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1 Introduction

A conventional view of quantum field theories (QFTs) relies on particle picture of quantum
fields as a fundamental description of the theories, but the importance of non-local objects
has been increasingly recognized in recent studies to discriminate theories from those having
the same local descriptions but different global structures [1, 2]. Extended observables such
as Wilson-’t Hooft loops rarely have concrete realizations in terms of fundamental fields
in Lagrangian and are typically defined as boundary conditions, hence called defects in
general. Various types of defects are pervasive in physics: loop and surface operators in
condensed matter and high energy physics, cosmic string and domain wall in cosmology, D-
branes in string theory, to name just a few. (Refer to [3] for recent progress in diverse fields.)

Theoretical aspects of defects are less scrutinized as opposed to local operators due
to the lack of their fundamental descriptions in QFT as well as their intricate dependence
on the shapes. On the other hand, focusing on a class of defects with a large amount of
symmetry we have a better understanding of their universal characters. In particular the
kinematics of planar and spherical defects (conformal defects) in conformal field theories
(CFTs) are highly constrained by a large subgroup of conformal group [4–13]. To be con-
crete let D(p) be a p-dimensional conformal defect in Euclidean CFT on Rd. The conformal
group SO(1, d+1) is broken by the presence of the defect to the subgroup SO(1, p+1)×SO(q)
where SO(1, p+ 1) is the conformal group on the p-dimensional worldvolume of D(p) while
SO(q) is the rotation group around D(p) with q = d − p. As a special case CFTs on a
manifold with boundary (BCFTs) are also regarded as defect CFTs (DCFTs) with q = 1.

It should be noted that there are two kinds of local operators in DCFT: local operators
O in the bulk CFT and defect local operators Ô with support only on the worldvolume
of D(p). This is easily seen in a simple example of DCFT consisting of a bulk CFTd and
a lower-dimensional CFTp without interaction in between. The relation between O and
Ô is determined by the bulk-to-defect operator product expansion, which thereby defines
possible types of defects in a given bulk CFT.

CFTs occupy distinguished positions as fixed points of renormalization group (RG)
flows where scale invariance is believed to enhance to conformal invariance [14]. One can
perturb a CFT by a relevant operator O and let it flow to another CFT at the IR fixed
point. RG flows can be geometrized by adding a “height” function which measures the
degrees of freedom of the theories on a space of QFTs. Then theories are expected to flow
only from the UV to the IR. A C-theorem elevates this belief to the statement for the
existence of such a monotonic function known as a C-function. Zamolodchikov proved the
c-theorem for the first time in two dimensions [15], which was generalized to the a-theorem
as a conjecture in four dimensions [16] and proved more recently [17]. These theorems state
the type A central charges for the conformal anomalies play the role of a C-function in even
dimensions. On the other hand, the F -theorem asserts that the sphere free energy be a
C-function in odd dimensions [18–21]. Despite the difference of the structures in even and
odd dimensions, the dimensional dependence of the C-functions is beautifully unified by
the generalized F -theorem [22] that proposes an interpolating function between the type
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A anomaly and sphere free energy

F̃ ≡ sin
(
π d

2

)
log Z[Sd] , (1.1)

decreases along any RG flow:
F̃UV ≥ F̃IR . (1.2)

An information theoretic proof of the theorem was given by [23–25] for d ≤ 4, but at the
moment of writing it remains open whether the generalized F -theorem holds in higher
dimensions.

Now for DCFTs one can trigger an RG flow by perturbing the theory using a defect
local operator Ô in addition to O, thus DCFTs allow for a wider class of deformation than
CFTs without defect. If one is concerned with the dynamics of defect operators it will be
convenient to focus on defect RG flows triggered by defect localized operators while keeping
a bulk CFT fixed. Given the success of the C-theorems in CFTs it is tempting to ask if
there exists a monotonic function which decreases along any defect RG flow in DCFTs. A
few concrete proposals were put forwarded in the case of BCFTs and named the g-theorems
which employ either the boundary entropy [26] or the hemisphere free energy [27, 28] as
a C-function. In BCFT2, the g-theorem was given two proofs: one by a field theoretic
method [29] and the other by an information-theoretic method [30]. In BCFT3 two proofs
are given by [31] and [32] with different means, showing the boundary central charge b
for conformal anomaly becomes a C-function. In higher-dimensional BCFTs, there are no
general proofs of the g-theorem, but some holographic calculations based on a probe brane
model [33], the AdS/BCFT construction [34–36] and supergravity solutions [37], support
the validity of the proposal.1 The situation is less clear for general DCFTs, but when p = 2
(and for any d) the b-theorem [31] states that the central charge of surface operators is
shown to be a C-function. (See also [40–44] for further investigations.)

