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We theoretically derived the critical behaviors of the asymmetric granular Maxwell’s demon phenomenon by intro-
ducing a symmetry-breaking parameter. This symmetry breaking can be realized experimentally by forming an angle
between the vibration and vertical directions. The values of the conventional critical exponents β, γ, and δ were deter-
mined, and they satisfied Widom’s scaling relation. In addition, the scaling function was calculated using asymptotic
expansion, which was consistent with the numerical simulation.

1. Introduction
Sand as Maxwell’s Demon written by Jens Eggers describes

a dilute gas of granular material inside a box, in which a wall
separates the box into two identical compartments except for
a small hole at some finite height, kept in a stationary state
by vertical vibrations, and the particles preferentially occupy
one side of the box at a suitable vibration intensity.1) He ana-
lyzed this clustering phenomenon on the basis of a thermody-
namical approach to the granular material and constructed a
mean-field model.1) Schlichting and Nordmeier described the
first experimental implementation.2) A generalization from a
single dispersion to a double dispersion in radius was ana-
lyzed to yield a granular clock.3) Another generalization was
an asymmetry, which corresponds to an external magnetic
field in the magnetic phase transition. In one generalization, a
simple hole was replaced by a funnel.4) In another generaliza-
tion, the floor of one of the two compartments was raised.5, 6)

These generalizations enhanced the asymmetric flux through
a hole or a funnel. Such asymmetry-induced transitions and
related critical phenomena have not been analyzed thus far.
An important preceding study was on the critical behaviors
described by a cellular automaton traffic flow model using an
order parameter breaking the symmetry of the jam-free phase,
in which conventional critical exponents satisfy a scaling re-
lation.7) Phase transitions and critical phenomena of compart-
mentalized granular gases have been studied and reviewed
from various aspects up to now.8–15)

Critical phenomena are universally found in many systems
where a second-order phase transition is observed. One of the
most representative systems is van der Waals gases, for which
the critical exponents are β = 1/2, γ = 1, and δ = 3. The
Ising model is also a well-known system that demonstrates
phase transition and critical behavior. When the Ising model is
analyzed under the mean-field approximation, the critical ex-
ponents have the same values as those of van der Waals gases.
These common values can also be derived from the broader
framework of Landau theory and are called the classical val-
ues of critical exponents.

Systems exhibiting critical phenomena are not limited to
models in physics. For example, the equilibrium value of a
stock in a market that allows a negative price also exhibits
a phase transition, which explains the anomalous price over
earnings ratio commonly seen in the market.16) As another
example, traffic congestion commonly observed in daily life

is actively examined as a target of statistical physics. In these
studies, the transition from uncongested to congested was re-
garded as a phase transition. Introducing an asymmetry pa-
rameter termed random braking makes it possible to calculate
the critical exponents and the scaling function numerically.7)

We introduced a symmetry-breaking parameter θ to the gran-
ular Maxwell’s demon phenomenon,1) and this extension en-
abled us to derive the critical exponents and the scaling func-
tion.

This paper is organized as follows: In the next section, we
describe the granular Maxwell’s demon phenomenon, ther-
modynamical treatment of the granular particles, and its tem-
perature uniformity approximation. Dynamics of the biased
number density were derived and the bias in the equilibrium
state was clarified. Then, we implemented a tilted container in
order to describe a symmetry-breaking transition. Scaling ex-
ponents and scaling functions were theoretically derived and
compared with the numerical simulation.

2. Granular Maxwell’s Demon and Its Tilted Equipment
2.1 Thermodynamical treatment of granular particles

We prepared granular particles in two evenly separated ar-
eas of a container. The separator has a hole that enables the
particles to move from one compartment to the other. The
base end surface is vertically oscillating in a sawtooth wave-
form with the amplitude U, such that the end surface always
collides with the particles at the same speed U. We assumed
that the particles cannot reach the ceiling, that the interparticle
restitution coefficient e satisfies e ≲ 1, and that the particles
elastically collide with the container side surface. Imagine the
case of θ = 0 in Fig. 1.

