A primary thymic adenocarcinoma with two components that traced distinct evolutionary trajectories

Ishida, Ayami; Yamada, Yosuke; Ishida, Yoshihiro; Yoshizawa, Akihiko; Nakajima, Daisuke; Date, Hiroshi; Marx, Alexander; Haga, Hironori

ISSUE DATE:
2021-12

URL:
http://hdl.handle.net/2433/276516

RIGHT:
This is the peer reviewed version of the following article: ['Pathology International' Volume71, Issue12, December 2021, Pages 849-855], which has been published in final form at https://doi.org/10.1111/pin.13171. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.; The full-text file will be ma ...
A primary thymic adenocarcinoma with two components that traced distinct evolutionary trajectories

Ayami Ishida¹, Yosuke Yamada¹,*, Yoshihiro Ishida², Akihiko Yoshizawa¹, Daisuke Nakajima³,
Hiroshi Date³, Alexander Marx⁴, Hironori Haga¹

¹Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
²Department of Dermatology, Kyoto University Hospital, Kyoto, Japan
³Department of Thoracic Surgery, Kyoto University Hospital, Kyoto, Japan
⁴Institute of Pathology, University Medical Centre Mannheim and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany

*Corresponding Author
Yosuke Yamada
Department of Diagnostic Pathology
Kyoto University Hospital
54 Shogoin Kawaracho, Sakyo
Kyoto 606-8507, Japan
Email: yyamada@kuhp.kyot-u.ac.jp
Fax: +81-75-751-3499
Tel: +81-75-751-4946

Abbreviations: None declared
ABSTRACT (150 words)

Even though it is a rare subtype, identifying the genetic features of thymic adenocarcinoma is valuable for a multifaceted understanding of thymic epithelial tumors. We experienced a female patient with thymic adenocarcinoma associated with thymic cysts. The tumor consisted of a solid whitish lesion (lesion-1) and a large cystic lesion with small papillary nodules (lesion-2). Microscopically, lesion-1 exhibited poorly differentiated adenocarcinoma accompanying numerous inflammatory cell infiltrates, and lesion-2 (the nodules within the cystic lesion) exhibited enteric-type adenocarcinoma. Consistent with the histological difference, whole-exome sequencing revealed that these two components exhibited distinct genetic features, except for only a few shared mutations, including CDKN2A truncation. Lesion-1 exhibited microsatellite instability-high signature with high mutation burden, for which immune checkpoint inhibitors might apply; and lesion-2 exhibited whole-genome doubling with KRAS hotspot mutation. Our case presents novel genetic features of thymic adenocarcinoma and demonstrates that distinct mutational processes can be operative within a single tumor.

Keywords:

Thymic adenocarcinoma; thymic cysts; CDKN2A; microsatellite instability; whole-genome doubling
INTRODUCTION

Primary adenocarcinoma rarely occurs in the thymus. Although the molecular features of thymomas and thymic squamous cell carcinoma (the most common subtype of thymic carcinoma) are becoming clearer (1-3), those of thymic adenocarcinoma remain poorly understood, and this has hindered the establishment of personalized treatment for these patients. Here, we report a unique case of primary thymic adenocarcinoma exhibiting markedly bidirectional progression based on distinct genetic-phenotypic abnormalities.

CLINICAL SUMMARY

A 39-year-old female patient without pertinent previous and family history consulted a physician for her clubbed finger and bilateral hand edema. Because no clinical findings suggesting collagen diseases were recognized, the symptoms were suspected to be due to respiratory diseases. She underwent chest X-ray and computed tomography (CT), which revealed a mediastinal tumor. She was hospitalized in our institution for further investigation. Magnetic resonance imaging (MRI) exhibited a 19 cm mass consisting of 12 cm cystic and 7 cm solid components in her anterior mediastinum, adjacent to the left side of her heart (Figure S1a). 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT revealed strongly elevated FDG uptake in the solid component (Figure S1b).
differential diagnoses included mature teratoma, cystic thymoma, lymphoma, and solitary fibrous tumor. No clinical findings suggesting a metastatic tumor were detected. The tumor was surgically resected with partial resection of the upper lobe of her left lung. She received postoperative radiotherapy (50 Gy/25 fr) and has remained disease-free for approximately two years.