In the previous work [9], we proposed a C-theorem in DCFT stating that the defect free
energy on the sphere Sd defined by an increment of the sphere free energy due to the defect

log 〈D(p)〉 ≡ logZDCFT[Sd]− logZCFT[Sd] , (1.3)

is a C-function. More precisely, we introduced an interpolating function of the defect free
energy in an analogous way to (1.1) by

D̃ = sin
(
π p

2

)
log |〈D(p)〉| , (1.4)

and conjectured D̃ decreases under any defect RG flow:

D̃UV ≥ D̃IR . (1.5)

When defects do not interact with the bulk theory our proposal simply reduces to the
generalized F -theorem (1.2) for the p-dimensional defect theories while it incorporates the

1In contrast, the boundary free energy does not necessarily decrease under a bulk RG flow [38, 39].
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g-theorem for BCFTs when p = d− 1. The relation (1.5) passes several checks for defects
in field theories [9, 41, 45] and holographic models [42, 46, 47].

The main purpose of this paper is to examine the conjectured relation (1.5) in more
detail in the simplest theory: a free conformally coupled scalar field. To this end we
will describe conformal defects in the theory on flat space as boundary conditions on a
conformally equivalent space, where a defect RG flow is caused by changing the boundary
condition by the double trace deformation as is familiar in the AdS/CFT setup [48–54].
The idea of mapping BCFTs on flat space to the hyperbolic space Hd and studying the
boundary RG flow has appeared in the recent works [55, 56]. Similarly, line operators in
four dimensions (i.e., p = 1 and q = 3) can also be characterized as boundary conditions
on H2 × S2 [57], and monopole operators which are codimension three defects can be
characterized as boundary conditions on Hd−2 × S2 [58]. We will extend these ideas to
more general DCFTs by employing a conformal map from flat space to Hp+1× Sq−1 where
defects are located at the boundary of Hp+1 (see figure 1).

We will introduce Neumann type boundary conditions on Hp+1 × Sq−1 and consider
the defect RG flow from Neumann to Dirichlet type. For BCFT on the hemisphere HSd,
Neumann and Dirichlet boundary conditions can be realized by imposing parity conditions
on the eigenmodes. Then, the free energies for each boundary condition can be obtained
from those on the sphere by truncation (see e.g. [28, 31] for the detail). On the other hand,
the Neumann/Dirichlet boundary condition on Hd, which is conformally equivalent to HSd

though, cannot be described by a parity condition as the spectrum of the eigenfunctions is
continuous. The boundary conditions on Hd are rather dictated by the asymptotic behavior
of the field near the boundary as in the AdS/CFT. This approach has an advantage that
we can view the defect theory as a “holographic” dual of the bulk field on the Euclidean
AdS space Hd, which allows us to classify types of conformal defects through the boundary
conditions on Hp+1 × Sq−1 in the conformally coupled free scalar theory. We will show it
is always possible to impose Dirichlet boundary conditions for any p and q while Neumann
boundary conditions are allowed only for special cases if we require the defect theory to
be unitary. Reassuringly our results conform with the classification of the non-monodromy
defects for a free massless scalar theory carried out in [59] by other means. It leads us
to speculate that Dirichlet boundary condition corresponds to trivial (or no) defects while
Neumann boundary condition to non-trivial defects.

The free energy of a conformally coupled scalar field on Hp+1×Sq−1 has been calculated
in literature [19, 60–64] (see also [65] for a related work) and shown to have a logarithmic
divergence:

F [Hp+1 × Sq−1] = · · · −A[Hp+1 × Sq−1] log
(
R

ε

)
+ · · · , (1.6)

where R is the radius of the hyperbolic space and the sphere. The small parameter ε serves
as a UV cutoff for the sphere as well as an IR cutoff for the hyperbolic space. The explicit
values of the coefficients A[Hp+1×Sq−1] are obtained for some p and q either using the heat
kernel method or by summing over eigenvalues. It is however not straightforward to apply
one of these methods to the cases when both p and q are odd [62].2 To overcome this diffi-