Starting from a uniform distribution of the particles, the
particles aggregated in one compartment over time, under the
condition that the height of the hole h from the end surface
was larger than the threshold hc. As this phenomenon resem-
bled Maxwell’s demon, we termed it granular Maxwell’s de-
mon.

An intuitive explanation is as follows. An instantaneous
fluctuation causes the number of particles in, for example, the
right area to become larger than that in the left. Then in the
right area, when the particle number becomes larger, inelas-
tic collisions occur more frequently, such that the particles
less frequently reach the hole owing to the dissipation of ki-
netic energy. In contrast, the particles in the left area reach the
hole more frequently owing to a relative increase in kinetic
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energy, because the interparticle collisions become less fre-
quent. Thus, the flux from the right area to the left decreases
and that from the reverse direction increases. The difference
in number is increased by positive feedback. The left-hand-
side aggregation is explained in the same manner. The ag-
gregated side is highly dependent on initial fluctuations. We
briefly review the thermodynamical treatment in accordance
with Eggers’s work.1)

We first treated a system consisting of a box with width W
and N granular particles. The particles with radius r and mass
m collide with a coefficient of normal restitution e. This wall
has a small hole at height h through which particles can pass
to the other side. The width of the hole was 2l, where l is the
radius of the hole.

The box is mounted on a shaker with a bottom vibration
pattern with a sawtooth amplitude function; therefore, the ve-
locity U of the bottom is constant. Particles accelerated by
gravity g bounce back on the floor and gain energy. The x- and
y-axes correspond to the horizontal and vertical directions, re-
spectively, where y is equal to 0 at the base surface.

When we regarded the granular particles as fluid, we de-
fined pressure P(y), temperature T (y), and particle number
density per unit width n(y) as functions of the height y of the
particle. The temperature can be considered as the mean ki-
netic energy of the particle in a small region. The basic equa-
tions away from the base end surface consisting of the state
equation, the balance equation of the forces, and the balance
equation between heat flow and dissipation17) are

P = mnT, (1)

∂P
∂y

= −mgn, (2)

κ
∂

∂y

[
T 1/2 ∂T
∂y

]
= Dn2T 3/2, (3)

respectively, where the parameters κ and D are given by

κ =
m
√
πr
, (4)

D = 4
√
πmr(1 − e), (5)

where the velocity U of the end surface appears explicitly not
in these equations but in the boundary condition of the tem-
perature T .

2.2 Temperature uniformity approximation
We approximated the temperature uniformity, that is, the

temperature T (y) was independent of height y and constant,
yielding an analytical result. Under this approximation, the
balance equation Eq. (3) no longer holds. Equations (1) and
(2) yield

n(y) =
Ñmg

T
exp

(
−mgy

T

)
. (6)

The assumption that T is constant, which is independent of y,
implies that the velocity distribution q(u, v) obeys

q(u, v) =
m

2πT
exp

(
−m(u2 + v2)

2T

)
, (7)

where u and v are horizontal and vertical components, respec-
tively.

However, the energy dissipation D and the energy influx S

due to the collisions on the end surface are respectively given
by17)

D =
√
πrÑ2g

√
mT (1 − e2), (8)

S =
Ñmg

T

TU + 2

√
2
π

mTU2 + O(mU3)

 . (9)

The balance equation between D and S determines the tem-
perature T . Note that Eq. (9) holds under the condition
mU2 ≪ T , which suggests that the kinetic energy of the parti-
cle is much larger than the energy gain owing to the collision
on the end surface. For example, a larger restitution coefficient
e corresponds to this condition, under which the second term
on the right-hand side of the expression of S can be negligible
giving

T =
mU2

πÑ2r2(1 − e2)2
. (10)

2.3 Dynamics of biased number density
Using the above results for granular systems in a box, we

derived the dynamics of the bias parameter in the granular
Maxwell’s demon phenomenon. Nl and Nr are the numbers of
particles on the left and right sides, respectively. The number
of particles per unit width was defined by Ñl = Nl/W and
Ñr = Nr/W. Therefore, the temperatures Tl and Tr for the left
and right areas, respectively, were calculated as

