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A method is presented for generating a discrete piecewise constant Gaussian curvature (CGC) surface.
An energy functional is first formulated so that its stationary point is the linear Weingarten (LW)
surface, which has a property such that the weighted sum of mean and Gaussian curvatures is constant.
The CGC surface is obtained using the gradient derived from the first variation of a special type
of the energy functional of the LW surface and updating the surface shape based on the Gaussian
curvature flow. A filtering method is incorporated to prevent oscillation and divergence due to unstable
property of the discretized Gaussian curvature flow. Two techniques are proposed to generate a
discrete piecewise CGC surface with preassigned internal boundaries. The step length of Gaussian
curvature flow is adjusted by introducing a line search algorithm to minimize the energy functional.
The effectiveness of the proposed method is demonstrated through numerical examples of generating
various shapes of CGC surfaces.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Design of architectural free-form surfaces requires complex
ecision making in view of desirable geometry, structural perfor-
ance, and constructability. To generate a smooth surface that is
ptimal in view of a certain performance measure, a number of
ethods have been proposed utilizing parametric representations
f surfaces. Ramm et al. [1] used Bézier surface [2] to express
he shape of a shell roof structure, and optimized its shape in-
orporating the coordinates of control points as design variables.
agata and Honma [3] generated Pareto optimal solutions of
arametric free-form shells using a heuristic approach. However,
ven if the architectural geometry is defined as a smooth sur-
ace, it is necessary to discretize it into meshes to apply the
inite element method for simulating its structural performance.
sogeometric analysis is recently used so that structural analysis
s carried out using the same basis function as the geometry
epresentation [4]. However, in practical application, a shell roof
urface is often constructed using planar panels for reduction of
he cost and time for fabrication and construction [5]. There-
ore, it is beneficial to directly design a nonparametric form of
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discrete (polyhedral) surface consisting of a set of planar panels
(faces). Nevertheless, relatively few methods have been proposed
for designing architectural geometry through direct handling of
discrete surfaces [6,7] rather than modeling as parametric smooth
surfaces.

Properties of the surface can be evaluated using various geo-
metrical invariants such as Gaussian curvature and mean curva-
ture. Rando and Rourier [8] proposed several fairness metrics for
parametric curves and surfaces. Fu et al. [9] used Gaussian cur-
vature for measuring the similarity between free-form surfaces.
Fujita and Ohsaki [10] used triangular Bézier patch to express
irregular shape of shell structures and evaluated properties of the
surface shape using geometric invariants defined by the covariant
and contravariant gradients and Hessian of the surface.

There are many piecewise-smooth free-form architectural
roofs with internal boundaries, and the overall locations of in-
ternal boundaries are usually determined in view of architectural
design and planning requirements. The surface has C0 continuity
at the internal boundary, which may be stiffened by beams to
prevent collapse due to stress concentration. Therefore, it is
practically and theoretically important to investigate the methods
for generating surfaces with specified locations of internal bound-
aries of piecewise smooth surfaces. Ohsaki and Hayashi [11]
used fairness metrics to generate piecewise smooth Bézier sur-

face. Nakamura et al. [12] proposed a method for connecting
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1, n)-Bézier surfaces to generate piecewise developable surfaces
f architectural roofs and facades.
Gaussian curvature is an important index for the convexity of

he architectural roofs. In this study, we first formulate the energy
unctional so that its stationary point is the linear Weingarten
LW) surface [13]. The energy functional is the weighted sum of
he total mean curvature, the total area, and the volume bounded
y the surface. The LW surface has the property such that the
eighted sum of mean and Gaussian curvatures is constant
14,15]. The energy functional is simplified as the sum of the
otal curvature of a surface and the product of target Gaussian
urvature and the volume bounded by the surface by ignoring
he total area. The negative gradient flow of this functional,
alled Gaussian curvature flow, is utilized to generate a piecewise
mooth surface as an assembly of the constant Gaussian curvature
CGC) surfaces. Therefore, the CGC surface can be regarded as a
pecial type of the LW surface, and it can be obtained using the
aussian curvature flow derived from the first variation of the
nergy functional and moving the surface in the normal direction
f the surface in accordance with the Gaussian curvature flow.
lthough mean curvature flow has been successfully applied to
urface fairing in the field of computer graphics, only a few
pplications can be found for the Gaussian curvature flow [16].
hao and Xu [17] noted that the Gaussian curvature flow can be
sed only for a convex surface.
Most of the studies on optimization of free-form shell roofs in

rchitectural design is intended to obtain a mechanically efficient
orm under vertical loads mainly representing the self-weight.
ven when the convex dome-type shapes are desired, an HP-
ype surface with negative Gaussian curvature may be sometimes
btained as a result of optimization. Therefore, it is important
o present a method for generating CGC surfaces with positive
aussian curvatures to generate feasible solutions for mechan-
cal optimization to limit the design domain. Convex surfaces
re also desired for ensuring enough stiffness against horizontal
arthquake and wind loads.
According to Refs. [18,19], the LW surface is closely related to

n equilibrium shape of membrane shells, in which the bending
oment and out-of-plane shear force can be neglected. If the
quilibrium is expressed with respect to the lines of principal
urvatures with vanishing shear stress and tension stresses pro-
ortional to the principal curvatures in the different directions,
espectively, then the Gaussian curvature is proportional to the
ressure loads in the normal direction of the surface. There-
ore, the LW surface is expected to be a special class of surface
or shape optimization of shell and membrane structures. Fur-
hermore, the CGC surface has a special property such that the
rincipal directions of the membrane stresses coincide with the
urvature lines, when subjected to uniform pressure loads, and
he values of principal stresses are proportional to the principal
urvatures.
Since the developable surface is regarded as a special type of