2When both p and q are odd, it is expected that only bulk anomaly exists and the bulk anomaly is the
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culty, we will use the zeta function regularization throughout this paper and complete the
calculation of the free energy on Hp+1×Sq−1. As we will see in the main text, our approach
is not only applicable to any p and q, but also makes it easy to compare the free energies on
conformally equivalent spaces. For instance, we will check the equality between the univer-
sal parts of the free energies on Hd and HSd for Dirichlet boundary condition conjectured
by [63] by combining numerical and analytic ways.3 We will also verify a few other relations
for the free energies and prove or conjecture new ones which will be summarized below. An-
other advantage of our approach than the other methods is to make manifest the difference
between the anomalies from the bulk theory and defect. Actually, there are two sources of
logarithmic divergences: one from the bulk anomaly when d = p + q even and the other
from the defect anomaly when p even. In our approach, the bulk anomaly depends on the
cutoff introduced for the zeta regularization while the defect anomaly depends on another
cutoff that arises from the renormalized volume of the hyperbolic space Hp+1 for even p.

We will leverage our results to test if the conjectured relation (1.5) holds for the
defect RG flow from Neumann to Dirichlet when the former is allowed. Strictly speaking,
we will not directly check our proposal that employs the defect free energy on Sd as a
C-function. Instead we assume that the difference of the free energy is invariant under
the conformal map from Sd to Hp+1 × Sq−1.4 We will calculate the difference of the free
energies on Hp+1×Sq−1 between Neumann and Dirichlet boundary conditions in two ways:
the residue method [53, 54] and analytic continuation method. We find both methods give
the same result consistent with the defect C-theorem (1.5).

The organization of this paper is as follows. In section 2, we review several useful co-
ordinates for DCFT and conformal maps among them. Furthermore, we discuss boundary
conditions of Dirichlet type and Neumann type for a conformally coupled scalar field on
Hp+1 × Sq−1. The Neumann type boundary conditions fall into two classes, free boundary
condition and the other. We show that the Dirichlet boundary condition always exists
but the Neumann boundary condition exists only in q = 1, 2, 3, 4 while the free boundary
condition appears when q = p + 2 for q ≥ 3. Section 3 begins as a warm-up with the
calculation of the free energy on Sd and HSd. The purpose of this section is twofold: to
illustrate the zeta regularization method and to provide analytic results for the boundary
free energy on HSd in arbitrary dimensions. In section 4, we proceed to compute the free
energies on Hd and Hp+1 × Sq−1 with the Dirichlet boundary conditions. Along the way
we find various identities for the free energies on the conformally equivalent spaces. In sec-
tion 5, we calculate the difference of the free energies between the Neumann and Dirichlet
boundary conditions on Hp+1 × Sq−1 in two ways and confirm (1.5) holds for all the cases.
Finally section 6 is devoted to discussion and future directions. Appendices include the

same as that of Sp+q. However, it is technically difficult to confirm this expectation.
3It is not clearly specified what type of boundary conditions is imposed on the hyperbolic space in [63],

but their boundary condition is of Dirichlet type in our terminology.
4When defects have conformal anomaly the free energy may not be invariant, but when defects are

spherical the anomaly is of type A which depends only on the Euler characteristic of the worldvolumes. In
our setup, defects on Sd and Hd are always spherical, so should have the same anomaly. When there are
no defect anomalies, we need not be worried about this issue as the free energy is invariant by definition.
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lists of the free energies on Sd,HSd,Hd and Hp+1×Sq−1 obtained in the main text, various
formulas and technical details of some calculations.

1.1 Summary of the paper

Since the body of the paper is rather lengthy and technical, in what follows we will sum-
marize the main results.

In section 2 we classify the boundary condition of a conformally coupled scalar field
theory on Hp+1×Sq−1, which preserves a defect conformal symmetry. Neumann boundary
condition is allowed only for q = 1, 2, 3, 4 while free boundary condition exists when q = p+2
for q ≥ 3. Our result matches the classification of non-monodromy defects in a free scalar
theory given by [59] by other means.

In section 3, using the zeta-function regularization, we compute the free energies on
Sd and HSd.

• For Sd, the renormalized free energy takes the following form:

Fren[Sd] =
{
Ffin[Sd] d : odd
−A[Sd] log(ΛR) + Ffin[Sd] d : even

(1.7)

where Λ is a UV cutoff introduced in the zeta regularization. We reproduce known
anomaly coefficients A[Sd] for even d and known universal finite terms Ffin[Sd] for
odd d [19, 22, 66–68].

