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We study spontaneous chiral-symmetry breaking in SU(3) QCD in terms of the dual superconductor
picture for quark confinement in the maximally Abelian (MA) gauge, using lattice QCD Monte Carlo
simulations with four different lattices of 164, 244, 243 × 6 at β ¼ 6.0 (i.e., the spacing a ≃ 0.1 fm),
and 324 at β ¼ 6.2 (i.e., a ≃ 0.075 fm), at the quenched level. First, in the confinement phase, we find
Abelian dominance and monopole dominance in the MA gauge for the chiral condensate in the chiral limit,
using the two different methods of (i) the Banks-Casher relation with the Dirac eigenvalue density and
(ii) finite quark-mass calculations with the quark propagator and its chiral extrapolation. In the high-
temperature deconfined phase, the chiral restoration is observed also for the Abelian and the monopole
sectors. Second, we investigate local correlation between the chiral condensate and monopoles, which
topologically appear in the MA gauge. We find that the chiral condensate locally takes a quite large value
near monopoles. As an interesting possibility, the strong magnetic field around monopoles is responsible to
chiral symmetry breaking in QCD, similarly to the magnetic catalysis.
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I. INTRODUCTION

Since quantum chromodynamics (QCD) was established
as the fundamental theory of strong interaction in 1970s, to
understand its nonperturbative properties has been one
of the most difficult central problems in theoretical physics
for about a half century. In particular, QCD exhibits two
outstanding nonperturbative phenomena of quark confine-
ment and spontaneous chiral-symmetry breaking in its low-
energy region, many physicists have tried to clarify these
phenomena and their relation directly from QCD, but this is
still an unsolved important issue in the particle physics.
Chiral symmetry breaking in QCD is categorized as well-

known spontaneous symmetry breaking, which widely
appears in various fields in physics, and is an important
phenomenon relating to dynamical quark-mass generation
[1,2]. Apart from the dark matter, about 99% of the matter
mass of our Universe originates from chiral symmetry
breaking, because the Higgs-origin mass is just a small
mass of u, d current quarks, electrons, and neutrinos [3].
The order parameter of chiral symmetry breaking is the

chiral condensate hq̄qi, and it is directly related to low-lying
Dirac modes via the Banks-Casher relation [4].
In contrast, color confinement is a fairly unique phe-

nomenon peculiar in QCD, and quark confinement is
characterized by the linear interquark potential. As for
the confinement mechanism, the dual superconductor
picture based on color-magnetic monopole condensation
was proposed by Nambu, ’t Hooft, and Mandelstam as a
typical plausible physical scenario [5–7]. In lattice QCD,
by taking the maximally Abelian (MA) gauge [8], this dual
superconductor scenario has been investigated in terms of
Abelian dominance, i.e., dominant role of the Abelian
sector [9–12]. and the relevant role of monopoles [13–15].
The relation between confinement and chiral symmetry

breaking is not yet clarified directly from QCD. While a
strong correlation between confinement and chiral sym-
metry breaking has been suggested by almost co-
incidence between deconfinement and chiral-restoration
temperatures [16], an lattice QCD analysis based on the
Dirac-mode expansion indicates some independence of
these phenomena [17].
Their correlation has been also suggested in terms of

color-magnetic monopoles, which topologically appear in
QCD in the Abelian gauge [18]. In the dual Ginzburg-
Landau theory, the monopole condensate is responsible to
chiral symmetry breaking as well as quark confinement
[19]. Also in SU(2) lattice QCD, Miyamura and Woloshyn
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showed Abelian dominance [20,21] and monopole domi-
nance [20,22] for chiral symmetry breaking. In fact, by
removing the monopoles from the QCD vacuum, confine-
ment and chiral symmetry breaking are simultaneously
lost. In SU(3) lattice QCD with a 83 × 4 lattice, Thurner
et al. showed a local correlation among monopoles,
instantons, and the chiral condensate [23]. These studies
indicate an important role of the monopoles to both
phenomena, and thus these two phenomena might be
related via the monopole. However, most of the pioneer-
ing lattice works were done in SU(2) lattice QCD or done
on a small lattice [20–23].
In this paper, we investigate correlation between chiral

symmetry breaking and color-magnetic monopoles
appearing in the MA gauge in SU(3) lattice QCD with
large-volume fine lattices at the quenched level. Using
two different methods, we evaluate the chiral condensate
in Abelianized QCD and the monopole system, extra-
cted from lattice QCD. We also investigate correlation
between the local chiral-condensate value and the monop-
ole location.