GC surface, the methods developed for the CGC surfaces can
e naturally applied to the developable surfaces that have many
ields of application. The method of generating a developable
urface with curved internal boundary may be directly used for
esign of origami structures with curved crease lines.
The discretized form of Gaussian curvature flow is obtained

sing the angle defect at each vertex of the triangular mesh [20].
he discrete LW surface can be regarded as a generalization of the
iscrete constant mean curvature surface [21]. Tellier et al. [22,
3] obtained the gradient of the energy functional of the LW sur-
ace after discretizing the surface. They used the dihedral angle of
he adjacent pair of triangular faces to define the mean curvature,
nd derived the gradients of the total mean curvature by ap-

roximately differentiating the dihedral angle. It is also possible

2

to solve a nonlinear programming problem for minimizing the
norm of error of the Gaussian curvature from the specified target
value to obtain a CGC surface. However, in this case, gradients
should be evaluated by solving a set of large number of linear
equations if the surface is discretized into many triangular faces.
Therefore, it is important to develop a method based on energy
minimization using a simple evaluation of gradients. This study
aims at obtaining the gradient by discretizing the first variation
of the energy functional so that the process of generating the
CGC surface is fully compatible with minimization of the energy
functional. For architectural roofs that have various boundary
shapes, it is not realistic to try to have a constant Gaussian
curvature in the whole domain of the surface. Therefore, it is
important to develop a method for generating piecewise CGC
surfaces, e.g., a piecewise developable surface may be generated
using (1, n)-Bézier surfaces [24,25].

It is well known in the field of structural shape optimization
of continuum structures that nonsmooth boundary shapes are
generated if the locations of nodes of the finite element mesh
are considered as independent design variables [26]. It is also
well known that distribution of the material or thickness of plate
elements becomes nonsmooth if the density of material or the
thickness of each finite element is considered as independent
design variables [27]. To prevent obtaining distorted shapes, vari-
ous approaches of filtering have been proposed [28–30]. Filtering
techniques are also used in the field of computer graphics [31].

In this paper, a method is presented for generating a discrete
piecewise CGC surface. Although there exist many studies for
generating CGC surfaces, the properties of surfaces with boundary
remain to be investigated, and most of methods have been de-
veloped for the closed surfaces without boundary. The proposed
method for generating a surface with internal boundaries can be
extended and generalized for generating various types of piece-
wise continuous surface. In Section 2, an energy functional is first
formulated so that its stationary point is the LW surface, and sim-
plified by ignoring the area term to obtain the gradient as the first
variation of the energy functional. In Section 3, the discretized
forms of the energy functional and the Gaussian curvature flow
are derived. An optimization method is developed in Section 4 for
generating a discrete piecewise CGC surface using the Gaussian
curvature flow. A filtering method is incorporated to prevent
oscillation due to unstable property of the discretized Gaussian
curvature flow. Two strategies are proposed to generate a discrete
piecewise CGC surface with preassigned internal boundaries. The
step length of Gaussian curvature flow is adjusted by introducing
a line search algorithm to minimize the energy functional. Effec-
tiveness of the proposed method is demonstrated in Section 5
through numerical examples of various CGC surfaces.

2. Gaussian curvature flow

In this section, the basics of LW surface and Gaussian curva-
ture flow are explained for completeness of the paper. Although
some results are presented in the literatures in mathematical
forms including those in higher dimensional space, presenting
basic formulas for special cases in this paper may be beneficial
for understanding the details of our method.

2.1. Gaussian curvature flow for continuous surface

The Gaussian curvature flow for continuous surface is first
introduced utilizing the properties of a special case of the LW
surface. Let H and A denote the mean curvature and the area of a
closed surface X ∈ R3 in a three dimensional space. The volume
bounded by the surface is denoted by V . These values are defined
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n Section 3.1 for the discretized surface. Using the constants α,
, and γ , the energy functional is formulated as

=

∫
(αH + β)dA+ γV (1)

where the stationary point of E is the linear LW surface [13].
Note that a constant mean curvature surface is generated if E is
minimized with α = 0, β ̸= 0, and γ ̸= 0 [32].

Considering the special case of α = 1, β = 0, and γ = K̄ with
a constant K̄ , Eq. (1) is rewritten as

Ẽ =
∫

HdA+ K̄V (2)

The stationary condition of the energy functional Ẽ is derived
elow for completeness of the paper. Let n ∈ R3 denote the unit
utward normal vector at a point X on the surface. We consider
variation of the surface X→ X+ tδX = X+ tψn in the normal

direction, where ψ is an arbitrary function of the coordinates on
the surface, and t is a scalar parameter. The following equations
hold for the first variations of H and A [33,34]:

δH =
1
2
[−∆ψ + (4H2

− 2K )ψ] (3)

δdA = −2ψHdA (4)

where K is the Gaussian curvature. From the divergence theorem,
we have∫
∆ψdA = 0 (5)

Therefore, the following equation is satisfied for the first variation
of the total mean curvature:

δ

∫
HdA =

∫
(δHdA+ HδdA)

=

∫
(2H2
− K − 2H2)ψdA

= −

∫
KψdA

(6)

The first variation of the volume is obtained as

δV =
∫
ψdA (7)

Hence, the first variation of the energy functional Ẽ is expressed
as

δẼ = −
∫

(K − K̄ )ψdA (8)

Accordingly, the stationary point of Ẽ needs to satisfy the follow-
ing Euler–Lagrange equation:

K − K̄ = 0 (9)