• For HSd, we find the renormalized free energy takes the form:

Fren[HSd] =


−A[HSd] log(ΛR) + Ffin[HSd] d : odd

−1
2 A[Sd] log(ΛR) + Ffin[HSd] d : even

(1.8)

After subtracting half of the free energy on Sd, we obtain the boundary free energy
with the Dirichlet or Neumann boundary condition. This reproduces known results
in [27, 28, 31, 63, 69].

In section 4 we examine the case for Hd and Hp+1 × Sq−1 with the Dirichlet boundary
condition for the hyperbolic space in the zeta regularization.

• For Hd, we find the renormalized free energy takes the following form:

Fren[Hd] =


−A[Hd] log

(
R

ε

)
d : odd

−A[Hd] log(ΛR) + Ffin[Hd] d : even
(1.9)

where log(R/ε) arises from the regularized volume of Hd and only appears for odd
d. We obtain the universal parts of the free energy and reproduce known results
in [62, 63, 70, 71]. We confirm the equivalence of the free energies between Hd with
the Dirichlet boundary condition and HSd with the Dirichlet boundary condition:

A[Hd] = A[HSd] d : odd
Fren[Hd] = Fren[HSd] d : even

(1.10)

(We also confirm similar results hold for the Neumann boundary conditions.)

– 6 –
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• For Hp+1 × Sq−1 we find the renormalized free energy takes the form:

Fren[Hp+1 × Sq−1] =


−A[Hp+1 × Sq−1] log

(
R

ε

)
p : even

−A[Hp+1 × Sq−1] log(ΛR) + Ffin[Hp+1 × Sq−1] p : odd
(1.11)

We obtain the following results:

1. For even p and even q, A[Hp+1 × Sq−1] 6= 0, indicating the presence of defect
anomaly.

2. For even p and q = p+ 2, we numerically check

A[S2p+2] = 2A[Hp+1 × Sp+1] . (1.12)

3. For even p and odd q, A[Hp+1×Sq−1] = 0 or equivalently Fren[Hp+1×Sq−1] = 0.
4. For odd p, we numerically verify the relation:5

Fren[Sd] = Fren[H2k × Sd−2k] . (1.13)

These relations were conjectured in [62] from the calculations in free scalar and holo-
graphic theories. Our results provide more evidence for their conjectures at least in
the conformally coupled free scalar in arbitrary dimensions. In particular, we per-
form systematic computations in the zeta regularization including the cases with odd
p and odd q which were missing in [62] due to some technical difficulties.
These results lead us to speculate that A[Hp+1 × Sq−1] is associated with the bulk
anomaly while A[Hp+1 × Sq−1] is with the defect anomaly.

In section 5 we obtain the free energies with the Neumann boundary condition for the
hyperbolic space using two different methods: (1) an analytic continuation, and (2) the
residue method which is conjectured in [54]. We give a proof of the conjecture and apply it
to Hp+1 × Sq−1. We confirm that the interpolated defect free energy D̃ with the Dirichlet
boundary condition is always smaller than that with Neumann boundary condition, and
our results are consistent with the conjectured C-theorem (1.5) in DCFT. Specifically, the
difference of the free energies on Hp+1× Sq−1 between the two boundary conditions equals
the free energy on Sp for q = 2, 4 or the difference of the free energies on Hp+1 between the
two boundary conditions for q = 3, and the monotonicity follows from the positivity of the
interpolated sphere free energy F̃ or the monotonicity of the free energy on Hp+1.

2 Classification of boundary conditions

We first review coordinate systems and conformal maps between them which are suitable
for describing conformal defects in DCFTs. We then proceed to classify conformal boundary
conditions for a conformally coupled free scalar field, and show that they correspond to a
classification of conformal (non-monodromy) defects in the same theory.