PATHOLOGICAL FINDINGS

The macroscopic finding of the resected tumor was almost consistent with the radiographic findings. The tumor consisted of a whitish solid mass measuring 7.5 cm, with expansile invasion to the adjacent lung, and a unilocular cyst measuring 14 cm, filled with brownish mucous material. The inner wall of the cyst was not totally smooth, but contained two small papillary nodules, measuring 1.7 cm and 1.0 cm (Figure S1c-e).

Microscopically, the solid mass consisted of poorly differentiated adenocarcinoma with geographic necrosis (Figure 1a) (henceforth lesion-1). The tumor cells had sizeable nuclei with distinct nucleoli and abundant eosinophilic cytoplasm. They proliferated, showing mainly solid but sometimes tubular or (micro)papillary patterns (Figure 1b-c). Many mature lymphocytes and plasma cells were present in the tumor (Figure 1d). No cystic wall surrounding the solid component was evident.

The papillary nodules within the cyst exhibited well- to moderately differentiated
adenocarcinoma (Figure 2a) (henceforth lesion-2). The tumor cells had a clearer cytoplasm (Figure 2b), and some contained intracellular mucin (Figure 2c). The other parts of the cyst were lined with mucinous epithelium with variable cytological atypia (Figure 2d).

Immunohistochemically, the tumor cells in lesion-1 were positive for pan-cytokeratin (CK) and CD5 and negative for CD117, CDX2, p40, SATB2, and TTF1 (Figure 3a-d). The carcinoma cells in lesion-2 were also CK (+)/CD5 (+)/CD117 (-)/TTF1 (-), but partly positive for CDX2 and SATB2, consistent with morphological enteric differentiation (Figure 4a-c).

CD30, CK20, MUC2, and SALL4 were negative in both tumor components (not shown).

Around the macroscopic cyst, several small cysts lined with mucinous epithelium without significant atypia in addition to an atrophic non-neoplastic thymus were observed (Figure S2a-c). Considering all findings, we diagnosed the case as enteric-type adenocarcinoma of the thymus (4) with a poorly differentiated component, associated with thymic cysts.

Although both lesions (i.e., poorly differentiated adenocarcinoma in the solid lesion [lesion-1] and well-differentiated adenocarcinoma in the cystic lesion [lesion-2]) were not directly connected microscopically, we hypothesized that the poorly differentiated component (lesion-1) had developed from the well-differentiated component (lesion-2) through tumor progression (Figure 5a). We then performed WES for lesion-1 and lesion-2 independently, expecting to find genetic features related to the initiation and progression of thymic...
adenocarcinoma. We used an R package, deconstructSigs (v. 1.9.0), to decompose the
mutational signatures. COSMIC Mutational Signatures Version 3.0 was used.

Our hypothesis was “partially” correct. WES revealed that both lesions shared nine
mutations, including a $CDKN2A$ truncating mutation. Copy number analysis identified shared
features including 6q loss, 9 loss (resulting in loss of heterozygosity [LOH] in $CDKN2A$), and
18q loss, further supporting that they were derived from a common ancestor (Figure 5b).
Consistent with the genetic findings, both lesions were completely negative for p16 protein in
immunohistochemistry (IHC) (Figure 3e and 4d).

Two lesions exhibited distinct genetic features, albeit derived from a common
ancestor; the solid lesion (lesion-1) harbored 203 indels and 912 single nucleotide variations
(SNVs), including $TSC1$, $ARID1B$, and $ARID1A$. Lesion-1 showed a high indel/SNV ratio,
and the signature analysis suggested evidence of COSMIC signature 15 (attributed to
microsatellite instability) as well as signature 1 (attributed to aging) (Figure 5b and S3).
These results suggested lesion-1 was a microsatellite instability-high (MSI-H) carcinoma;
indeed, the tumor cells showed loss of MLH1 protein expression in IHC (Figure 3f). In
contrast, the carcinoma within the cyst (lesion-2) carried far fewer mutations (3 indels / 34
SNVs) as compared to the solid part (lesion-1) and carried a likely driver mutation, $KRAS$
$G12D$ (Figure 5b). Further, copy number analysis suggested whole-genome doubling,
resulting in tetraploidy (Figure 5c). These results indicate that both the poorly differentiated
(lesion-1) and well-differentiated (lesion-2) lesions developed from a common ancestor with
CDKN2A inactivation, but followed distinct evolutionary trajectories that resulted in different
phenotypes.