This implies that when K̄ is specified as a target Gaussian cur-
ature, minimization of the energy functional Ẽ leads to the
urface with the constant Gaussian curvature K̄ , if Ẽ is convex
ith respect to the shape variation in the normal direction. It is
nown that the energy functional E in Eq. (1) is elliptic only when
2
+ αγ > 0 is satisfied [35]. Tellier et al. [23] stabilized E for a

iscrete surface by replacing the total area with its square. In this
aper, we consider the case of β = 0 and α = 1; therefore, K̄ > 0
s assumed, because the Gaussian curvature flow can be applied
nly to a convex surface as noted by Zhao and Xu [17].
It is easily shown by minimizing δẼ under constraint on the

orm of ψ that the gradient of Ẽ is −(K − K̄ ); thus, a CGC surface
an be obtained using the steepest descent method by moving
he surface in the direction of the outward unit normal vector
ultiplied by −(K − K̄ ), which is called Gaussian curvature flow.
3

Fig. 1. Definitions of vectors and angles at a vertex of a triangular mesh surface.

3. Gaussian curvature flow for discrete surface

In this section, the formulas used for the discrete Gaussian
curvature flow are explained for completeness of the paper.

3.1. Geometrical properties of a triangular mesh surface

We consider a discretized closed or boundary-fixed open sur-
face M with triangular faces (i.e., triangulated polyhedron) in
3-dimensional space. The position vector of vertex i is denoted
as pi ∈ R3. The value corresponding to vertex i is indicated by
the subscript i in the following.

Discrete Gaussian curvature Ki
Fig. 1 shows the geometrical properties used for computing

the discrete Gaussian curvature flow. The area of Voronoi region
of vertex i is denoted by Ai, and the triangular face fijk consists of
the vertices i, j, k aligned anti-clockwise when viewed from the
outside of the surface. The angle between the vectors pj− pi and
k − pi of the face fijk is denoted by θ jki .
Among several definitions of the discrete Gaussian curvature,

he angle defect defined as follows is used in this study:

i =
1
Ai

⎛⎝2π −
∑
fijk∈Ti

θ
jk
i

⎞⎠ (10)

here Ti denotes the set of indices of faces connected to vertex i.
ote that the Gaussian curvature is to be computed at the internal
ertices only.

nit outward normal vector ni
An outward normal vector njk

i of the face fijk at vertex i is
efined as

jk
i =

1
2
(pj − pi)× (pk − pi) (11)

he length of njk
i is equal to the area of the face fijk. A normal

ector n0
i ∈ R3 at vertex i is computed as

0
i =

∑
fijk∈Ti

njk
i (12)

nd the unit normal vector ni at vertex i of the surface is obtained
s

i =
n0
i
0 (13)

∥ni ∥
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Fig. 2. Computation of volume bounded by the surface; (a) infinitesimal region
of a continuous surface, (b) triangular element of a discrete surface.

Note that n0
i is a normal vector as the mean of the normal vectors

of the faces in Ti weighted by the area.

Total mean curvature
∫
HdA

Let Ni denote the set of indices of vertices adjacent to vertex
i. The mean curvature vector Hi ∈ R3 at vertex i is computed as
follows using the discrete Laplace–Beltrami operator [36]:

Hi =
1
Ai

∑
j∈Ni

1
2
(cot θ̃ ij1 + cot θ̃ ij2 )(pj − pi) (14)

here θ̃ ij1 and θ̃ ij2 are defined as shown in Fig. 1. Half of the norm
of Hi corresponds to the absolute value of the mean curvature
Hi as |Hi| =

1
2∥Hi∥ [37]. The sign of Hi is defined by the dot

roduct between the unit outward normal vector ni and the mean
urvature vector Hi; i.e., the mean curvature is positive/negative
f the surface is concave/convex in the outward normal direction.

The total mean curvature of the continuous surface is equiv-
lently computed as the summation of Hi multiplied by Ai over

the discrete surface; i.e., the following relation is approximately
satisfied:∫

HdA =
∑
i∈N

HiAi (15)

here N is the set of indices of all vertices.

olume bounded by the surface V
Figs. 2(a) and (b) show the volume corresponding to an in-

initesimal region of a continuous surface and a triangular face of
discrete surface, respectively. For an open or a boundary-fixed
ontinuous surface, the volume of the surface can be computed
y surface integration over conical elements whose base is an
nfinitesimal surface area and the apex is the origin of the space
14,38]. Similarly, the volume bounded by a triangular mesh can
e computed by summation of the triangular pyramids whose
ases are their face element and apexes are the origin of the
4

global coordinate system. Fig. 2(b) illustrates the triangular pyra-
mid corresponding to face fijk, where Aijk and nijk ∈ R3 are the area
and the unit normal vector of face fijk, respectively. By definition,
the volume of the pyramid Vijk is computed as:

Vijk =
1
3
⟨pi,nijk⟩Aijk (16)

where ⟨a, b⟩ is the dot product of the vectors a and b, and the
unit normal vector nijk is given as

nijk =
(pj − pi)× (pk − pi)
∥(pj − pi)× (pk − pi)∥

=
1

2Aijk

[
pj × pk + (pk − pj)× pi

] (17)

ecause (pk − pj) × pi is perpendicular to pi, the dot product of
hese two vectors vanishes as

(pk − pj)× pi, pi⟩ = 0 (18)

rom Eqs. (16)–(18), the volume bounded by the discrete surface
is obtained as

=
1
6

∑
fijk∈M

⟨pi, pj × pk⟩ (19)

In the numerical examples, we consider boundary-fixed sur-
faces. For the case of isolated fixed points with variable boundary
edges, dummy meshes are generated outside the boundary.