5For S1, we can compute the both sides analytically but we can not prove the equality for arbitrary d.
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2.1 Coordinate systems for DCFT

Let us consider DCFTd on flat space with the metric

ds2 = dx2
a + dy2

i , (a = 1, · · · , p, i = p+ 1, · · · , d) , (2.1)

where a p-dimensional defect sits at the origin yi = 0 in the transverse directions. For later
convenience we introduce q = d−p, which represents a codimension of the defect. By using
the polar coordinate for the yi-coordinates,

dy2
i = dz2 + z2ds2

Sq−1 , (2.2)

with the metric ds2
Sq−1 for a unit (q − 1)-sphere, the flat space metric becomes

ds2 = z2
(

dx2
a + dz2

z2 + ds2
Sq−1

)
. (2.3)

By a Weyl transformation, the above metric reduces to the geometry Hp+1 × Sq−1 with
radius R,

ds2 = R2
(

dx2
a + dz2

z2 + ds2
Sq−1

)
. (2.4)

Now the defect is located at the boundary of the hyperbolic space. We can also use the
global coordinate for the hyperbolic space part:

ds2 = R2
(
dρ2 + sinh2 ρ ds2

Sp + ds2
Sq−1

)
, (2.5)

where the defect becomes a p-sphere at ρ = ∞. Introducing a new variable ϕ by tanϕ =
sinh ρ, the metric (2.5) becomes

ds2 = R2

cos2 ϕ

(
dϕ2 + sin2 ϕ ds2

Sp + cos2 ϕ ds2
Sq−1

)
, (2.6)

which the metric can be mapped by a further Weyl transformation to the d-sphere metric:

ds2 = R2
(
dϕ2 + sin2 ϕ ds2

Sp + cos2 ϕ ds2
Sq−1

)
, (2.7)

where the defect is mapped to a p-sphere at ϕ = π/2. See figure 1 for the illustration of
the resulting conformal map.

It will also be convenient to introduce the standard representation of the sphere metric,

ds2 = R2
(
dϕ2 + sin2 ϕ ds2

Sd−1

)
, (2.8)

where 0 ≤ ϕ < π for the sphere and 0 ≤ ϕ ≤ π/2 for the hemisphere.
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D(p)

Rd

conformal map−−−−−−−−−−−−→ D(p) ×

Hp+1 Sq−1

Figure 1. Conformal map from flat space Rd with a p-dimensional planar defect to Hp+1 × Sq−1.

2.2 Conformally coupled scalar field

Next, let us consider a conformally coupled real scalar field on (2.4) (or (2.5)). The action
is given by

I = −1
2

∫
ddx√g

[
(∂µφ)2 + ξRφ2

]
, (2.9)

with the parameter ξ and the Ricci scalar R:

ξ = d− 2
4(d− 1) , R = (q − 1)(q − 2)− p(p+ 1)

R2 . (2.10)

Now we would like to investigate the boundary condition for the scalar field near the
boundary, z = 0 (or ρ =∞), of the hyperbolic space. For this purpose, we decompose the
scalar field into eigenfunctions by the spherical harmonics on Sq−1:

φ(z, x, θ) =
∑
`

φHp+1(z, x)Y`,Sq−1(θ) , (2.11)

where (z, x) are the coordinates of the hyperbolic space in Poincaré coordinate and θ stands
for those of the sphere Sq−1. The spherical harmonics Y`,Sq−1(θ) satisfies the equation:

−∇2
Sq−1Y`,Sq−1(θ) = `(`+ q − 2)

R2 Y`,Sq−1(θ) . (2.12)

Here ` is an integer whose range is from −∞ to ∞ for q = 2 and from 0 to ∞ for q ≥ 3.
With this decomposition, the equation of motion of the scalar field on Hp+1 × Sq−1(

−∇2
Hp+1 −∇2

Sq−1 + ξR
)
φ(z, x, θ) = 0 , (2.13)

reduces to the equation of motion of a massive scalar field on Hp+1:(
−∇2

Hp+1 +M2
)
φHp+1(z, x) = 0 , (2.14)

with the mass given by

M2R2 = `(`+ q − 2) + (q − 2)2 − p2

4 . (2.15)

– 9 –



J
H
E
P
0
5
(
2
0
2
1
)
0
7
4

Then the solution to the equation of motion behaves as

φHp+1 ∼ z∆`
± , (2.16)

near the boundary, z = 0, as is well known in the AdS/CFT correspondence. Here ∆`
± are

the roots of the equation:
∆(∆− p) = M2R2 , (2.17)

and are explicitly given by

∆`
± =


p

2 ± |`| (q = 2)
p

2 ±
(
`+ q − 2

2

)
(q > 2)

. (2.18)

For q = 1, the spherical part does not exist, so there is no `-dependence in ∆±:

∆± = p

2 ±
1
2 , (q = 1) . (2.19)

While we are only concerned with a QFT of a scalar field on Hp+1 × Sq−1, it may be
viewed as a bulk system in a holographic setup as shown by the above consideration. The
parameters ∆`

± can be understood as the conformal dimensions of operators localizing on
a p-dimensional conformal defect at the boundary of Hp+1. (See also section 2.3 in [72]
for a related discussion.) Then not all the operators with dimensions (2.18) (or (2.19) for
q = 1) are allowed to exist due to the unitarity bound in p dimensions:6

∆`
± ≥

p

2 − 1 , (p > 2) ,

∆`
± > 0 , (p ≤ 2) .

