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Spatial correlation of a particle-hole pair with a repulsive isovector interaction
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We study the spatial correlation of a particle-hole pair in the isovector channel in 56Co and 40K nuclei. To this
end, we employ the Hartree-Fock+Tamm-Dancoff approximation with the Skyrme interaction. We find a large
concentration of the two-body density at positions where the neutron particle and the proton hole states locate on
the opposite side to each other with respect to the core nucleus. This feature originates from a repulsive nature of
the isovector residual interaction, which is in stark contrast to the dineutron correlation with an attractive pairing
interaction between the valence neutrons discussed, e.g., in 11Li and 6He.
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I. INTRODUCTION

It has been well recognized that the pairing correlation
among valence neutrons plays a decisive role in the structure
of weakly bound nuclei [1–5]. In particular, there have been
several theoretical studies of a strong dineutron correlation
[4,6–10], in which two neutrons attract each other and show
a large probability of a two-body wave function with a small
correlation angle in the coordinate space. A strong signature
of the dineutron correlation has also been found experimen-
tally in several weakly bound nuclei such as 11Li and 6He
[11–13], and more recently in 19B [14].

It would be an interesting question to ask what happens to
the spatial correlation when the interaction is repulsive rather
than attractive. This could be learned from atomic physics, in
which the primary interaction among electrons is the Coulomb
repulsion. It has been actually known that the anticorrelation,
opposite to the dineutron correlation, exists in the spatial
distribution of two electrons in, e.g., He atoms [15–17]. This
anticorrelation is referred to as the Coulomb hole, in which
the correlation angle between two electrons is almost 180◦ in
the spatial distribution. The purpose of this paper is to address
to what extent a similar correlation exists in nuclear systems.

Besides the trivial Coulomb repulsion between protons,
several other repulsive interactions are known also in nuclear
physics. A well-known example is the isovector particle-hole
(p-h) interaction, which plays an important role in generating
a collectivity of giant dipole resonances (GDR). The repulsive
nature of the interaction is evidenced in the fact that the em-
pirical mean GDR energy scales as E ∼ 80A−1/3 MeV, where
A is the mass number of a nucleus, while a typical energy for
unperturbed one-particle–one-hole (1p-1h) states is given by
E ∼ 41A−1/3 MeV [18,19]. As has been argued in Ref. [20],
this suggests that a similar anticorrelation to the Coulomb hole
may be seen in nuclear systems as well when one considers a
particle-hole pair with a proton and a neutron.

In this paper, we pursue this possibility by studying nu-
clei with one neutron particle and one proton hole on top of
a doubly magic nucleus, such as 56Co(= 58Ni +n − p) and
40K(= 40Ca +n − p). We mention that the spatial anticorre-
lation in these nuclei was discussed long time ago by Bertsch
[20]. In that paper, he employed a shell model approach to
obtain the particle-hole wave functions, which were then used
to compute form factors for a deuteron transfer reaction. Even
though his argument is quite reasonable, the anticorrelation
has not yet been demonstrated explicitly in the coordinate
space. Given recent interests in dineutron correlations in
neutron-rich nuclei, it would be worth revisiting this issue,
especially as a correlation contrasting with the dineutron
correlation.

To construct the density distribution for a particle and a
hole states, we shall first obtain the ground state of the double
magic nuclei in the Hartree-Fock approximation, and then lin-
early superpose several 1p-1h states of a neutron-proton pair.
The coefficients of the superposition will be determined by
diagonalizing the many-body Hamiltonian with the residual
interaction. This approach is nothing but the Hartree-Fock
(HF) plus Tamm-Dancoff approximation (TDA) [18,19]. Of
course, one can take into account the ground state correlation
of the core nuclei within the random phase approximation
(RPA). However, we prefer the simpler approach of TDA,
partly because the most of previous three-body model calcula-
tions for neutron-rich nuclei are based on the particle-particle
TDA. We believe that a qualitative feature of the spatial distri-
bution does not change significantly even when one employs
RPA instead of TDA.