II. LATTICE SETUP AND ABELIAN PROJECTION

We perform SU(3) lattice QCD simulations at the
quenched level with the standard plaquette action [16].
On four-dimensional Euclidean lattices, the gauge variable
is described as the SU(3) link variable UμðsÞ≡ eiagAμðsÞ ∈
SUð3Þ, with the gluon field AμðsÞ ∈ suð3Þ, the QCD gauge
coupling g, and the lattice spacing a. The lattice spacing
a is determined so as to reproduce the string tension
σ ¼ 0.89 GeV=fm [11].
In this work, we use four different lattices with the size

and the lattice parameter β≡ 6=g2:
(a) 163 × 16 and β ¼ 6.0 (i.e., a ≃ 0.1 fm),
(b) 243 × 24 and β ¼ 6.0,
(c) 323 × 32 and β ¼ 6.2 (i.e., a ≃ 0.075 fm),
(d) 243 × 6 and β ¼ 6.0.
From the first and the second lattices, the finite volume
effect can be checked. Since the second and the third
lattices have almost the same physical volume, the finite
lattice-spacing effect can be also checked. The last one
exhibits the high-temperature deconfined phase at T ≃
330 MeV above the critical temperature. In each direction,
the periodic boundary condition is imposed for link
variables, and the antiperiodic boundary condition for
quarks, which realizes the finite temperature system for
the last lattice.
Hereafter, we take the lattice unit a ¼ 1. Using the

pseudo-heat-bath algorithm, we generate 300, 100, 100,
and 300 gauge configurations for the lattices of (a), (b), (c),
and (d), respectively. All of gauge configurations are taken
every 500 sweeps after a thermalization of 5000 sweeps.
We use the jackknife method for the statistical error
estimate.

Using the Cartan subalgebra H⃗ ≡ ðT3; T8Þ of SU(3), the
MA gauge fixing is defined so as to maximize

RMA½UμðsÞ�≡
X
s

X4
μ¼1

trðU†
μðsÞH⃗UμðsÞH⃗Þ;

¼
X
s

X4
μ¼1

�
1 −

1

2

X
i≠j

jUμðsÞijj2
�
; ð1Þ

under the SU(3) gauge transformation, and thus this gauge
fixing suppresses all the off-diagonal fluctuation of the
SU(3) field UμðsÞ. In the MA gauge, the SU(3) gauge
group is partially fixed remaining its maximal torus
subgroup Uð1Þ3 × Uð1Þ8, and QCD is reduced into an
Abelian gauge theory like the non-Abelian Higgs theory.
In this work, the MA gauge fixing is performed with the

stopping criterion that the deviation ΔRMA=ð4V4Þ becomes
smaller than 10−5 in 100 iterations.
From the SU(3) fieldUMA

μ ðsÞ ∈ SUð3Þ in the MA gauge,
the Abelian field is defined as

uμðsÞ ¼ eiθ⃗·H⃗ ¼ diagðeiθ1μðsÞ; eiθ2μðsÞ; eiθ3μðsÞÞ ∈ Uð1Þ2; ð2Þ

with the constraint
P

3
i¼1 θ

i
μðsÞ ¼ 0 ðmod 2πÞ, by maxi-

mizing the overlap

RAbel ≡ 1

3
Re trfUMA

μ ðsÞu†μðsÞg ∈
�
−
1

2
; 1

�
; ð3Þ

so that the distance between uμðsÞ andUMA
μ ðsÞ becomes the

smallest in the SU(3) manifold.
The Abelian projection is defined by the replacement of

SU(3) fields UμðsÞ by Abelian fields uμðsÞ for each gauge
configuration, i.e., O½UμðsÞ� → O½uμðsÞ� for QCD opera-
tors. In this way, Abelian-projected QCD is extracted from
SU(3) QCD. The case of hO½UμðsÞ�i ≃ hO½uμðsÞ�i is called
“Abelian dominance” for the operator O.