3.2. Discrete Gaussian curvature flow

Discrete Gaussian curvature flow is a gradient flow of the en-
ergy functional Ẽ that transforms a polyhedron with respect to its
discrete Gaussian curvature. The gradient flow is discretized here,
instead of discretizing the energy functional and differentiating it
to obtain the gradient flow.

Let Ki, K̄i, and ni ∈ R3 denote the Gaussian curvature, its
target value, and the unit outward normal vector at vertex i,
espectively, which have been defined in Section 3.1. Although
¯i should be the same at all vertices, we use the subscript i to
ndicate a value at vertex i. The gradient of Ẽ is obtained as

Ki = (Ki − K̄i)ni (20)

nd the locations of vertices are updated using the discrete Gaus-
ian flow as

i ←− pi −∆Ki (21)

owever, to prevent oscillation and divergence, a small positive
arameter µ is incorporated as

i ←− pi − µ∆Ki (22)

he strategy for determination of µ is explained in Section 4. The
urface converges to a CGC surface by iteratively using Eq. (22)
or updating the locations of vertices.

. Optimization method for generating piecewise CGC surface

In this section, two approaches are presented for generating
iecewise CGC surfaces divided by internal boundaries.
As noted in Introduction, the Gaussian curvature flow is not

ery stable compared with the mean curvature flow. Here, a
imple filter that is used for structural topology optimization is
tilized to maintain smoothness of the surface. The weighted
verage of the gradients of the Gaussian curvature among the
eighborhood vertices is used at each vertex. Let d denote the
ij
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uclidean distance between vertices i and j. The upper-bound
value d̄ is given for dij to define a modified distance d̃ij as

d̃ij = min(dij, d̄) (23)

To generate piecewise CGC surfaces, the whole surface is di-
vided into several regions by the edges along the internal bound-
ary that is specified a priori. This does not mean that the locations
of the vertices along the internal boundary are fixed. Let NI,

f, and Np denote the sets of indices of internal vertices, fixed
external boundary) vertices, and the vertices on the internal
oundary, respectively. The locations of vertices in Nf are fixed;
owever, those in Np are allowed to move in accordance with the
djacent internal vertices.
The weight coefficients wij are defined as

ij =

⎧⎪⎪⎨⎪⎪⎩
(
d̄− d̃ij

d̄

)p

if j ∈ NI

0 else

(24)

here p (> 0) is the parameter to determine relative importance
f nearer vertices; we set p = 3 in the numerical examples.
onsequently, effect of the gradients at the vertices in Nf and Np

are ignored. The weight coefficient wij is normalized to w̃ij as

w̃ij =
wij∑n
j=1wij

(25)

here n is the number of vertices.
Using the weight coefficients, the smoothed gradient ∆K̃i is

btained as follows for the internal vertices:

K̃i =

n∑
j=1

w̃ij∆Kj for i ∈ NI (26)

ote again that the smoothed gradient ∆K̃i does not depend
n the gradients at the vertices in the external and internal
oundaries.
An optimization problem is solved to obtain a CGC surface

sing the discrete Gaussian flow. The following two strategies are
roposed for generating a piecewise CGC surface:

1 The gradients of vertices along the internal boundary are
multiplied by the parameter s ∈ (0, 1) as

∆K̃i = s
n∑

j=1

w̃ij∆Kj for i ∈ Np (27)

The vertices in Np move in the same manner as the adja-
cent internal vertices if s is close to 1. By contrast, those
vertices move only slightly if s is close to 0.

S2 The gradients of vertices along the internal boundary are
defined in the same manner as the internal boundary using
Eq. (26). However, the update of vertex location is delayed
for e steps; i.e., the locations of vertices along the internal
boundary are fixed for the first e steps. It is shown in the
numerical examples that a small e, e.g., e = 5, leads to
significant difference in the final converged shapes.

The important feature of our optimization problem is that we
minimize the energy functional to obtain the solution satisfying
the stationary condition that corresponds to the CGC surface;
i.e., we do not minimize the error of the Gaussian curvature from
the target value. Another important feature is that we do not have
to compute the gradients (sensitivity coefficients) of the Gaussian
curvature analytically differentiating the governing equations.

The piecewise CGC surface is obtained by simply modifying the a

5

Fig. 3. Illustration of Armijo condition for line search.

locations of vertices using the discrete Gaussian curvature flow.
However, in addition to the filtering technique, some techniques
should be introduced to improve the computational efficiency.

As seen from Eq. (8), the norm of variation of the vertex
position vector decreases as Ki converges to the target value K̄i
when a constant value is used for µ. The variation may be too
large and the solution may diverge if the initial surface is not close
to the CGC surface. Furthermore, unnecessarily many iterations
may be needed when the solution approaches the final CGC
surface. Therefore, we utilize line search method to dynamically
adjust the amount of modification at each step of iteration with
the constant value of the gradient.

Among various strategies of line search developed in the field
of mathematical programming, the Armijo condition as illustrated
in Fig. 3 is used in the numerical examples in the same manner
as Tellier et al. [23]. Let x ∈ Rm denote the vector of m design
variables consisting of the coordinates of the internal vertices and
the vertices in the internal boundaries. Important point here is
that the value of the energy functional Ẽ(x), which is the objective
function of the optimization problem, is explicitly used for the
termination condition of the line search.