The paper is organized as follows. In Sec. II, we first
detail the HF+TDA method for neutron-proton particle-hole
configurations. In Sec. III, we apply the HF+TDA method to
the ground and excited states of 56Co and 40K, and discuss the
spatial correlation of the isovector particle-hole pair. We then
summarize the paper in Sec. IV.
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II. HARTREE-FOCK+TAMM-DANCOFF
APPROXIMATION

We consider a nucleus with a neutron particle and a pro-
ton hole outside a double magic nucleus. To describe such
nucleus, we first obtain the ground state of the doubly magic
nucleus in the Hartree-Fock approximation. This procedure
also defines the creation operators a†

p for (neutron) particle

states and b†
h for (proton) hole states. We superpose several

particle-hole pairs as

|�〉 =
∑
p,h

Cph|ph−1〉 (1)

with

|ph−1〉 = [a†
pb†

h]|0〉, (2)

where |0〉 is the ground state of the core nuclei. The coef-
ficients Cph are determined by diagonalizing a many-body
Hamiltonian, whose matrix elements read [18]

〈ph−1|H |p′h′−1〉 = (εp − εh)δph,p′h′ + 〈ph−1|v̄res|p′h′−1〉 (3)

= (εp − εh)δph,p′h′ + 〈ph′|v̄res|hp′〉, (4)

where εp and εh are single-particle energies for particle and
hole states, respectively, and v̄res is the antisymmetrized resid-
ual interaction.

Since we consider doubly magic nuclei and their vicinity,
it is reasonable to assume that the nuclei we discuss in this
paper are all spherical. We then introduce the notation [19]

a†
p = a†

jm, b†
p = b†

jm = (−1) j+maj−m, (5)

where j is the total single-particle angular momentum and
m is its z component. We have suppressed the isospin, the
orbital angular momentum, and the radial quantum numbers
to simplify the notation, but they should be understood as
implicitly specified. A particle-hole state with the coupled
angular momentum J and its z-component M then reads

|ph−1; JM〉 =
∑

mp,mh

〈 jpmp jhmh|JM〉a†
jpmp

b†
jhmh

|0〉, (6)

=
∑

mp,mh

(−1) jh+mh〈 jpmp jhmh|JM〉

× a†
jpmp

a jh−mh |0〉. (7)

The particle-hole wave function in the coordinate space can
be constructed as [21]

�(rp, rh) =
∑
p,h

Cph�ph(rp, rh) (8)

with

�ph(rp, rh) =
∑

mp,mh

(−1) jh+mh〈 jpmp jhmh|JM〉

×〈rp|φ jplpmp〉〈φ jhlh−mh |rh〉, (9)

where 〈r|φ jlm〉 = φ jlm(r) is a single-particle wave function
with l being the orbital angular momentum. The density dis-
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FIG. 1. The energies of the first 4+ and 2+ states in 56Co
calculated with the neutron-particle proton-hole Tamm-Dancoff ap-
proximation (TDA) with the Skyrme SIII interaction. These energies
are measured from the ground state of 56Ni after correcting the mass
difference between a neutron and a proton.

tribution is then obtained as

ρ(rp, rh) =
∑

ms,ms′

|〈χms |�(rp, rh)|χms′ 〉|2, (10)

where |χm〉 is the spin wave function.

III. SPATIAL CORRELATION OF A NEUTRON-PROTON
PARTICLE-HOLE PAIR

Let us now apply the method presented in the previous
section to actual nuclei. We first discuss the 56Co nucleus,
which can be viewed as the doubly magic nucleus 56Ni with
one neutron particle and one proton hole. For this purpose,
we use the Skyrme functional [22]. While we employ the full
Skyrme functional for the ground state of 56Ni, we use only
the t0 and t3 terms of the residual interaction for the TDA
calculations. That is, we use the isovector residual interaction
given by [23]

v̄res(r, r′) = −
[ t0

4
(1 + 2x0) + t3

24
(1 + 2x3)ρ(r)α

]
ττ ′

× δ(r − r′), (11)

where ρ(r) is the total density and τ is the isospin op-
erator. t0, t3, x0, x3, and α are parameters in the Skyrme
interaction. Notice that the matrix element of the ττ ′ factor
is 〈pn|τ · τ ′|np〉 = 2 for a neutron-proton particle-hole pair.
For simplicity, we neglect the term which is proportional to
(σ · σ ′)(τ · τ ′) in the residual interaction, and thus we focus
only on natural parity states. The matrix elements of the resid-
ual interaction may be easily evaluated by using the helicity
representation as in Ref. [2].

In this paper, we mainly employ the SIII interaction [24].
We have confirmed that the results are not qualitatively altered
even if we use other parameter sets of the interaction, such as
SLy4 [25]. The continuum spectrum for neutron particle states
is discretized with the box boundary condition with the box
size of 15 fm, and is truncated at εp = 40 MeV. The calculated
energies of the first natural-parity 4+ and 2+ states in 56Co
are shown in Fig. 1. These energies are given with respect to
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TABLE I. The components of the wave functions in percent for
the first 4+ and 2+ states in 56Co obtained with the neutron-particle
proton-hole Tamm-Dancoff approximation.