III. MONOPOLES IN QCD

Now, let us consider the Abelian plaquette variable,

uμνðsÞ≡ uμðsÞuνðsþ μ̂Þu†μðsþ ν̂Þu†νðsÞ ¼ eiθμνðsÞ;

¼ diagðeiθ1μνðsÞ; eiθ2μνðsÞ; eiθ3μνðsÞÞ ∈ Uð1Þ2; ð4Þ
where μ̂ is the μ-directed unit vector in the lattice unit. The
Abelian field strength θiμνðsÞ (i ¼ 1, 2, 3) is the principal
value of the exponent in uμνðsÞ, and is defined as

∂μθ
i
νðsÞ − ∂νθ

i
μðsÞ ¼ θiμνðsÞ − 2πniμνðsÞ;

−π ≤ θiμνðsÞ < π; niμνðsÞ ∈ Z; ð5Þ
with the forward derivative ∂μ. Here, θiμνðsÞ is Uð1Þ2 gauge
invariant and corresponds to the regular continuum Abelian
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field strength as a → 0, while niμνðsÞ corresponds to the
singular gauge-variant Dirac string [24].
The electric current jiμ and the monopole current kiμ are

defined from the Abelian field strength θiμν,

jiνðsÞ≡ ∂ 0
μθ

i
μνðsÞ; ð6Þ

kiνðsÞ≡ ∂μθ̃
i
μνðsÞ=2π ¼ ∂μñiμν ∈ Z; ð7Þ

where ∂ 0
μ is the backward derivative, and θ̃μν denotes the

dual tensor of θ̃μν ≡ 1
2
ϵμναβθαβ. Both electric and monopole

currents are Uð1Þ2 gauge invariant, according to Uð1Þ2
gauge invariance of θiμνðsÞ. In the lattice formalism, kiμðsÞ is
located at the dual lattice L4

dual of s
α þ 1=2, flowing in μ

direction [15]. Hereafter, we will omit the color index i as
appropriate.
Abelian-projected QCD thus includes both electric

current jμ and monopole current kμ, and can be decom-
posed into the “photon part,” which only includes jμ,
and the “monopole part,” which only includes kμ approx-
imately, as follows.
First, we consider the photon part satisfying

θPhμν ≡mod2πð∂ ∧ θPhÞμν; ð8Þ

∂ 0
μθ

Ph
μν ¼ jν; ∂μθ̃

Ph
μν ¼ 0: ð9Þ

Here, we denote by mod2π the principal value in ½−π; πÞ.
From ∂μθ̃

Ph
μν ¼ 0, one can set θPhμν ¼ ð∂ ∧ θPhÞμν and then

∂ 0
μð∂ ∧ θPhÞμν ¼ ∂2θPhν − ∂ 0

μ∂νθ
Ph
μ ¼ jν. In the Landau

gauge ∂ 0
μθ

Ph
μ ¼ 0, the photon part θPhν can be derived from

the electric current jν,

∂2θPhν ¼ jν; θPhν ¼ 1

∂2
jν: ð10Þ

Therefore, we here define the photon part θPhν by

θPhν ðsÞ≡X
s0
hsj 1∂2

js0ijνðs0Þ; ð11Þ

using the inverse d’Alembertian on the lattice [15],

hsj 1∂2
js0i ¼ fððs − s0ÞaÞ ð12Þ

with

fðsaÞ≡ −
a2

4

Z π
a

−π
a

d4p
ð2πÞ4

e−ipαsαaP
4
μ¼1 sin

2ðpμa=2Þ
. ð13Þ

Here, we have explicitly written the lattice spacing a. Note
that this function satisfies

∂2fðsaÞ≡ ∂μ∂ 0
μfðsaÞ

¼ 1

a2
X4
μ¼1

½fðsaþ μ̂Þ þ fðsa − μ̂Þ − 2fðsaÞ�

¼
Z π

a

−π
a

d4p
ð2πÞ4 e

−ipαsαa; ð14Þ

which goes to the four-dimensional delta function in the
continuum limit a → 0. On finite-size lattices, the momen-
tum integral in Eq. (13) becomes a discretized sum over the
momentum-space lattice.
The monopole part θMo

μ ðsÞ is defined as

θMo
μ ðsÞ≡ θμðsÞ − θPhμ ðsÞ; ð15Þ

and approximately satisfies

θMo
μν ≡mod2πð∂ ∧ θMoÞμν; ð16Þ

∂ 0
μθ

Mo
μν ≃ 0; ∂μθ̃

Mo
μν ≃ kν: ð17Þ

In this way, in Abelian-projected QCD, the contributions
from the electric current jμ and the magnetic current kμ can
be well separated into the photon part θPhμ and the monopole
part θMo