The value of x at the beginning of the iterative step k and
ts search direction vector are denoted by xk and dk ∈ Rm,
espectively. Note that dk consists of the gradients ∆Ki at the
nternal vertices. Using a constant ξ ∈ (0, 1) and the gradient
Ẽ(xk) of Ẽ(x) at x = xk, the Armijo condition for µ is given as
˜ (xk + µdk) ≤ Ẽ(xk)+ ξµ⟨∇Ẽ(xk), dk⟩ (28)

Furthermore, to prevent divergence due to too large varia-
ion of the surface shape, the following criterion is added for
etermination of the step length, assuming that a CGC surface is
enerated from an initial surface with small Gaussian curvature:

i ≤ ζ K̄i if i ∈ NI (29)

here ζ is a constant slightly larger than 1.
In summary, the largest value of µ satisfying Eqs. (28) and (29)

s determined at each iteration step using a line search. In the
ollowing examples, µ starts from a sufficiently large value µ0
nd is multiplied by a parameter τ ∈ (0, 1) until Eqs. (28) and
29) are satisfied or the number of substeps reaches the upper
ound q. In the numerical examples, convergence property is also
hecked by the following error norm of the Gaussian curvature
rom the target value:

=

√∑
i∈NI

(Ki − K̄i)2 (30)

Since the proposed method is based on energy minimization,
t is guaranteed that the energy always decreases at each iter-
tion using the steepest descent method with line search, and
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Fig. 4. Piecewise smooth curves with constant curvature (C1); (a) without
internal boundary, (b) S1 with s = 0.8, (c) S2 with e = 3.

terminates at a local minimum. Accordingly, the convergence to
the CGC surface is theoretically guaranteed. However, the error of
Gaussian curvature from the target value slightly oscillates due to
numerical error. The convergence theory for the Gaussian curva-
ture flow starting from a convex and closed initial surface was
studied in Ref. [39]. Although a theoretical convergence analysis
is difficult for the proposed method for application to surfaces
with internal and external boundaries, a linear convergence of the
energy functional is verified in the numerical examples.

5. Numerical example

Several piecewise CGC surfaces are generated using the pro-
posed method. The units are omitted because they are not im-
portant to describe the methodology. The computational cost and
accuracy are discussed, and parameter assignment is explained in
Section 5.8.

5.1. Example 1: Two dimensional curve with piecewise constant
curvature

To verify the proposed approach in Section 4 for generating a
CGC surface with internal boundary, a piecewise smooth curve
6

Fig. 5. Piecewise smooth curves with constant curvature (C2); (a) without
internal boundary, (b) S1 with s = 0.8, (c) S2 with e = 3.

with constant curvature is investigated on the 2-dimensional
(X1, X2)-plane. The two strategies S1 and S2 are utilized for gen-
erating piecewise smooth arches with curvature discontinuity at
the center vertex.

The line is divided into 20 edges, i.e., the line has 21 vertices.
The initial shape is the straight line connecting the fixed vertices
1 and 21 indicated in Fig. 4(a) and located at (X1, X2) = (0, 0) and
(2,0), respectively. The edge j (j = 1, . . . , 20) connects vertices j
and j + 1, and vertex 11 is located at the center as indicated in
Fig. 4(a). Let Li and Φi denote the length and the anticlockwise
angle from the horizontal X1-axis of edge i. We consider the
following two types of definition of the curvature ki at vertex i:

• C1: ki = Φi−1 −Φi
• C2: ki =

Φi−1
Li−1
−

Φi
Li

We do not discuss the proper definition of the curvature, because
the purpose here is to demonstrate that different curve shapes
are generated using the different definitions of the curvature.
Therefore, we simply show the results using C1 and C2. For
simplicity, the filter and the line search explained in Section 4 are
not used here, and the gradient at vertex 11 is computed as the
mean of those at vertices 10 and 12. The constant value µ = 0.05
is used for updating the vertex locations.

Consider C1 with the target curvature k̄i = 0.2. The shapes
after 500 steps are shown in Figs. 4(a)–(c), where the curvature of
internal vertices converged to 0.2 for all three cases. No internal
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Fig. 6. Shapes at step 3 of C2; (a) without internal boundary, (b) S1 with s = 0.8,
c) S2 with e = 3.

oundary exists in Fig. 4(a). Since the angle between the adjacent
dges is 0.2 rad. (= 11.46 deg.) and the number of internal
ertices is 19, the angle between the edges 1 and 20 connected
o the fixed vertices 1 and 21, respectively, is 3.8 rad. (= 217.72
eg.). Therefore, the curve becomes almost semicircle with a
iameter larger than the distance between the fixed vertices.
Fig. 4(b) shows the result of strategy S1 with the parameter
= 0.8 at the center vertex 11. Since the number of internal
ertices for each of the two arch segments is nine, the difference
etween the angles of the first and the last edges in each segment
s 1.8 rad. (= 103.13 deg.). It should be noted that a completely
ifferent shape from the shape in Fig. 4(a) is generated by using
he s value slightly smaller than 1. Fig. 4(c) shows the result of
trategy S2 with the delay e = 3. It is notable that a shape similar
o the strategy S1 with s = 0.8 is generated by delaying the
pdate of the center vertex for only three steps.
The arrows in the figures represent the gradients of the energy

unctional, which are normalized by the maximum length in each
igure. Note that the actual lengths of the gradients in Fig. 4 are
ery small. We can see from Figs. 4(b) and (c) that the lengths
f the edges connected to the center vertex become very small
specially if S2 is used.
Consider next C2 with k̄i = 1.0. The shape after 500 steps

ithout internal boundary is shown in Fig. 5(a), where the
urvatures at all internal vertices converged to 1.0. We can see by
omparing Figs. 4(a) and 5(a) that a curve with a smaller height

s obtained when C2 is used. Figs. 5(b) and (c) show the results of

7

Fig. 7. Initial shape of Example 2; (a) diagonal view, (b) plan view.