Components 4+
1 2+

1

(2p3/2)n(1 f7/2)−1
p 96.4 95.5

(2p1/2)n(1 f7/2)−1
p 2.85 –

(1 f5/2)n(1 f7/2)−1
p 0.531 3.26

(1h11/2)n(1 f7/2)−1
p 0.00557 0.309

(1g9/2)n(1d5/2)−1
p 1.83 × 10−5 0.202

the ground state of 56Ni, after correcting the mass difference
between a proton and a neutron. Even though our aim is not to
reproduce the experimental spectrum, the agreement with the
experimental data is satisfactory. The components of the wave
functions for these states, that is, |Cph|2 in Eq. (1), are sum-
marized in Table I. Since the single-particle levels up to 1 f7/2

are fully occupied, and the lowest unoccupied level is 2p3/2,
in the core nucleus 56Ni, the wave functions are dominated
by the (2p3/2)n(1 f7/2)−1

p configuration, even though there are
appreciable mixtures of other components as well.

The spatial distribution for the proton hole in the two-
dimensional (z, x) plane is shown in Fig. 2 for the 4+ state
in 56Co with the azimuthal angular momentum component
M = 0. To draw the figures, the location of the reference neu-
tron particle state is fixed at (z, x) = (3.7, 0.0) fm. The upper
panel shows the unperturbed case with the (1 f7/2)−1

p wave
function. As expected, the hole wave function (1 f7/2)−1

p has
two symmetric peaks at the positions opposite to the center
of the core nucleus. A similar feature has been known in an
uncorrelated two-neutron density distribution [26]. The posi-
tion of the reference neutron-particle state is in fact chosen at
a place where the unperturbed hole distribution takes the max-
imum. The correlated hole density, in which the particle-hole
repulsive interaction is active, is shown in the lower panel of
Fig. 2. One can see a strong repulsive correlation, with which
the component close to the reference neutron-particle state is
largely hindered. This is in analogous to the Coulomb hole
observed in many-electron systems, and is completely oppo-
site to the dineutron configuration, in which the two valence
neutrons stay mainly at the same side of the two-dimensional
plane with a small relative distance, that is, a small correlation
angle.

Figure 3 shows the spatial hole distribution for the 2+ state
in 56Co. General features are quite similar to those for the
4+ state; a strong concentration of the hole distribution at the
opposite side of the reference neutron-particle with a small
component of the hole distribution at the near side. A minor
difference is seen in different patterns of the distributions at
the center of the nucleus: almost no distribution for the 2+
state, while an appreciable component exists in the case of the
4+ state. Besides this, the strong repulsive correlation can be
seen both in the 2+ and the 4+ states.

Let us next discuss the first 3− state in 40K, assuming the
40Ca as a core nucleus. The ground state of 40K is 4−, and the
3− is the lowest natural parity state. The TDA with the SIII
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FIG. 2. The uncorrelated (upper panel) and the correlated (lower
panel) proton-hole distributions in arbitrary units in the two-
dimensional (z, x) plane for the 4+ state in 56Co, when the
neutron-particle is located at (z, x) = (3.7, 0.0) fm. The azimuthal
angular momentum component is set to be M=0.

interaction yields the energy of the 3− state to be +0.052 MeV
above the ground state of 40Ca after correcting the neutron-
proton mass difference, whereas the empirical energy of the
3− state is −1.28 MeV. Even though the 3− state appears
above the threshold in the present calculation, the TDA en-
ergy itself is −1.24 MeV for this state before introducing the
neutron-proton mass difference, and thus the treatment of con-
tinuum state would not play a crucial role. The wave function
of the 3− state consists of 81.8% of the (1 f7/2)n(1d3/2)−1

p con-
figuration, 17.9% of the (1 f7/2)n(2s1/2)−1

p configuration, and
0.112% of the (1 f7/2)n(1d5/2)−1

p configuration. The density
distribution of the proton hole state is shown in Fig. 4, for
the neutron-particle state fixed at (z, x) = (2.8, 0.0) fm. Even
though the correlation is less pronounced as compared to the
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FIG. 3. The same as Fig. 2, but for the 2+ state in 56Co.

56Co nucleus due to the s-wave component which has a finite
value at the origin, one can see that the density in the vicinity
of the reference neutron-particle is largely suppressed, reflect-
ing the repulsive correlation between the neutron-particle and
the proton-hole.