DISCUSSION

Recent studies, including one conducted as a part of the Cancer Genome Atlas (TCGA)
project, have advanced our understanding of the genetic features of thymic epithelial tumors
(TETs). Chromosomal loss of 6q25.2-q25.3 can occur in TETs across histotypes. GTF2I
L242H mutation is the most frequent in type A/AB thymomas. In thymic squamous cell
carcinoma, loss of 16q is a common event, and several oncogenic mutations, such as those of
CYLD, TP53, or KIT, may be observed, although no recurrent mutations are known (1-4).

To date, however, only a few English-language reports have described the genetic
abnormalities of thymic adenocarcinoma (5-7). As such, our case exhibited several novel
genetic features, namely, CDKN2A mutations/deletions, an MSI-H phenotype, and
whole-genome doubling.

CDKN2A is one of the commonly affected tumor suppressor genes across cancer
types (8, 9) and can involve tumor predisposition, initiation, and progression (10).

Accordingly, it is reasonable to think that this is one of the earliest events for (both
components of) the tumor in our case and possibly occurred in the epithelium of the thymic
cysts. It was technically challenging to determine the mutation status of \textit{CDKN2A} of the benign-looking epithelium of the cysts surrounding the two cancerous lesions. Considering that the epithelium was positive for p16, albeit very focally (Figure S2c-d), these thin cysts may harbor wild-type \textit{CDKN2A}, and the common ancestor of the two cancers may have become effaced through the tumor progression. The TCGA ‘Thymoma’ dataset (that also comprised thymic carcinomas, however, no adenocarcinomas) detected the homozygous deletion of \textit{CDKN2A} in approximately 4% of thymic epithelial tumors across histotypes (2, 8, 9), suggesting this abnormality may be a common finding in thymic epithelial tumors.

The second novel genetic feature is the MSI-H phenotype, which the poorly differentiated adenocarcinoma of the solid lesion exhibited. Because no apparent mutations of DNA mismatch repair genes, including \textit{MLH1}, were detected in either lesion, we think that the loss of MLH1 protein expression in lesion 1 was caused by epigenetic changes, such as \textit{MLH1} promoter methylation. MSI-H is a common cancer phenotype observed in many cancers (11). MSI-H cancers are well-known to exhibit a better response to immune checkpoint inhibitors, especially when the tumor mutation burden is high, as in our case (12). In the TCGA dataset, one among nine thymic carcinomas exhibited the MSI-H phenotype (the diagnosis was undifferentiated carcinoma) (2), and, to the best of our knowledge, our case is the second reported case of MSI-H thymic carcinoma. Considering that a previous comprehensive study (2) and our signature analysis did not reveal any predisposing factors
(e.g., smoking and ultraviolet) for thymic epithelial tumors, the MSI-H phenotype might be a more prevalent feature of thymic carcinoma than expected.

The third novel genetic feature is whole genome doubling (WGD), which was detected in the intracystic adenocarcinoma (lesion-2). WGD is a common event in many cancers, and has both prognostic and therapeutic relevance, because a recent study reported that WGD (+) cells exhibited a unique dependence on particular signaling pathways (e.g., those related to the spindle-assembly checkpoint) and vulnerability for loss of KIF18A (13). Lopez et al. reported that WGD is enriched in tumor types with extensive LOH and suggested that it occurs to mitigate the accumulation of deleterious somatic alterations (14). We wonder if the simple columnar epithelium surrounding the enteric-type adenocarcinoma (lesion 2) might show the genetic state before WGD. This hypothesis could not be addressed by WES of the columnar epithelial cells due to their insufficient number.

Altogether, our case suggests that thymic adenocarcinoma can develop through relatively common genetic abnormalities rather than unique mutations, such as the mostly type A/AB thymoma-specific GTF2I L424H mutation (1). Therefore, targeted therapies that apply to cancers in other organs might be feasible. Also, our case likely expands the concept of the branched evolution model of cancer (15); the two components of the tumor followed distinct trajectories with different therapeutic implications.

Recently, gene panel testing is becoming routine for unresectable tumors. Our case
underscores the importance of cautious histological evaluation for heterogeneous tumors in
that morphologically different components can exhibit more distinct, potentially druggable,
genetic abnormalities than expected. If a test is performed with only one histological
component or with a bulk sample, precise genetic information may not be obtained and may
lead to suboptimal treatments.