Ti =
mU2

πÑ2
i r2(1 − e2)2

, (11)

where i is a subscript representing r or l. Thus, we calculated
the particle density ni(y) and velocity distribution qi(u, v) in
compartment i. We defined

ϵ =
2Nl − N

2N
(12)

as a parameter that represents the bias in the number of parti-
cles. The dynamics of ϵ can be described as

dϵ
dt
∝ Fr→l − Fl→r (13)

using the fluxes (i.e., the number of particles passing per unit
time) Fl→r and Fr→l at height h. Note that Fl→r is given by

Fl→r = nl(h)
∫ ∞

0
du

∫ ∞

−∞
ql(u, v)dv. (14)

Substituting Eqs. (6) and (7) gave

dϵ
dt
∝ Ñ2

l exp
(
−mgh

Tl

)
− Ñ2

r exp
(
−mgh

Tr

)
. (15)

Furthermore, from Eq. (11), the exponential part,
mgh
Ti

, was

transformed as follows:

mgh
Ti
= mgh

πÑ2
i r2(1 − e2)2

mU2 ≃
4πghÑ2

i r2(1 − e)2

U2 . (16)

However, e was assumed to be sufficiently large, e ≲ 1, and
we used the relation 1+ e ≃ 2. By introducing the dimension-
less parameter

µ =
4πgh
U2

( rN
W

)2

(1 − e)2, (17)
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the dynamics of the system were simplified to

dϵ
dt

∝ (ϵ − 1
2

)2 exp
(
−µ(ϵ − 1

2
)2
)

−(ϵ +
1
2

)2 exp
(
−µ(ϵ + 1

2
)2
)
. (18)

The condition for the system to be in a steady state is given

by
dϵ
dt
= 0, which means that ϵ(µ) can be calculated from

Eq. (18). Expanding Eq. (18) for small ϵ, we obtained

ϵ =

√
3(µ − 4)

16
(19)

as the behavior near the critical point. When we regarded this
phenomenon as a phase transition with spontaneous symme-
try breaking, it was a second-order transition with the critical
exponent β = 1/2.1)

The U dependence of temperature T in Eq. (10) sensitively
relies on the mechanism of dissipation of inelastic collisions
or viscous drag and also on whether the amplitude function
for the velocity of the vibrating surface is symmetric (sinu-
soidal) or asymmetric (sawtooth) about zero velocity, and the
coefficient multiplied by U2 in the right-hand side differs for
other mechanisms of dissipation or other amplitude functions
for the velocity of the vibrating surface.17) Nonetheless, the
critical behavior (critical exponents, scaling function, etc.)
around the critical condensation point is assumed to be in-
dependent of the detailed features of the system even for the
simplified flux equation. According to Eggers,1) the agree-
ment between Eqs. (1)–(3) and the numerical simulation is
quite good, but becomes worse if the number of particles is
reduced and deteriorates even more in three dimensions.

2.4 Tilted implement
Several studies have been performed to introduce asym-

metric structures into the phenomenon of Maxwell’s demon
in granular matter. For example, directed clustering was at-
tempted by making a funnel-shaped hole4) or by adding a slab
into one of the compartments.5, 6) On the other hand, critical
phenomena for the asymmetric case have not been investi-
gated. We present theoretical results using a tilted vessel and
derived the critical phenomena.

As shown in Fig. 1, we considered the one-sided aggrega-
tion of granular particles when the container is tilted at a small
angle θ. When the coordinate axes were set as shown in Fig.
1, the gravitational acceleration was represented by the vec-
tor g = (−g sin θ,−g cos θ) such that Eq. (6), which gives the
particle density, becomes

n(x, y) ∝ exp
(

mg sin θ
T

x
)

exp
(mg cos θ

T
y
)
, (20)

where the granular temperature is given by Eq. (10). Perform-
ing the same analysis as when the vessel was not tilted, we
obtained the flux ratio

Fl→r : Fr→l

= nl

(W
2
, h

) ∫
uql(u, v)dudv

: nr

(
−W

2
, h

) ∫
uqr(u, v)dudv

W

W

h

θ

U

1

Fig. 1. Tilted implement of granular Maxwell’s demon.

