-opt.

Definition 3.3. Let σ be an input to OMM(2). Suppose that GREEDY matches
its first request r1 with the server sx ∈ {s1, s2}. If GREEDY matches r1 through
rcx with sx (note that cx is the capacity of sx) and rcx+1 through rn with the other
server s3−x, then σ is called one-sided-priority.
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By the following two lemmas, we show that, to prove an upper bound on the
competitive ratio of GREEDY, it suffices to consider inputs that are anti-opt and
one-sided-priority. For an input σ, we define Rate(σ) as

Rate(σ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

GREEDY(σ)
OPT(σ)

(if OPT(σ) > 0),

1 (if OPT(σ) = GREEDY(σ) = 0),

∞ (if OPT(σ) = 0 and GREEDY(σ) > 0).

Lemma 3.4. For any input σ, there exists an anti-opt input σ′ such that Rate(σ′) ≥
Rate(σ).

Proof. If σ is already anti-opt, we can set σ′ = σ. Hence, in the following, we
assume that σ is not anti-opt. Then there exists a request r in σ that is matched
with the same server sx by OPT and GREEDY. Let σ′′ be an input obtained from σ

by removing r and subtracting the capacity of sx by 1. By this modification, neither
OPT nor GREEDY changes a matching for the remaining requests. Therefore,
GREEDY(σ′′) = GREEDY(σ) − d(r, sx) and OPT(σ′′) = OPT(σ) − d(r, sx). If
OPT(σ′′) > 0, then clearly OPT(σ) > 0 and hence

Rate(σ′′) =
GREEDY(σ′′)

OPT(σ′′)

=
GREEDY(σ) − d(r, sx)

OPT(σ) − d(r, sx)

≥ GREEDY(σ)
OPT(σ)

= Rate(σ).

If OPT(σ′′) = 0 and GREEDY(σ′′) > 0, then Rate(σ′′) = ∞ and Rate(σ′′) ≥
Rate(σ) holds. If OPT(σ′′) = GREEDY(σ′′) = 0, then OPT(σ) = GREEDY(σ) =
d(r, sx). In this case, Rate(σ′′) = Rate(σ) = 1. Thus in all cases Rate(σ′′) ≥ Rate(σ)
holds.

Let σ′ be the input obtained by repeating this operation until the input sequence
becomes anti-opt. Then σ′ satisfies the conditions of this lemma.

Lemma 3.5. For any anti-opt input σ, there exists an anti-opt and one-sided-
priority input σ′ such that Rate(σ′) = Rate(σ).

Proof. If σ is already one-sided-priority, we can set σ′ = σ and we are done. Hence,
in the following, we assume that σ is not one-sided-priority.

Since σ is anti-opt, σ contains only requests of type 〈s1, s2〉 or 〈s2, s1〉. Without
loss of generality, assume that in execution of GREEDY, the server s1 becomes full
before s2, and let rt be the request that makes s1 full (i.e., rt is the last request of
type 〈s1, s2〉).
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Because σ is not one-sided-priority, σ includes at least one request ri of type
〈s2, s1〉 before rt. Let σ′′ be the input obtained from σ by moving ri to just after rt.
Since the set of requests is unchanged in σ and σ′′, an optimal matching for σ is also
optimal for σ′′, so OPT(σ′′) = OPT(σ). In the following, we show that GREEDY
matches each request with the same server in σ and σ′′. The sequence of requests up
to ri−1 is unchanged, so the claim clearly holds for r1 through ri−1. The behavior
of GREEDY for ri+1 through rt in σ′′ is also the same for those in σ because, when
serving these requests, both s1 and s2 are free in both σ and σ′′. Just after serving rt

in σ′′, s1 becomes full, so GREEDY matches ri, rt+1, . . . , rn with s2 in σ′′. Note that
these requests are also matched with s2 in σ. Hence GREEDY(σ′′) = GREEDY(σ)
and it results that Rate(σ′′) = Rate(σ). Note that σ′′ remains anti-opt.