Our case presents novel genetic features of thymic adenocarcinoma, which illustrates
a unique process of tumor evolution, and suggests caution in tissue-based genetic testing.
FIGURE LEGENDS

Figure 1. Histological findings of the solid lesion of the thymic adenocarcinoma (lesion-1).

The tumor exhibits geographic necrosis (panel a). The tumor cells have sizeable nuclei with distinct nucleoli and a wide eosinophilic cytoplasm; they exhibit mainly solid (panel b) but sometimes tubular or (micro)papillary patterns (panel c). Many mature lymphocytes and plasma cells are present in the tumor (panel d) (hematoxylin and eosin section).

Figure 2. Histological findings of the cystic lesion of the thymic adenocarcinoma (lesion-2).

The papillary nodules within the cyst exhibit well-differentiated adenocarcinoma (panel a). The tumor cells have a clearer cytoplasm (panel b), and some contain intracellular mucin (panel c). The other parts of the cyst are lined with mucinous epithelium with variable cytological atypia (panel d) (hematoxylin and eosin section).

Figure 3. Immunohistochemical findings of the solid lesion of the thymic adenocarcinoma (lesion-1).

The tumor cells are positive for CD5 (panel a) and negative for CDX2 (panel b), SATB2 (panel c), p40 (panel d), p16 (panel e), and MLH1 (panel f) (immunohistochemistry).
Figure 4. Immunohistochemical findings of the cystic lesion of the thymic adenocarcinoma (lesion-2).

The tumor cells are positive for CD5 (panel a), CDX2 (panel b), SATB2 (panel c), and negative for p16 (panel d) (immunohistochemistry).

Figure 5. Whole-genome sequencing of the thymic adenocarcinoma

The scheme of the tumor (panel a). Mutations detected in the solid (lesion-1) and cystic (lesion-2) components (panel b). Few mutations, including CDKN2A, are shared between the two lesions. Lesion-1 harbors numerous mutations (>900/exome), including TSC1, ARID1B, and ARID1A. Lesion-2 harbors relatively fewer mutations but has KRAS G12D. Copy number analysis for both lesions (panel c). Lesion-2 mostly exhibits the tetraploid karyotype, suggesting whole-genome doubling.
SUPPLEMENTAL INFORMATION

Figure S1. Radiologic and macroscopic findings of the thymic adenocarcinoma.

T2-weighted magnetic resonance imaging (MRI) exhibited a large cystic lesion and a smaller solid lesion on the left side of the anterior mediastinum (panel a). 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT revealed strongly elevated FDG uptake in the solid component (panel b). Macroscopic findings of the tumor (panel b-d). A solid whitish lesion pushing the adjacent lung is observed (panels c and d). The cystic lesion is filled with brownish mucous material but contains small papillary nodules (panel e).

Figure S2. Microscopic findings of the thymic adenocarcinoma.

Microscopic findings around the macroscopic cystic tumor (T) (panels a and b). Small cysts lined with mucinous epithelium without significant atypia (C) (panel a) and non-neoplastic atrophic thymus (Thy) (panel b) and are observed. The epithelium of the benign-looking cysts (C) was very focally positive for p16 (panel c and d) (a-c: hematoxylin and eosin section, d: immunohistochemistry).

Figure S3. Whole-genome sequencing of the thymic adenocarcinoma.

The solid lesion (lesion-1) harbors numerous mutations (> 900/exome) with a high indel/SNV
ratio, and the signature analysis reveals a strong influence of Signature 15 (Microsatellite instability) and Signature 1 (Aging).
DECLARATIONS

Conflicts of interest: None declared

Authors’ contributions:

Drafting the manuscript and figures: AI, YI, and YY. Acquisition and analysis of genetic data: YI. Acquisition and analysis of clinical data: DN and HD. Correction and approval of the manuscript: all authors.

Ethics approval:

The project was approved by an institutional ethics committee.
REFERENCES

a. The scheme of the tumor

The solid component:
Poorly differentiated adenocarcinoma (Ad.) (Lesion-1)

The cystic component:
Enteric-type Ad. (Lesion-2)

Multilocular thymic cyst

b. Observed genetic mutations

Lesion-1

Lesion-2

c. Copy number analysis
Figure S2

(a) and (b) show different sections of a tissue sample labeled with T and C, respectively. (c) and (d) are additional images labeled with different regions.

Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp
Figure S3

A Self-archived copy in Kyoto University Research Information Repository
https://repository.kulib.kyoto-u.ac.jp