=
Nl√
Tl

exp
(
−mgh cos θ

Tl

)
:

Nr√
Tr

exp
(
−mgh cos θ − mgW sin θ

Tr

)
. (21)

Therefore, we altered the dynamics of ϵ to

dϵ
dt

∝ (ϵ − 1
2

)2 exp
(
−µ(ϵ − 1

2
)2
)

−(ϵ +
1
2

)2 exp
(
−µ(ϵ + 1

2
)2(1 − p)

)
, (22)

where we introduced p =
W sin θ

h
representing asymmetry,

which was proportional to θ for the small tilted angle. Then,
the stationary equation became

(ϵ − 1
2

)2 exp
(
−µ(ϵ − 1

2
)2
)

= (ϵ +
1
2

)2 exp
(
−µ(ϵ + 1

2
)2(1 − p)

)
. (23)

This equation yielded the order parameter ϵ(µ, p) in the steady
state. Note that if µ > µc = 4, the nonzero solution ϵ = ϵ(µ, p)
becomes stable. The critical behaviors for the extended model
were expected to obey the following power laws:

ϵ(µ, 0) ∼ (µ − µc)β, (24)

ϵ(µc, p) ∼ p1/δ ∼ θ1/δ, (25)

χ(µ) ∼ |µc − µ|−γ, (26)

where χ is the susceptibility defined by χ =
∂ϵ

∂p

∣∣∣∣∣
p=0

. As ϵ is

sufficiently small just above the critical point µ = µc, β = 1/2,
γ = 1, and δ = 3 were obtained using an asymptotic ex-
pansion. Note that these are classical values of critical expo-
nents obtained from Landau theory and satisfy the following
Widom’s scaling relation:

γ = β(δ − 1). (27)
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Fig. 2. (Color online) Results of numerical simulation and theoretical anal-
ysis Eq. (23) of the bias ϵ(µ, p) at equilibrium. “theory” is the result of the
calculation under the temperature uniformity approximation. The upper and
lower lines correspond to the simulations for θ = 0 and θ = 0.01, respec-
tively. The upper and lower symbols with error bars correspond to the theory
for θ = 0 and θ = 0.01, respectively.

Therefore, Widom’s scaling hypothesis was expected to hold
true:

ϵ = |µ − µc|βϵ̃
(

p
|µ − µc|βδ

)
∼ |µ − µc|βϵ̃

(
Wθ

h|µ − µc|βδ

)
. (28)

Near the critical point, condition (23) yields the equation that
ϵ̃(x) must satisfy:

ϵ̃(x)3 ± 3
16
ϵ̃(x) − 3

32
x = 0, (29)

where x =
p

|µ − µc|βδ
∼ Wθ

h|µ − µc|βδ
. The sign of the second

term was positive (negative) when µ < µc (µ > µc).
The bias ϵ at equilibrium was calculated as a function of

the normalized hole height µ, by the event-driven method,18)

as shown in Fig. 2. The simulation parameters are listed in
Table I and are used for the simulation and calculation of the
analytical solution where the end surface was tilted at angle
θ = 0.01. In the simulations, 20 samples were taken for each
value of hole height µ, and the bias ϵ was measured at the
elapsed time t = 6000 unit of the simulation, which is suffi-
cient for the system to relax, based on Eq. (12), and the vari-
ance is shown as error bars in the graph. As shown in Fig. 2,
Eq. (23) reproduced the approximate behaviors.

To calculate the critical exponents, three simulations were
conducted. For the first step, the critical value µc was deter-
mined on the basis of the divergence of χ. The value of χ

was calculated approximately as χ ≃ lim
p→0

ϵ(p) − ϵ
p − 0

. From this

simulation, the critical point was µc = 5.40. As a result, we
found γ = 1.040 ± 0.041 by plotting the results on a double-
logarithmic graph for θ = 0.01, as shown in Fig. 3. As the
second step, β = 0.471 ± 0.058 was determined by setting
p = 0 (θ = 0) near the critical point, as shown in Fig. 4.
Lastly, the dependence of ϵ on θ at the critical point µ = µc

was clarified as δ = 3.341 ± 0.460, as shown in Fig. 5. These
values were consistent with the results of analyses based on
the flux model.