μ , respectively.
In Table I, we show the monopole density ρM and the

electric-current density ρE defined as

ρM ≡ 1

3V

X3
i¼1

X
s;μ

jkiμðsÞj; ð18Þ

ρE ≡ 1

3V

X3
i¼1

X
s;μ

jjiμðsÞj ð19Þ

for Abelian-projected QCD, monopole and photon parts,
respectively.

TABLE I. The monopole density ρM and the electric-current
density ρE for Abelian-projected QCD and monopole and photon
parts.

Lattice Field sector Monopole density Electric density

V ¼ 163 × 16 Abel 2.95ð2Þ × 10−2 6.932(1)
β ¼ 6.0 Monopole 2.37ð2Þ × 10−2 0.0967(5)

Photon 1.39ð3Þ × 10−4 6.906(1)

V ¼ 243 × 24 Abel 2.94ð1Þ × 10−2 6.9307(7)
β ¼ 6.0 Monopole 2.35ð1Þ × 10−2 0.0964(4)

Photon 1.39ð2Þ × 10−4 6.9048(7)

V ¼ 323 × 32 Abel 1.065ð5Þ × 10−2 6.5190(5)
β ¼ 6.2 Monopole 0.842ð5Þ × 10−2 0.0338(1)

Photon 4.01ð9Þ × 10−5 6.5100(4)

V ¼ 243 × 6 Abel 1.720ð9Þ × 10−2 6.8760(8)
β ¼ 6.0 Monopole 1.229ð8Þ × 10−2 0.0654(3)

Photon 9.2ð2Þ × 10−5 6.8598(7)
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Using the monopole and the photon link variables,

uMo
μ ðsÞ≡ eiθ

Mo
μ ðsÞ ∈ Uð1Þ2; ð20Þ

uPhμ ðsÞ≡ eiθ
Ph
μ ðsÞ ∈ Uð1Þ2; ð21Þ

monopole and photon projection are defined by the
replacement of fuμðsÞg → fuMo

μ ðsÞg; fuPhμ ðsÞg. The dom-
inant role of the monopole part is called “monopole
dominance,” and monopole dominance has been observed
for quark confinement in lattice QCD [13].

IV. CHIRAL CONDENSATE

First, we study Abelian dominance and monopole
dominance for the chiral condensate in the chiral limit,
using the Kogut-Susskind (KS) fermion [16] for quarks in
SU(3) lattice QCD.
Mathematically, the chiral condensate hq̄qi in the chiral

limit is directly related to the low-lying Dirac eigenvalue
density ρð0Þ through the Banks-Casher relation [4],

hq̄qi ¼ − lim
m→0

lim
V→∞

πρð0Þ: ð22Þ

The Dirac eigenvalue density ρðλÞ is defined as

ρðλÞ≡ 1

V

X
n

hδðλ − λnÞi; γμDμjni ¼ iλnjni ð23Þ
with the space-time volume V.

For the KS fermion, the Dirac operator γμDμ becomes
ημDμ with the staggered phase ημðsÞ≡ ð−1Þs1þ���þsμ−1

(μ ≥ 2) with η1ðsÞ≡ 1. The KS Dirac operator takes the
explicit form of

ðημDμÞss0 ¼
1

2

X4
μ¼1

ημðsÞ½UμðsÞδsþμ̂;s0 − U−μðsÞδs−μ̂;s0 �

¼ 1

2

X4
μ¼1

X
�

�ημðsÞU�μðsÞδs�μ̂;s0 ; ð24Þ

and hence the Dirac eigenvalue λn is obtained from

1

2

X4
μ¼1

X
�

�ημðsÞU�μðsÞχnðs� μ̂Þ ¼ iλnχnðsÞ: ð25Þ

Here, the quark field qαðxÞ is described by a spinless
Grassmann variable χðxÞ, and the chiral condensate per
flavor is given as hq̄qi ¼ hχ̄χi=4 in the continuum limit.
For the four types of different lattices, we show in Fig. 1

the Dirac eigenvalue densities ρðλÞ for SU(3) QCD,
Abelian-projected QCD, monopole and photon sectors,
extracted from lattice QCD in the MA gauge as functions of
the Dirac eigenvalue λ. Figures 1(a), 1(b), and 1(c) are
almost zero-temperature results in the confined phase, and