Fig. 8. Final shape of Example 2.

S1 with the parameter s = 0.8 and S2 with e = 3, respectively,
at the center vertex 11. We can see from Figs. 4 and 5 that the
differences of the total lengths in three cases are smaller for C2
than C1. The discontinuity in the angle at the center vertex is also
small if C2 is used. The edge lengths are almost uniform including
those of the edges connected to the center vertex. Figs. 6(a), (b),
and (c) show the shapes and the gradients for the three cases at
step 3 of updating the vertex locations from the horizontal line.
We can see from Fig. 6(a) that the curvature propagates from
each of the fixed vertices 1 and 21 if internal boundary does not
exist. It is confirmed from Figs. 6(b) and (c) that the norm of
gradient is small at the vertices near the center vertex that is
considered as the internal boundary.

5.2. Example 2: 9 × 9 grid with fixed boundary

Consider a 9 × 9 grid as shown in Fig. 7, where each grid
has a 0.1 × 0.1 square, and the red filled circle indicates a fixed
vertex. The dummy meshes indicated with gray are added outside
of the boundary so that the Gaussian curvature can be computed
at the boundary vertices in the same manner as the internal
vertices; consequently, the mesh has a 11× 11 grid. Alternatively,
the geodesic curvature may be used for the boundary vertices;
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Fig. 9. Iteration history of Example 2; (a) objective function (energy functional)
(b) error norm from the target value.

Fig. 10. Shape without filter of Example 2.

owever, consistency between the geodesic curvature and the
aussian curvature is not clearly defined for a polyhedral surface.
ll internal vertices are connected by six edges to ensure accuracy
f the curvature values [20]; accordingly, the triangular faces are
ot symmetrically located, although the overall shape is symmet-
ic. The target Gaussian curvature is K̄i = 1.0. The parameters
for the line search and filter are ξ = 0.01, τ = 0.5, µ0 = 0.1,
= 1.1, q = 5, p = 3, and d̄ = 0.5. The convex surface with

niform Gaussian curvature 1.0 has been obtained within 200
teps of iteration.
The final shape is shown in Fig. 8, which verifies that a smooth

hape can be generated using the filtering technique for the case
ithout internal boundary. Convergence of the energy functional

s confirmed in Fig. 9(a). The error of Gaussian curvature does not
8

Fig. 11. Initial shape of Example 3; (a) diagonal view, (b) plan view.

converge smoothly as shown in Fig. 9(b); however, the amount is
very small because the vertical axis is in a logarithmic scale; i.e., a
linear convergence is observed after 70 steps. A smooth surface
could not be obtained if the filter is not used; Fig. 10 shows the
shape at an intermediate step before the shape diverges.

5.3. Example 3: 9 × 9 grid with fixed corners

Consider next the same grid as Example 2 that is fixed at four
corners. The initial shape is shown in Fig. 11. The dummy meshes
are added also for this example. The target Gaussian curvature
is K̄i = 1.0, and the same values as Example 2 are used for the
parameters for line search and filter.

The final shape at the 200th step is shown in Fig. 12, which
verifies that a smooth shape can be generated also for the case
where four corners are fixed. Note that the shape near the corners
is strongly dependent on the shapes of the triangular mesh.
Convergence of the energy functional is confirmed in Fig. 13(a).
The error of Gaussian curvature oscillates as shown in Fig. 13(b);
however, a sufficiently small error is achieved at the final step.
The shape without filter is shown in Fig. 14 before the divergence
occurs. The use of filter is effective also for this example.

5.4. Example 4: 15 × 15 grid with internal boundary

Consider a 15 × 15 grid divided into 3 × 3 square regions that
have piecewise smooth shapes. The size of each grid is 0.1× 0.1.
he initial shape is shown in Fig. 15. The four corners are fixed
nd the dummy meshes are added in the similar manner as Ex-
mples 2 and 3. The target Gaussian curvature is K̄i = 4.0, and the
arameters for the line search and filter are the same as those for
xamples 2 and 3. The thick lines in Fig. 15 represent the internal
oundary, where the Gaussian curvature is not computed.
The final shape using the strategy S1 with s = 0.8 is shown

n Fig. 16, which confirms that a piecewise smooth CGC surface
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Fig. 12. Final shape of Example 3; (a) diagonal view, (b) plan view.

Fig. 13. Iteration history of Example 3; (a) objective function (energy functional)
(b) error norm from the target value.
9

Fig. 14. Shape without filter of Example 2.

Fig. 15. Initial shape of Example 4; (a) diagonal view, (b) plan view.

can be successfully generated using the proposed method. Con-
vergence of the energy functional is confirmed in Fig. 17(a). The
energy functional rapidly decreases in the first 20 steps, and the
line search terminates due to the limit of number of trials rather
than satisfying the error bound after 27 steps of iterative steps.
Although the error of Gaussian curvature oscillates between 30
and 50 steps as shown in Fig. 17(b), it finally decreases to a small
value exhibiting a linear convergence.

Fig. 18(a) shows the shape obtained by assigning different
target Gaussian curvatures in the regions. The values of K̄i are
.0 in the center region and 1.0 for the remaining eight regions.
he strategy S2 is used with s = 0.8. Although the target

curvatures should be theoretically the same at all vertices, a
piecewise smooth surface with different Gaussian curvatures can
be obtained using the proposed method.