For each case of µ < µc and µ > µc, the scaling functions

Table I. Parameter list.

N m r e g W U 2l
720 1 0.01 0.95 1 3.2 0.149 0.05

 10

 100

 1000

 10000

 1

χ

μ - μc

θ = 0.01 (simulation)
fitting

Fig. 3. (Color online) Double-logarithmic plot of ϵ against µ − µc for θ =
0.01. The critical exponent γ was estimated as γ = 1.040 ± 0.041.

 0.01

 0.1

 1

 0.1  1

ε

μ - μc

θ = 0.0 (simulation)
fitting

Fig. 4. (Color online) Double-logarithmic plot of ϵ against µ−µc for θ = 0.
The critical exponent γ was estimated as β = 0.471 ± 0.058.

 0.01

 0.1

 0.001  0.01  0.1

ε

θ

μ = μc

fitting

Fig. 5. (Color online) Double-logarithmic plot of ϵ against θ. The critical
exponent δ was estimated as δ = 3.341 ± 0.460.
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Fig. 6. (Color online) Scaling functions ϵ̃ of the numerical simulation and
analytical solution. From the scaling analysis, the critical point was deter-
mined, such that the data lie on the same curve for all θ, which in this case is
µc = 5.44. (upper) µ < µc. (lower) µ > µc.

ϵ̃ =
ϵ

|µ − µc|β
as a function of x =

p
|µ − µc|βδ

∼ Wθ
h|µ − µc|βδ

with (β, γ, δ) = (1/2, 1, 3) for three values of θ (θ =0.005,
0.01, and 0.02) were plotted as shown in Fig. 6. Theoretical
estimations based on the temperature uniformity approxima-
tion of the critical exponents (β, γ, δ) = (1/2, 1, 3) and of the
scaling function ϵ̃(x) were numerically confirmed, as shown
in Fig. 6.

3. Concluding Remarks
There was a large difference in the critical points between

the temperature uniformity approximation (µc = 4) and the
numerical simulation (µc = 5.44), which was also observed in
the preceding study.1) We infer that the discrepancy between
µc = 4 for the theoretical estimation and µc = 5.40 for the
numerical simulation originates from the violation of the tem-
perature uniformity approximation around the end surface. P,
n, and T of Eqs. (1)–(3) can be expanded as series of y. For
example, T (y) = T (0) − ay + by2 + · · · (a > 0). One can in-
terpolate between a solution around the end surface and the
asymptotic value T (∞) by using an exponential function as
T (y) = (T (0) − T (∞)) exp(− ay

T (0)−T (∞) ) + T (∞). The tempera-
ture uniformity approximation adopted only the second term
T (∞). The first term (T (0) − T (∞)) exp(− ay

T (0)−T (∞) ) may fill a
gap of the critical point between the temperature uniformity

approximation and the numerical simulation. We will study
this point in the future.

We obtained the distribution functions of u, i.e., q(u) =∫ ∞

−∞
q(u, v)dv, and of v, i.e., q(v) =

∫ ∞

−∞
q(u, v)du for θ = 0,

as shown in Fig. 7, where q(v) exhibits a slight asymmetric
deviation from the Maxwellian owing to the end surface os-
cillation. The seventh annotation of van der Weele’s review12)