Let σ′ be the input obtained by repeating this operation until the input sequence
becomes one-sided-priority. Then σ′ satisfies the conditions of this lemma.

We can now prove the upper bound.

Theorem 3.6. The competitive ratio of GREEDY is at most 3 for OMM(2).

Proof. By Lemma 3.4, it suffices to analyze only anti-opt inputs. In an anti-opt
input, the number of requests of type 〈s1, s2〉 and that of type 〈s2, s1〉 are the same
and the capacities of s1 and s2 are n/2 each. By Lemma 3.5, it suffices to analyze
only the inputs where the first n/2 requests are of type 〈s1, s2〉 and the remaining
n/2 requests are of type 〈s2, s1〉. Let σ be an arbitrary such input. Then we have
that

GREEDY(σ) =
n/2∑
i=1

d(ri, s1) +
n∑

i=n/2+1

d(ri, s2)

and

OPT(σ) =
n/2∑
i=1

d(ri, s2) +
n∑

i=n/2+1

d(ri, s1).

When serving r1, r2, . . . , rn/2, both servers are free but GREEDY matched them
with s1. Hence (1) d(ri, s1) ≤ d(ri, s2) holds for 1 ≤ i ≤ n/2. By the triangle
inequality, we have that (2) d(ri, s2) ≤ d(s1, s2) + d(ri, s1) for n/2 + 1 ≤ i ≤ n.
Again, by the triangle inequality, we have that (3) d(s1, s2) ≤ d(ri, s1) + d(ri, s2)
for 1 ≤ i ≤ n.

From these inequalities, we have that

GREEDY(σ) =
n/2∑
i=1

d(ri, s1) +
n∑

i=n/2+1

d(ri, s2)

≤
n/2∑
i=1

d(ri, s2) +
n∑

i=n/2+1

(d(s1, s2) + d(ri, s1)) (by (1) and (2))
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= OPT(σ) +
n

2
d(s1, s2)

= OPT(σ) +
1
2

n∑
i=1

d(s1, s2)

≤ OPT(σ) +
1
2

n∑
i=1

(d(ri, s1) + d(ri, s2)) (by (3))

= OPT(σ) +
1
2
(OPT(σ) + GREEDY(σ))

=
3
2
OPT(σ) +

1
2
GREEDY(σ).

Thus GREEDY(σ) ≤ 3OPT(σ) and the competitive ratio of GREEDY is at
most 3.

3.2. Lower bound

We now give a matching lower bound.

Theorem 3.7. The competitive ratio of any deterministic online algorithm for
OMM(2) is at least 3.

Proof. We prove this lower bound on a line metric. We set the positions of servers
as p(s1) = −d and p(s2) = d for a constant d. Consider any deterministic algorithm
ALG. First, our adversary gives c1 − 1 requests at p(s1) and c2 − 1 requests at
p(s2). An optimal offline algorithm OPT matches the first c1 − 1 requests with s1

and the rest with s2. If there exists a request that ALG matches differently from
OPT, the adversary gives two more requests, one at p(s1) and the other at p(s2).
Then, the cost of OPT is zero, while the cost of ALG is positive, so the ratio of
them becomes infinity and the competitive ratio is unbounded.

Next, suppose that ALG matches all these requests with the same server as
OPT. Then the adversary gives the next request r at the origin 0. Let sx be the
server that ALG matches r with. Then, the adversary gives the last request r′ at
p(sx). ALG matches it with s3−x and its total cost is 3d. On the other hand, OPT
matches r with s3−x and r′ with sx, so its cost is d. This completes the proof.

4. Online Facility Assignment Problem on Line

Since OFAL(2) is a special case of OMM(2), Theorem 3.6 applies also for OFAL(2).
Further, recall that, in the proof of Theorem 3.7, adversarial requests are con-
structed on line metric. Hence this proof is also valid for OFAL(2). Thus we have
the following corollary.