IV. SUMMARY

We have discussed the spatial correlation of an isovector
particle-hole pair in 58Co and 40K by using the Hartree-Fock
plus Tamm-Dancoff approximation with a Skyrme interac-
tion. We have found a large concentration of the hole state
distribution on the opposite side of the reference neutron-
particle due to the repulsive nature of the isovector residual
particle-hole interaction, as in the phenomenon of a Coulomb
hole in atomic physics. This is in stark contrast to the dineu-
tron correlation in neutron-rich nuclei, which is originated
from an attractive pairing interaction between valence neu-
trons. This feature has been qualitatively argued in Ref. [20],
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FIG. 4. The same as Fig. 2, but for the 3− state in 40K when the
reference neutron-particle is fixed at (z, x) = (2.8, 0.0) fm.

but it had not yet been demonstrated in actual numerical
calculations.

In Ref. [20], it was argued that the repulsive correlation
of an isovector particle-hole pair leads to a suppression of a
ground-state-to-ground-state deuteron transfer reaction, e.g.,
54Fe (3He, p) 56Co. Notice that the two proton holes in 54Fe
prefer the spatial configuration in which two holes are close to
each other (see also the Appendix below). If one of those pro-
ton holes is filled in via a deuteron transfer, the neutron in the
deuteron and the other proton hole would be located close to
each other. This would correspond to an excited state of 56Co,
and thus, the transfer to the ground state of 56Co would be
largely suppressed. This scenario was confirmed theoretically
based on the first order distorted-wave Born approximation
(DWBA), which well reproduced the experimental data shown
in Ref. [20]. Nevertheless, this scenario has yet to be con-
firmed with a more appropriate reaction theory for deuteron
transfer reactions, which also takes into account the second
order process, i.e., a sequential transfer process. It would be an
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interesting future work to estimate transfer cross sections sys-
tematically with the coupled-reaction-channel method or the
second order DWBA using the particle-hole wave functions
obtained in this paper.
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APPENDIX: HOLE-HOLE CORRELATION

Using the operator b†
jm defined by Eq. (5) for hole states,

the structure of a nucleus with two hole states from a core
nucleus can be described in a similar way as a three-body
model for two-particle states [2–4]. The only difference is that
single-particle energies for hole states have to be multiplied by
a factor of −1, as they represent removal energies of a particle
from a core nucleus.

We apply this formalism to the 54Fe nucleus, which can
be viewed as a two proton hole state from the 56Ni nucleus.
To this end, we use a simple zero-range pairing interaction
between the proton holes, in which the effect of Coulomb
repulsion is effectively mocked up by adjusting the strength
[27]. We use the Skyrme Hartree-Fock method with the SIII
interaction to generate proton single-particle states in 56Ni.
By including all the proton hole states, the strength of the
pairing interaction is adjusted to be g = 262 MeV fm3 to
reproduce the empirical two-proton separation energy of 56Ni,
S2p = 12.23 MeV.

The resultant two-hole wave function consists of 98.5% of
the [(1 f −1

7/2 )2] configuration, 0.748% of the [(1d−1
3/2)2] config-

uration, 0.433% of the [(1d−1
5/2)2] configuration, and 0.219%

of the [(2s−1
1/2)2] configuration. The density distribution of the

two-hole state is shown in Fig. 5. The upper panel corresponds
to the density in the two-dimensional (r, θ12) plane, in which
r1 = r2 = r is the distance of the hole states from the cen-
ter of the nucleus and θ12 is the opening angle between the
two holes. The weight factor of 8π2r4 sin θ12 has been taken
into account [4]. Notice a large two-hole probability at small
opening angles around θ ∼ 20◦. The lower panel, on the other
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FIG. 5. The distribution of the two-hole configuration in 56Ni ob-
tained with the hole-hole Tamm-Dancoff approximation. The upper
panel shows the density distribution for the two hole states obtained
by setting r1 = r2 = r. This is plotted as a function of r and the open-
ing angle, θ12. The weight factor 8π 2r4 sin θ12 has been multiplied.
The lower panel shows the density of the second hole in arbitrary
units when the first hole is fixed at (z, x) = (3.7, 0.0) fm.

hand, shows the distribution of the second hole when the
first hole is fixed at (z, x) = (3.7, 0.0) fm. One can clearly
see an enhancement of the density distribution when the two
hole states are located at similar places. This is basically the
same phenomenon as the dineutron correlation discussed in
Ref. [4].
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