(a) (b)

(c) (d)

FIG. 1. The Dirac eigenvalue densities ρðλÞ for SU(3) QCD, Abelian-projected QCD, and monopole and photon sectors, as functions
of the Dirac eigenvalue λ, for the four types of different lattices: (a) 163 × 16 at β ¼ 6.0, (b) 243 × 24 at β ¼ 6.0, (c) 323 × 32 at β ¼ 6.2,
and (d) 243 × 6 at β ¼ 6.0. The line is the best fit with a constant for the low-lying Dirac eigenvalue density.
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Fig. 1(d) exhibits the high-temperature deconfined phase
above the critical temperature.
For all the four lattices, we find that the low-lying Dirac

eigenvalue density ρð0Þ in Abelian-projected QCD takes
approximately the same value in SU(3) QCD, which
means Abelian dominance for the chiral condensate in
the chiral limit. For the photon sector, we find no
eigenvalues below 0.20, 0.13, 0.098, and 0.27 in 10
configurations for the four different lattices of (a), (b),
(c), and (d), respectively, and conclude that ρð0Þ in the
photon sector is exactly zero. On the other hand, ρð0Þ in
the monopole part is close to that in SU(3) QCD, which
means monopole dominance for the chiral condensate in
the chiral limit. Also, in the high-temperature deconfined
phase of Fig. 1(d), one finds ρð0Þ ≃ 0 for all the sectors,
which physically means chiral restoration.
Next, we calculate the chiral condensate in a different

way using the quark propagator. Here, we adopt the KS
fermion with the bare quark massm, and consider the chiral
extrapolation of m → 0.
For the gauge-field ensemble of U ¼ fUμðsÞg, the

Euclidean KS fermion propagator is given by the inverse
matrix,

Gij
Uðx; yÞ≡ hχiðxÞχ̄jðyÞiU;

¼ hx; ij
�

1

ημDμ½U� þm

�
jy; ji; ð26Þ

with the color index i and j. The propagator is calculated
by solving the large-scale linear equation with a point
source. Using the propagator for the gauge-field ensemble
fUμðsÞg, fuμðsÞg, fuMo

μ ðsÞg, and fuPhμ ðsÞg, we calculate
the local chiral condensate

hχ̄ðxÞχðxÞiU ¼ −TrGUðx; xÞ ð27Þ

for SU(3) QCD, Abelian-projected QCD, and monopole
and photon sectors, respectively. Here, we use 100 gauge
configurations, and calculate the local chiral condensate at
24 distant space-time points x for each gauge configuration.
In fact, we perform 1600 times calculations of hχ̄ðxÞχðxÞiU
for each sector, quark mass m, and type of lattice. Here,
we consider the net chiral condensate by subtracting the
contribution from the trivial vacuum U ¼ 1 as

hχ̄χðxÞiU ≡ hχ̄ðxÞχðxÞiU − hχ̄χiU¼1; ð28Þ

where the subtraction term is exactly zero at the chiral limit
m ¼ 0. We eventually take its average over the space-time x
and the gauge ensembles U1; U2;…; UN ,

hχ̄χi≡X
x;i

hχ̄χðxÞiUi
=
X
x;i

1: ð29Þ

For the four types of different lattices, we show in Fig. 2
the chiral condensates plotted against the bare quark mass
m in the lattice unit, for SU(3), Abelian, and monopole

(a) (b)

(c) (d)

FIG. 2. The chiral condensates for SU(3) QCD, Abelian-projected QCD, and monopole and photon sectors, as functions of the bare
quark mass m in the lattice unit, for the four types of different lattices: (a) 163 × 16 at β ¼ 6.0, (b) 243 × 24 at β ¼ 6.0, (c) 323 × 32 at
β ¼ 6.2, and (d) 243 × 6 at β ¼ 6.0. The solid line is the best fit with a linear function.
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and photon sectors, extracted from lattice QCD in the
MA gauge.
For each sector, m dependence of the chiral condensate