(2.22)

It follows that ∆`
+ is always above the bound, while ∆`

− is not necessarily so unless

|`| ≤ 1 , (q = 2) ,

` ≤ 2− q

2 , (q > 2) .
(2.23)

6Restricting to normalizable boundary conditions on the hyperbolic space Hp+1 the mass of the scalar
field is subject to the so-called Breitenlohner-Freedman (BF) bound:

M2R2 ≥ −p
2

4 . (2.20)

When this condition is met there are two real solutions to (2.17), ∆±. While the solution with the larger
root ∆+ is always square-integrable, the solution with the smaller root ∆− is not necessarily so with respect
to the Klein-Gordon inner product. Thus, requiring the square integrability leads to the bound for ∆−:

∆− ≥
p

2 − 1 . (2.21)

From the viewpoint of the AdS/CFT correspondence, this matches with the unitarity bound for scalar
primary operators in a p-dimensional CFT.
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Hence the modes with small ` are allowed to have sensible boundary conditions correspond-
ing to ∆`

−. For clarity we define the Dirichlet and Neumann boundary conditions for q ≥ 2
as follows:

Dirichlet b. c. : ∆D = ∆`
+ for all ` ,

Neumann b. c. : ∆N =
{

∆`
− > 0 for some `

∆`
+ otherwise

.
(2.24)

in accordance with the case for q = 1 where ∆D = ∆+ and ∆N = ∆−.
In addition to them there are boundary conditions with a constant solution (zero mode)

on Hp+1:7

φHp+1 ∼ const , (2.25)

which corresponds to defect operators of dimension ∆`
− = 0. Among them is the special

boundary condition ∆`=0
− = 0 associated with the excitation of the identity operator on

the defect.8 We call them “free” boundary conditions following [57]:

Free b. c. : ∆F =
{

∆`
− = 0 ` = 0

∆`
+ ` 6= 0

, (2.26)

for q ≥ 2, and ∆F = ∆− = 0 for p = q = 1. On the other hand, the zero modes with
` 6= 0 are termed charged dimension zero operators and excluded in [59] on the basis of the
cluster decomposition which assures the dimension zero mode must be the defect identity
operator. Thus, we will also take into account the free boundary conditions while excluding
the charged zero modes ∆` 6=0

− = 0 from the classification.
It follows from (2.18) and (2.19) that the free boundary conditions are allowed only

when p = q = 1 and q = p + 2 (p ≥ 1). From the viewpoint of conformal defects, the
free boundary condition on Hp+1 × Sq−1 is associated with a p-dimensional scalar Wilson
surface in d = 2p+ 2 dimension:

WΣp = eg
∫

Σp
φ
, (2.27)

where g is a dimensionless coupling, Σp the worldvolume of a p-dimensional surface and φ
a bulk scalar field of dimension p.

Having this caveat in mind, we obtain the classification of the boundary conditions for
∆`
−:

q = 1 case. It follows from (2.19) that there exists the Neumann boundary condition
for p ≥ 2 and the free boundary condition for p = 1.

q = 2 case. The bound (2.23) becomes ` ≤ 1, so the Neumann boundary conditions with
` = 0,±1 are allowed to exist. The ` = 0 mode, however, does not give a new boundary
condition as ∆`=0

+ = ∆`=0
− = p

2 . Note that ∆`=±1
− = p

2 − 1 saturate the unitarity bound for
p > 2. In [59] it is argued that the ` = ±1 modes do not give rise to nontrivial boundary
conditions as the defect operators saturating the unitarity bound become free, and are

7These modes should be treated with case as they are the source of the IR divergence in the free energy.
8The defect identity operators are taken into account in the v2 of [59].
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excluded from the spectrum. On the other hand, we will keep them as nontrivial Neumann
boundary conditions for completeness in the latter sections.
Thus, there are two types of Neumann boundary conditions for p > 2:

∆N1 =
{

∆`
+ for ` 6= 1

∆`
− for ` = 1

,

∆N2 =
{

∆`
+ for ` 6= ±1

∆`
− for ` = ±1

.