The surface shape obtained using strategy S1 with s = 0.5, S2
ith e = 2, and S2 with e = 5 are shown in Figs. 18(b), (c), and
d), respectively, for the case K̄i = 4.0 in the center region. We can
onfirm from these figures that similar shapes can be obtained
sing S1 and S2. Values of s or e should be appropriately assigned
o that the desired internal boundary shape is generated.

.5. Example 5: Developable surface

A developable surface is generated by assigning K̄i = 0.0 as
the target Gaussian curvature. The parameters are the same as
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Fig. 16. Final shape of Example 4 (S1: s = 0.8).

Fig. 17. Iteration history of Example 4; (a) objective function (energy functional)
(b) error norm from the target value.

the previous examples except d̄ = 1.5 and µ0 = 1.0. The number
f iterations is increased to 500. The initial shape is shown in
ig. 19, where the vertices on the top and bottom rings are fixed,
nd dummy meshes exist outside both of the two rings.
The final shape at the 500th step is shown in Fig. 20. We can

ee from the figure that a cone-shaped developable surface has
een successfully generated. The convergence properties of the
nergy functional and the curvature error are shown in Fig. 21.
The error of the Gaussian curvature from the target value 0.0

s plotted in Fig. 22. The red and blue colors indicate positive and
egative errors, and white dot means that the error is negligibly
mall. The boundary node is indicated by gray, because the error
eed not be evaluated.

.6. Example 6: Surface with complex boundary

Applicability of the proposed method has been demonstrated
n Examples 2–5 to generate CGC surfaces. In this section, we con-
ider a surface with more complex boundary as shown in Fig. 23,
10
Fig. 18. Shape with different parameter values of Example 4 with K̄i = 4.0 in
the center region and K̄i = 1.0 in the other regions; (a) strategy S1 with s = 0.8,
(b) strategy S1 with s = 0.5, (c) strategy S2 with e = 2, (d) strategy S2 with
e = 5.

which has 648 vertices and 1200 triangular faces. The ranges of
x and y coordinates are [−5.32, 5.94] and [−5.34, 5.40], respec-
tively, and the edge lengths distribute in the range [0.215, 0.660].
The blank circles with coordinate values in Fig. 23(b) are the
control points of a closed quadratic Bézier curve for defining the
boundary shape. No internal boundary is assigned in this exam-
ple. The target Gaussian curvature is K̄i = 0.03. The parameters
are the same as the previous examples except d̄ = 1.0 and
µ0 = 2.0. The number of iterations is increased to 500.

The final shape at the 500th step is shown in Fig. 24. We can
see from the figure that a convex surface has been successfully
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Fig. 19. Initial shape of Example 5; (a) diagonal view, (b) plan view.

enerated. The convergence properties of the energy functional
nd the curvature error are shown in Fig. 25. Although the energy
unctional converges to a vary small value, the error norm of the
aussian curvature oscillates after 150 iteration steps.
The ratio of the error of Gaussian curvature to the target value

s plotted in Fig. 26. The maximum absolute value is 6.031×10−4,
hich may be small enough for a practical application.

.7. Example 7: Surface with complex internal boundary

In this section, we consider a surface with more complex
nternal boundary as shown in Fig. 27, which has 389 vertices
nd 712 triangular faces.
The 1/8 region of the mesh is generated inside three curves:

line between (0,0,0) and (0,7,0); a circular arc passing (0,7,0),
3,7,0), and (5,5,0); and a quadratic Bézier curve whose con-
rol points are (5,5,0), (2.5,2.5,2.5), and (0,0,0). This sub-mesh is
opied by mirroring with respect to the planes containing the
ines x = y, y = 0 and x = 0 to generate a full mesh. The edges on
the four planes of symmetry x = y, x = −y, y = 0, and x = 0 are
regarded as the internal boundaries which are indicated by thick
lines in Fig. 27. The dummy mesh is finally generated around the
full mesh.

Two different cases of K̄i = 0.05 and 0.0 are considered.
The maximum errors of the Gaussian curvature of the initial
geometry are 7.349 × 10−2 and 2.349 × 10−2 for K̄i = 0.05 and
0.0, respectively. The parameters are the same as the previous
examples except d̄ = 5.0 and µ0 = 10.0. The number of iterations
is increased to 500. The strategy S1 is used with s = 0.8.

The final shapes at the 500th step for K̄i = 0.05 and 0.0
are shown in Figs. 28(a) and (b), respectively. We have good
11
Fig. 20. Final shape of Example 5; (a) diagonal view, (b) plan view.

convergence property also for this example as shown in Figs. 29
and 30, and the maximum errors of the Gaussian curvature at the
final step are 2.071 × 10−7 and 3.268 × 10−3 for K̄i = 0.05 and
0.0, respectively.

5.8. Discussions on parameter assignment and computational cost

Although there are many parameters in the proposed method,
they can be assigned appropriately based on the following prop-
erties:

• Parameters ξ = 0.01, τ = 0.5, p = 3, q = 5, and ζ = 1.1
are used for all examples. The results are not sensitive to
the values of these parameters; therefore, these values can
be used for other examples. Careful tuning is required for
the parameters µ0, d̄, e, and s.
• The parameter µ0 depends on the mesh size. The update of

the shape becomes very small and many steps are required
before convergence, if µ0 is too small. By contrast, the
solution diverges if µ0 is too large. The divergence may be
prevented by assigning a large value to q, e.g., q = 20, to
allow a small variation of vertex coordinates in the process
of line search, which leads to an increase of computational
cost for the line search.
• The parameter d̄ is related to the size and density of the

mesh. If d̄ is too small, the filtering is not effective and small
fluctuations may appear in the surface shape, which may
lead to divergence of the solution. By contrast, if d̄ is too
large, distribution of the Gaussian curvature flow becomes
uniform and many iteration steps will be needed before
convergence. If an appropriate value of d̄ is found for a
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Fig. 21. Iteration history of Example 5; (a) objective function (energy functional)
(b) error norm from the target value.