seems to be linear in this region, and therefore we evaluate
the chiral condensate in the chiral limit using the linear
chiral extrapolation. Provided that the linear chiral extrapo-
lation is valid, Abelian dominance and monopole domi-
nance for the chiral condensate are realized in the chiral
limit, whereas the photon part has almost no chiral
condensate in the chiral limit.
These results are consistent with the above-mentioned

conclusions using the Dirac eigenvalue density ρðλÞ and the
Banks-Casher relation. In Table II, we summarize the chiral
condensate values in the chiral limit evaluated from the two
different methods for SU(3), Abelian, and monopole and
photon sectors.
In the presence of bare quark masses of m ¼ 0.01–0.02,

however, there appears a significant deviation of the chiral
condensates between SU(3) and Abelian sectors, which
quantitatively differs from SU(2) QCD, where Abelian
dominance is observed at m ¼ 0.05–0.3 [21]. In particular,
compared with SU(3) QCD, bare-quark mass m depend-
ence of the chiral condensate is fairly reduced in Abelian-
projected QCD and also in the monopole part.
As an interesting possibility, the net chiral condensate in

the Abelian/monopole sector is controlled by quark-mass
independent object. This might be understood if monopoles
are directly responsible for chiral symmetry breaking
because monopoles have no bare quark mass dependence
in the quenched approximation. Then, we next examine the
correlation between the chiral condensate and monopoles
in more direct manner.

V. LOCAL CORRELATION

Second, we study the local correlation between chiral
condensate and monopoles by investigating the local chiral
condensate around monopoles in Abelian-projected QCD
at each gauge configuration. Note that, at each lattice
configuration, the monopoles topologically appear as local
objects so that they might locally influence the chiral

condensate around them, although the translational invari-
ance is recovered by the gauge ensemble average.
For the visual demonstration, we show in Fig. 3 the

local chiral condensate hχ̄χðxÞiu and the monopole loca-
tion at all three-dimensional space points at a time slice of
t ¼ 12 in a typical Abelian configuration of the 243 × 24
lattice at β ¼ 6.0. The bare quark mass is taken as
m ¼ 0.02. Here, we show all the monopoles located at
t ¼ 11.5, 12.5 on the dual lattice L4

dual of s
α þ 1=2. The

value of the local chiral condensate jhχ̄χðxÞiuj is visual-
ized with the color graduation. (The same dark color is
used for jhχ̄χðxÞiuj ≥ 0.20, and no color is used for
small jhχ̄χðxÞiuj < 0.04.)
It is clearly observed that the local chiral condensate in a

configuration has a large fluctuation and takes quite large
values in the vicinity of the monopoles.
Finally, we calculate the correlation function between the

local chiral condensate hχ̄χðxÞiu and the local monopole
density

ρLðsÞ≡ 1

3 × 24

X3
i¼1

X
s0∈PðsÞ

X4
μ¼1

jkiμðs0Þj; ð30Þ

where PðsÞ denotes the dual lattices in the vicinity of s, i.e.,
PðsÞ ¼ fs0 ∈ L4

dualjjs0 − sj ¼ 1g with the dual lattice L4
dual

TABLE II. The chiral condensate values in the chiral limit
evaluated from the two different methods for SU(3) QCD,
Abelian-projected QCD, monopole and photon sectors.

Lattice Field sector Banks-Casher Propagator

V ¼ 243 × 24 SU(3) 3.14ð3Þ × 10−2 3.45ð5Þ × 10−2

β ¼ 6.0 Abel 3.26ð4Þ × 10−2 3.69ð5Þ × 10−2

Monopole 2.32ð5Þ × 10−2 2.49ð2Þ × 10−2

Photon 0.00(0) 2.5ð7Þ × 10−5

V ¼ 323 × 32 SU(3) 1.09ð1Þ × 10−2 1.21ð3Þ × 10−2

β ¼ 6.2 Abel 1.25ð2Þ × 10−2 1.30ð2Þ × 10−2

Monopole 0.93ð1Þ × 10−2 0.91ð1Þ × 10−2

Photon 0.00(0) 2.4ð7Þ × 10−5

FIG. 3. The local chiral condensate at t ¼ 12 and monopoles at
t ¼ 11.5, 12.5 for a typical Abelian configuration of the 243 × 24
lattice at β ¼ 6.0. The bare quark mass is taken as m ¼ 0.02. The
value of the local chiral condensate jhχ̄χðxÞiuj is visualized with
the color graduation. Monopoles at t ¼ 11.5 and 12.5 are plotted
with upper and lower triangles, respectively.
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of sα þ 1=2. For this calculation, we use the lattice data of
the local chiral condensate and the monopole current for
100 gauge configurations, which were used to obtain Fig. 2.
Figure 4 shows the correlation function Cðx − yÞ

between the local chiral condensate hχ̄χðxÞiu and the local
monopole density ρLðyÞ,