(2.28)

The mode with (∆` 6=−1
+ ,∆`=−1

− ) is essentially the same as the ∆N1 boundary condition
because we can change the label of ` without changing physics.

q = 3 case. Only the ` = 0 mode satisfies the unitarity bound and gives us a nontrivial
Neumann boundary condition with ∆`=0

− = p−1
2 for p ≥ 2. Hence there is only one type of

the Neumann boundary condition:

∆N =
{

∆`
+ for ` ≥ 1

∆`
− for ` = 0

. (2.29)

The free boundary condition can be imposed only when p = 1, which describes a scalar
Wilson loop in the four-dimensional free scalar field theory [57].

q = 4 case. Only the ` = 0 mode is allowed, resulting in the Neumann boundary
condition with ∆`=0

− = p
2 − 1 for p ≥ 3 saturating the unitarity bound (2.22). Thus, the

boundary condition (2.29) can be imposed. In [59] these boundary conditions are attributed
to “trivial” ones as they saturate the unitarity bound and do not have interesting dynamics
and excluded from the classification, but here we include them for completeness. The free
boundary condition is allowed when p = 2, which corresponds to a scalar Wilson surface
in the six-dimensional free scalar field theory (see also [73]).

q ≥ 5 case. In this case, there are no Neumann boundary conditions satisfying the
unitarity bound (2.22), but there still exists the free boundary condition when q = p + 2
associated with a p-dimensional scalar Wilson surface in d = 2p+ 2 dimensions.

Our results are consistent with the classification of the non-monodromy defects in a
free scalar theory in [59], which are summarized in table 1.

3 Free energy on hemisphere

The aim of this section is to demonstrate the zeta function regularization through the
calculation of free energies on the sphere Sd and the hemisphere HSd. They have been
extensively studied in literature in various methods (see e.g., [74, 75] for reviews), and we
do not claim any originality of our results except for giving their explicit expressions. The
main results are (3.19), (3.22) and (3.23) for Sd, and (3.45), (3.46), (3.50), (3.51) for HSd.
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q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 · · ·
p = 1 ∆D/∆F ∆D ∆D/∆F ∆D ∆D ∆D · · ·
p = 2 ∆D/∆N ∆D ∆D/∆`=0

− ∆D/∆F ∆D ∆D

p = 3 ∆D/∆N ∆D/∆`=±1
− ∆D/∆`=0

− ∆D/∆`=0
− ∆D/∆F ∆D · · ·

p = 4 ∆D/∆N ∆D/∆`=±1
− ∆D/∆`=0

− ∆D/∆`=0
− ∆D ∆D/∆F

p = 5 ∆D/∆N ∆D/∆`=±1
− ∆D/∆`=0

− ∆D/∆`=0
− ∆D ∆D

...
...

... . . .

Table 1. Classification of the allowed boundary conditions in the free scalar theory. The Neumann
boundary conditions exist in the shaded cells and the allowed modes differ from the Dirichlet ones
are shown in the right side. Our table is the same as the classification of the non-monodromy
defects in [59] except that ours has additional column for q = 1 and boundary conditions ∆`=±1

− for
q = 2 and p ≥ 3, and ∆`=0

− for q = 4 and p ≥ 3 saturating the unitarity bound. The free boundary
condition appears when p = q = 1 and q = p+ 2.

3.1 Free energy on Sd

Let us first consider the free energy on Sd as a warm-up. For a conformally coupled scalar
on Sd, the free energy is given by9

F [Sd] = 1
2 tr log

[
Λ̃−2

(
−∇2

Sd + d(d− 2)
4R2

)]
= 1

2 tr log
[
Λ̃−2

(
`(`+ d− 1)

R2 + d(d− 2)
4R2

)]

= 1
2

∞∑
`=0

g(d)(`)

log

ν(d)
` + 1

2
Λ̃R

+ log

ν(d)
` −

1
2

Λ̃R

 ,
(3.2)

where R is the radius of Sd and Λ̃ is the UV cutoff scale introduced to make the integral
dimensionless. The degeneracy g(d)(`) and the parameter ν(d)