claimed that recent experiments suggest that this identifica-
tion (Tg =

1
2 ⟨v2⟩) holds quite generally for vibrated granu-

lar gases of identical particles, and that (except for the bot-
tom layer) the velocity distribution is very nearly Maxwellian
throughout the system. One of the above experiments was a
two-layer granular experiment, in which velocity statistics of
the first- and second-layer grains were obtained. The former
was non-Gaussian, and the latter was almost Gaussian in the
sense that the values of |F − 3| ran from 0.01 to 0.1 for the
latter and were nearly equal to 1 for the former, where F is
the flatness, ⟨v4⟩/⟨v2⟩2, and is equal to 3 for a Gaussian dis-
tribution.10) In our case, the flatness is equal to 2.86 (2.95)
for the vertical (horizontal) velocity component, which corre-
sponds to the lower (upper) panel of Fig. 7. This finding val-
idates the temperature uniformity approximation aside from
the lower particles directly touching the end surface. The flat-
ness of the distribution q(v) is close to that of the second layer
of the above experiment.10) We also calculated the skewness,
⟨v3⟩/⟨v2⟩3/2, which is equal to 0.156 (0.00193) for the verti-
cal (horizontal) velocity component. The skewness in a dif-
ferent situation was studied.19) Although the distribution q(v)
was not given, y dependences of the temperature T (y) were
obtained in the preceding studies,1, 12) where the temperature
was not constant around the end surface. Systematic discrep-
ancies of the scaling function ϵ̃(x) for small x between the
temperature uniformity approximation and the numerical es-
timation, as shown in Fig. 6, are also inferred to originate
from the violation of the temperature uniformity approxima-
tion around the end surface. An inverse power-law depen-
dence on velocity in the velocity distribution was found in
the case of a dilute limit with dissipation due to viscous drag,
and our case was treated as Maxwellian.17)

The areal velocity of the end surface is WU = WAω/(2π),
and the period of the vibration is 2π/ω, where A is the am-
plitude of the sawtooth floor vibration. Thus, the area of the
range of motion of the end surface is 2πWU/ω = WA. The
total area of the particles in this area is πr2Nn(0). The di-
lute condition around the end surface is estimated as WA ≫
πr2Nn(0) or πr2Nn(0)/(WA) ≪ 1. The values of the param-
eters are given in Table I. In our numerical simulation, n(0)
is nearly equal to 0.7, and πr2Nn(0)/(WA) is nearly equal to
4.948/A. Since the velocity component of the particles nor-
mal to the end surface is always U after the collision with it,
the explicit value of A is not used in the simulation and is as-
sumed to be very small. It implies that the dilute condition is
not satisfied in the vicinity of the end surface, but it is satisfied
with increasing distance from the end surface.

The flux equation Eq. (18) has a wide application. An ap-
plication to the consensus formation with the prospect theory
was made.20)

In summary, we introduced a symmetry-breaking parame-
ter θ, which enabled us to calculate critical exponents β, γ,
and δ. The theoretical analyses based on the flux model and
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Fig. 7. (Color online) Distributions of the horizontal (upper panel) and ver-
tical (lower panel) velocity components. The Maxwell distribution and the
numerically obtained distribution are respectively depicted as a dashed line
and a solid line.

numerical simulations demonstrated that these values satisfy
Widom’s scaling relation γ = β(δ−1), and the scaling function
calculated using asymptotic expansion corresponded reason-
ably well to the simulated data.

One reason why the critical exponents obtained by the sim-
ulations agreed with the classical critical exponents is the
Landau theory, which exhibits symmetry breaking and the
classical critical exponents of a system obeying dynamics,
such as Eq. (22). Therefore, the critical exponents being clas-
sical suggests that an essential part of the system is repre-

sented by the flux model Eq. (22). Thus, the state of the sys-
tem was sufficiently condensed into the order parameter and
did not depend on the detailed configuration of the particles.
This system had a high coefficient of restitution (e = 0.95) and
was close to thermal equilibrium; therefore, the above condi-
tion held true. The determination of the conditions required
for the system to be mean-field, i.e., for the information of the
system to be reduced to an order variable, is a future chal-
lenge. It is also important to note that such results may be de-
rived in a setting that is experimentally possible and follow-up
experiments are awaited. Of note, this system is dissipative
and therefore not at equilibrium. It is important to note that
nonequilibrium phase transitions can be described in a mean-
field manner, and the conditions under which mean-field anal-
ysis is possible must be examined in greater detail.
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