Fig. 22. Error of Gaussian curvature of Example 5; (a) initial shape, (b) final
hape. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

certain mesh size, its value is to be scaled in proportion
to the mesh size to obtain the appropriate value for the
different mesh size.
• The parameters e and s for generating the internal boundary

should be modified after generating the surface for a trial
parameter value. A smaller e or a larger s should be assigned
if more variation is desired for the internal boundary. By
contrast, a large e or a small s should be assigned to have
the internal boundary close to its initial shape.

Table 1 shows the computational cost in relation to the size
f the model, where n and n are the numbers of vertices and
f

12
Fig. 23. Initial shape of Example 6; (a) diagonal view, (b) plan view.

Fig. 24. Final shape of Example 6; (a) diagonal view, (b) plan view.

Table 1
Comparison of computational cost with respect to problem size; n, nf: numbers
of vertices and faces including dummy mesh, ni: number of iterations.
Ex. n nf ni CPU time t (t/n/ni)× 1000

2 144 242 200 117.8 4.09
3 144 242 200 111.5 3.87
4 324 578 200 273.0 4.21
5 226 408 500 488.5 4.32
6 648 1200 500 963.8 2.97
7 389 712 500 870.0 4.58

faces including those of dummy mesh, and ni is the number of
iterations. A PC with Intel Core i7-8850H CPU 2.60 GHz is used
for computation. The values of CPU time t of Examples 4 and 7
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Fig. 25. Iteration history of Example 6; (a) objective function (energy functional)
(b) error norm from the target value.

Fig. 26. Error of Gaussian curvature of Example 6; (a) initial shape, (b) final
hape.

orrespond to the results in Fig. 18(a) and Fig. 28(a), respectively.
t may be observed from the table that the CPU time for a single
tep is almost proportional to the number of vertices, although
larger computational cost is needed for a larger model, if the

equired number of iterations increases as the number of vertices
s increased.

Table 2 shows the CPU time and accuracy of Example 2 with
ifferent mesh sizes. The accuracy is measured by maxi∈NI |Ki −
¯i|, which is the maximum absolute value of the error of the
aussian curvature from the target value at the internal vertices.
he number of iterations is 200, and the parameters are µ0 =

00.0 and d̄ = 5.0. The obtained shapes are not shown, because
hey are almost the same irrespective of the mesh size. It is seen
rom the table that the CPU time is almost proportional to n.
lthough the error in the Gaussian curvature gradually increases
s n is increased, the error value for the 20 × 20 grid is still small
13
Fig. 27. Initial shape of Example 7; (a) diagonal view, (b) plan view.

Fig. 28. Final shape of Example 7; (a) K̄i = 0.05, (b) K̄i = 0.0.

able 2
elation between mesh size and error in Gaussian curvature.
Grid n nf CPU tile t maxi∈NI |Ki − K̄i|

5 × 5 64 98 40.8 7.15× 10−8

10 × 10 169 288 130.6 2.15× 10−9

15 × 15 324 578 251.7 3.80× 10−7

20 × 20 529 968 417.5 4.11× 10−4

enough compared with the target Gaussian curvature, which is
equal to 4.0. The error may be reduced as the number of iterations
is increased.

6. Conclusion

A method has been proposed for generating piecewise CGC
surfaces based on direct minimization of an energy functional
that is a simplified form of the energy functional, for which the
stationary point is the LW surface. The stationary conditions of
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Fig. 29. Iteration history of Example 7 (K̄i = 0.05); (a) objective function (energy
functional) (b) error norm from the target value.

the energy functional directly lead to the conditions of CGC, and
the gradients of the functional are computed as the first variation
of the functional. A filtering technique is proposed for smoothing
the Gaussian curvature flow obtained from the gradient of the
energy functional. The CGC surface is found by the steepest de-
scent method with line search rather than minimizing the error of
the Gaussian curvature. Therefore, the method is fully consistent
with the original optimization problem for minimizing the en-
ergy functional, and is computationally efficient because it is not
necessary to analytically differentiate the governing equations
and solve a set of linear equations to obtain the gradients of the
objective function.

Two methods have been proposed for generating piecewise
CGC surface using the Gaussian curvature flow. The values of gra-
dients at the vertices along the internal boundary are computed
from the weighted sum of the gradients at the adjacent internal
vertices. Discontinuity of the Gaussian curvature along the inter-
nal boundary is naturally generated by scaling the gradients at
the vertices or delaying the update of vertex locations along the
internal boundaries. This way, the Gaussian or geodesic curvature
along the internal boundary need not be specified a priori. The
various shapes of internal boundary can be obtained by assigning
different parameter values for scaling or delaying the update of
the vertices along the internal boundaries. Although the tar-
get curvatures should be theoretically the same at all vertices,
a piecewise smooth surface with different Gaussian curvatures
can be obtained using the proposed method. Effectiveness of
adding the dummy meshes has also been demonstrated through
the examples with variable boundary shape. Good convergence
properties have been observed in all examples including the case
with complex boundary shape. The computational cost for single
14
Fig. 30. Iteration history of Example 7 (K̄i = 0.0); (a) objective function (energy
functional) (b) error norm from the target value.

step of updating the vertex locations is almost proportional to
the number of vertices, although the number of steps may be
increased for a complex surface with many vertices.
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