Corollary 4.1. (i) The competitive ratio of GREEDY is at most 3 for OFAL(2).
(ii) The competitive ratio of any deterministic online algorithm for OFAL(2) is at
least 3.
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Next, we show lower bounds on the competitive ratio of OFAL(k) for k = 3, 4,
and 5. To simplify the proofs, we use Definitions 4.2 and 4.3 and Proposition 4.4
from [3, 18], that allow us to restrict online algorithms to consider.

Definition 4.2. When a request r is given, the surrounding servers for r are the
closest free server to the left of r (if any) and the closest free server to the right of
r (if any).

Definition 4.3. If an algorithm ALG matches every request of an input σ with
one of the surrounding servers, ALG is called surrounding-oriented for σ. If ALG
is surrounding-oriented for any input, then ALG is called surrounding-oriented.

Proposition 4.4. For any algorithm ALG, there exists a surrounding-oriented
algorithm ALG′ such that ALG′(σ) ≤ ALG(σ) for any input σ.

The proof idea is given in [3], but for completeness, we formally prove it here.

Proof. Suppose that ALG is not surrounding-oriented and let σ be an input for
which ALG is not surrounding-oriented. Then ALG matches at least one request of
σ with a non-surrounding server. Let r be the earliest one among such requests and
s be the server matched with r by ALG. Without loss of generality, we can assume
that p(r) < p(s). Also, let s′ be the surrounding server (for r) on the same side as
s. Then we have that p(r) ≤ p(s′) < p(s). Finally, let r′ be the request matched
with s′ by ALG.

We modify ALG to ALG′′ so that ALG′′ matches r with s′ and r′ with s (and
behaves the same as ALG for other requests). If p(r′) ≤ p(s′), then ALG′′(σ) =
ALG(σ) (Fig. 1). If p(r′) > p(s′), then ALG′′(σ) < ALG(σ) (Fig. 2). In either case,
we have that ALG′′(σ) ≤ ALG(σ).

Let ALG′′′ be the algorithm obtained by applying this modification as long as
there is a request in σ matched with a non-surrounding server. Then ALG′′′(σ) ≤
ALG(σ) and ALG′′′ is surrounding-oriented for σ.

Fig. 1. Modifying the matching in the proof of Proposition 4.4(1).
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Fig. 2. Modifying the matching in the proof of Proposition 4.4(2).

We then do the above modification for all the inputs for which ALG is not
surrounding-oriented, and let ALG′ be the resulting algorithm. Then ALG′(σ) ≤
ALG(σ) and ALG′ is surrounding-oriented, as required.

By Proposition 4.4, it suffices to consider only surrounding-oriented algorithms
for lower bound arguments.

Theorem 4.5. The competitive ratio of any deterministic online algorithm for
OFAL(3) is at least 1 +

√
6 (>3.44948).

Proof. Let ALG be any surrounding-oriented algorithm. Our adversary first gives
� − 1 requests at p(si) for each i = 1, 2 and 3. OPT matches every request r with
the server at the same position p(r). If ALG matches some request r with a server
not at p(r), then the adversary gives three more requests, one at each position of
the server. The cost of ALG is positive and the cost of OPT is zero, so the ratio of
the costs is infinity.

Next, suppose that ALG matches all these requests with the same server as
OPT. Let x =

√
6 − 2 (�0.44949). The adversary gives a request r1 at p(s2) + x.

Case 1. ALG matches r1 with s3.

See Fig. 3. The adversary gives the next request r2 at p(s3). ALG matches it with
s2. Finally, the adversary gives a request r3 at p(s1) and ALG matches it with s1.
The cost of ALG is 2 − x = 4 −√

6 and the cost of OPT is x =
√

6 − 2. The ratio
is 4−√

6√
6−2

= 1 +
√

6.

Fig. 3. Requests and ALG’s matching for Case 1 of Theorem 4.5.
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Case 2. ALG matches r1 with s2.