Cðx − yÞ ∝ hχ̄χðxÞρLðyÞiu − hχ̄χiuhρLiu; ð31Þ
as the function of jx − yj, for 243 × 24 at β ¼ 6.0 and
323 × 32 at β ¼ 6.2. In both lattices, the bare quark masses
of m ¼ 0.02, 0.015, and 0.01 are used, and the correlation
function Cðx − yÞ is normalized to be unity at jx − yj ¼ 0
at each m. Within the error bar, the correlation function
Cðx − yÞ seems to be a single-valued function of jx − yj,
and no significantm dependence of the correlation function
is found in this bare quark-mass region.
It is likely that the correlation function Cðx − yÞ mono-

tonically decreases with the distance r≡ jx − yj and almost
vanishes for large r such as r≳ 0.5 fm, and thus a strong
correlation between the local chiral condensate and the
monopole density is quantitatively clarified.
From these lattice QCD results, we conclude that there

exists a direct clear local correlation between monopoles
and the chiral condensate.

VI. SUMMARY AND CONCLUSION

We have studied spontaneous chiral-symmetry breaking
in SU(3) QCD in terms of the dual superconductor picture
for quark confinement in the MA gauge, using lattice QCD
Monte Carlo simulations with four types of different
lattices. In the MA gauge, there topologically appear
color-magnetic monopoles, which would be responsible
to quark confinement.
First, in the confinement phase, we have found Abelian

dominance and monopole dominance for the chiral con-
densate in the chiral limit, using the two different methods
of (i) the Banks-Casher relation with the Dirac eigenvalue
spectral density and (ii) finite quark-mass calculations with

the quark propagator and its chiral extrapolation. We have
also found that bare-quark mass dependence of the chiral
condensate is fairly reduced in Abelian-projected QCD and
the monopole part. In the high-temperature doconfined
phase, the chiral restoration is observed also for the Abelian
and the monopole sectors.
Second, we have investigated local correlation between

the chiral condensate and color-magnetic monopoles, and
have found that the chiral condensate takes a quite large
value near the monopoles in Abelian-projected QCD.
Here, let us consider the physical origin of the correlation

between chiral symmetry breaking and monopoles in terms
of the magnetic catalysis. In Abelian gauge theories, chiral
symmetry breaking is generally enhanced in the presence of
a strong magnetic field, which is called the magnetic
catalysis [25–27]. In the MA gauge, infrared QCD resem-
bles an Abelian gauge theory with monopoles, which
accompany a strong color-magnetic field around them.
Therefore, as an interesting possibility, the strong magnetic
field around the monopoles enhances chiral symmetry
breaking also in this Abelian gauge theory.
As a future study, more detailed analysis on the local

correlation would be desired to determine what is the direct
trigger of the enhancement of the local chiral condensate,
that is, the magnetic fields around monopoles, the presence
of monopoles itself, or something else. It is also meaningful
and important to investigate the effect of dynamical quarks
using full QCD.

ACKNOWLEDGMENTS

H. S. is supported in part by the Grants-in-Aid for
Scientific Research (Grant No. 19K03869) from the
Japan Society for the Promotion of Science. Most of
numerical calculations have been performed on NEC
SX-ACE and OCTOPUS at Osaka University, and
Yukawa-21 at YITP, Kyoto University. We have used
PETSc and SLEPc to solve linear equations and eigenvalue
problems for the Dirac operator, respectively [28–31].

FIG. 4. The correlation function Cðx − yÞ between the local chiral condensate hχ̄χðxÞiu and the local monopole density ρLðyÞ plotted
against jx − yj for (left) 243 × 24 at β ¼ 6.0 and (right) 323 × 32 at β ¼ 6.2. The bare quark masses of m ¼ 0.02, 0.015, and 0.01 are
used in the lattice unit.
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