Let y = 3
√

6 − 7 (�0.34847). The adversary gives the next request r2 at p(s2) − y.
We have two subcases.

Case 2-1. ALG matches r2 with s1.

See Fig. 4. The adversary gives a request r3 at p(s1) and ALG matches it with s3.
The cost of ALG is 3 + x − y = 8 − 2

√
6. OPT matches r1, r2, and r3 with s3,

s2, and s1, respectively, and its cost is 1 − x + y = 2
√

6 − 4. The ratio is 8−2
√

6
2
√

6−4
=

1 +
√

6.

Case 2-2. ALG matches r2 with s3.

See Fig. 5. The adversary gives a request r3 at p(s3) and ALG matches it with s1.
The cost of ALG is 3 + x + y = 4

√
6 − 6. OPT matches r1, r2, and r3 with s2,

s1, and s3, respectively, and its cost is 1 + x − y = 6 − 2
√

6. The ratio is 4
√

6−6
6−2

√
6

=

1 +
√

6.

In any case, the ratio of ALG’s cost to OPT’s cost is 1 +
√

6. This completes
the proof.

Theorem 4.6. The competitive ratio of any deterministic online algorithm for
OFAL(4) is at least 4+

√
73

3 (>4.18133).

Proof. Let ALG be any surrounding-oriented algorithm. In the same way as the
proof of Theorem 4.5, the adversary first gives � − 1 requests at p(si) for each
i = 1, 2, 3, and 4, and we can assume that OPT and ALG match each of these
requests with the server at the same position. Then, the adversary gives a request
r1 at p(s2)+p(s3)

2 . Without loss of generality, assume that ALG matches it with s2.
Let x = 10−√

73
2 (�0.72800). The adversary gives a request r2 at p(s1) + x. We

consider two cases depending on the behavior of ALG.

Fig. 4. Requests and ALG’s matching for Case 2-1 of Theorem 4.5.

Fig. 5. Requests and ALG’s matching for Case 2-2 of Theorem 4.5.
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Fig. 6. Requests and ALG’s matching for Case 1 of Theorem 4.6.

Case 1. ALG matches r2 with s1.

See Fig. 6. The adversary gives the next request r3 at p(s1). Then ALG has to match
it with s3. Finally, the adversary gives a request r4 at p(s4) and ALG matches it
with s4. The cost of ALG is 5

2 + x = 15−√
73

2 . OPT matches r1, r2, r3, and r4

with s3, s2, s1, and s4, respectively, and its cost is 3
2 − x =

√
73−7
2 . The ratio is

15−√
73√

73−7
= 4+

√
73

3 .

Case 2. ALG matches r2 with s3.

Let y = 11
√

73−93
8 (�0.12301). The adversary gives the next request r3 at p(s3)+ y.

We have two subcases.

Case 2-1. ALG matches r3 with s4.

See Fig. 7. The adversary gives a request r4 at p(s4). ALG has to match it with s1.
The cost of ALG is 13

2 − x − y = 105−7
√

73
8 . OPT matches r1, r2, r3, and r4 with

s2, s1, s3, and s4, respectively, and its cost is 1
2 + x + y = 7

√
73−49
8 . The ratio is

105−7
√

73
7
√

73−49
= 4+

√
73

3 .

Case 2-2. ALG matches r3 with s1.

See Fig. 8. The adversary gives a request r4 at p(s1) and ALG has to match it with
s4. The cost of ALG is 15

2 − x+ y = 15
√

73−73
8 . OPT matches r1, r2, r3, and r4 with

s3, s2, s4, and s1, respectively, and its cost is 5
2 − x − y = 73−7

√
73

8 . The ratio is
15

√
73−73

73−7
√

73
= 4+

√
73

3 .

In any case, the ratio of ALG’s cost to OPT’s cost is 4+
√

73
3 . This completes the

proof.

Fig. 7. Requests and ALG’s matching for Case 2-1 of Theorem 4.6.
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Fig. 8. Requests and ALG’s matching for Case 2-2 of Theorem 4.6.

Theorem 4.7. The competitive ratio of any deterministic online algorithms for
OFAL(5) is at least 13

3 (>4.33333).

Proof. Let ALG be any surrounding-oriented algorithm. In the same way as the
proof of Theorem 4.5, the adversary first gives � − 1 requests at p(si) for each
i = 1, 2, 3, 4, and 5, and we can assume that OPT and ALG match each of these
requests with the server at the same position.

Then, the adversary gives a request r1 at p(s3). If ALG matches this with s2

or s4, the adversary gives the remaining requests at p(s1), p(s2), p(s4) and p(s5).
OPT’s cost is zero, while ALG’s cost is positive, so the ratio is infinity. Therefore,
assume that ALG matches r1 with s3. The adversary then gives a request r2 at
p(s3). Without loss of generality, assume that ALG matches it with s2. Next, the
adversary gives a request r3 at p(s1) + 7

8 . We consider two cases depending on the
behavior of ALG.

Case 1. ALG matches r3 with s1.

See Fig. 9. The adversary gives the next request r4 at p(s1). ALG has to match it
with s4. Finally, the adversary gives a request r5 at p(s5) and ALG matches it with
s5. The cost of ALG is 39

8 . OPT matches r1, r2, r3, r4, and r5 with s3, s4, s2, s1,
and s5, respectively, and its cost is 9

8 . The ratio is 13
3 .

Case 2. ALG matches r3 with s4.

The adversary gives the next request r4 at p(s4). We have two subcases.

Fig. 9. Requests and ALG’s matching for Case 1 of Theorem 4.7.
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Fig. 10. Requests and ALG’s matching for Case 2-1 of Theorem 4.7.

Fig. 11. Requests and ALG’s matching for Case 2-2 of Theorem 4.7.

Case 2-1. ALG matches r4 with s1.

See Fig. 10. The adversary gives a request r5 at p(s1) and ALG has to match it
with s5. The cost of ALG is 81

8 . OPT matches r1, r2, r3, r4, and r5 with s3, s5, s2,
s4, and s1, respectively, and its cost is 17

8 . The ratio is 81
17 > 13

3 .

Case 2-2. ALG matches r4 with s5.

See Fig. 11. The adversary gives a request r5 at p(s5) and ALG has to match it
with s1. The cost of ALG is 65

8 . OPT matches r1, r2, r3, r4, and r5 with s3, s2, s1,
s4, and s5, respectively, and its cost is 15

8 . The ratio is 13
3 .

In any case, the ratio of ALG’s cost to OPT’s cost is at least 13
3 , which completes

the proof.

5. Conclusion

In this paper, we studied two variants of the online metric matching problem. The
first is a restriction where all the servers are placed at one of two positions in the
metric space. For this problem, we presented a greedy algorithm and showed that
it is 3-competitive. We also proved that any deterministic online algorithm has
competitive ratio at least 3, giving a matching lower bound. The second variant
is the Online Facility Assignment Problem on a line with k servers, denoted by
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OFAL(k). We investigated this problem when k is small. We first showed, as a
corollary of the first result, that the competitive ratio is 3 for OFAL(2). We also
showed lower bounds on the competitive ratio 1+

√
6 (>3.44948), 4+

√
73

3 (>4.18133)
and 13

3 (>4.33333) for OFAL(3), OFAL(4), and OFAL(5), respectively.
One of the future work is to analyze the online metric matching problem with

three or more server positions. Another interesting direction is to derive upper
bounds for OFAL(3), OFAL(4), and OFAL(5). The same argument as [1] shows
that the competitive ratio of GREEDY is no better than 4k − 5 for OFAL(k),
which is far from our lower bounds. Hence, we need to device a new algorithm if
our lower bounds are close to optimal.
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