` are defined by

g(d)(`) = (2`+ d− 1) Γ(`+ d− 1)
Γ(d) Γ(`+ 1) , ν

(d)
` = `+ d− 1

2 . (3.3)

9When we decompose log
[
((ν(d)

` )2 − 1/4)/(Λ̃R)2
]
into the two logarithmic functions in the third line,

there is an ambiguity,

log


(
ν

(d)
`

)2
− 1/4

(Λ̃R)2

 = log
(

ei θ ν
(d)
` + 1/2
(Λ̃R)1−ρ

)
+ log

(
e−i θ ν

(d)
` − 1/2
(Λ̃R)1+ρ

)
, (3.1)

where ρ is a real number and 0 ≤ θ < 2π (see also [76]). It leads to the ambiguities of the anomaly term
and the finite term of the free energy. We fix the ambiguity of the phase by demanding a good convergence
in the Schwinger representation of the free energy (3.4) at large `. The ambiguity of the scale can also be
fixed by requiring that the zeta function be independent of the parameter Λ̃R.
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One can rewrite the free energy (3.2) in the Schwinger representation:

F [Sd] = −1
2

∫ ∞
0

dt
t

∞∑
`=0

g(d)(`)
[
e
−t
(
ν

(d)
`

+ 1
2

)
/(Λ̃R)

+ e
−t
(
ν

(d)
`
− 1

2

)
/(Λ̃R)

]
. (3.4)

This is divergent, implying the UV divergence of the free energy. To make the integral
finite we introduce the regularized free energy [77]:

Fs[Sd] = −1
2

∫ ∞
0

dt
t1−s

∞∑
`=0

g(d)(`)
[
e
−t
(
ν

(d)
`

+ 1
2

)
/(Λ̃R)

+ e
−t
(
ν

(d)
`
− 1

2

)
/(Λ̃R)

]

= −1
2 (Λ̃R)s Γ(s) ζSd(s) ,

(3.5)

where the zeta function ζSd(s) is defined by

ζSd(s) ≡
∞∑
`=0

g(d)(`)
[(
ν

(d)
` + 1

2

)−s
+
(
ν

(d)
` −

1
2

)−s]
. (3.6)

Then the (unrenormarized) free energy is obtained in the s→ 0 limit:

Fs[Sd] = −1
2

(1
s
− γE + log(Λ̃R)

)
ζSd(0)− 1

2 ∂sζSd(0) +O(s) , (3.7)

which is divergent due to the pole at s = 0. After removing the pole term, the remaining
part becomes the renormalized free energy

Fren[Sd] ≡ −1
2 ζSd(0) log(ΛR)− 1

2 ∂sζSd(0) , (3.8)

where Λ = e−γE Λ̃.
In calculating the zeta function (3.6), we find it convenient to expand the degeneracy

as:

g(d)(`) = 2
Γ(d)

d−1∑
k=0

γk,d(c)
(
ν

(d)
` + c

)k
. (3.9)

To fix γk,d(c) we introduce coefficients αn,d and βn,d as follows [74]:

g(d)(`) =



2
Γ(d)

d−3
2∏
j=0

[(
ν

(d)
`

)2
− j2

]
= 2

Γ(d)

d−1
2∑

n=0
(−1)

d−1
2 +n αn,d

(
ν

(d)
`

)2n
d : odd

2ν(d)
`

Γ(d)

d−3
2∏

j= 1
2

[(
ν

(d)
`

)2
− j2

]
= 2

Γ(d)

d
2−1∑
n=0

(−1)
d
2−1+n βn,d

(
ν

(d)
`

)2n+1
d : even

(3.10)
Note that we use a slightly different notation from [74] and include the n = 0 contribution
in odd d although α0,d = 0 for some convenience. Comparing (3.9) with (3.10) we find

γk,d(c) =



d−1
2∑

n=d k2 e

(−1)
d−1

2 +n+k
(

2n
k

)
αn,d c

2n−k d : odd

d
2−1∑

n=b k2 c

(−1)
d
2 +n+k

(
2n+ 1
k

)
βn,d c

2n+1−k d : even

(3.11)
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With this expansion we can perform the summation over ` in (3.6) and obtain a summation
of the Hurwitz zeta functions:

ζSd(s) = 2
Γ(d)

d−1∑
k=0

[
γk,d

(1
2

)
ζH

(
s− k, d2

)
+ γk,d

(
−1

2

)
ζH

(
s− k, d2 − 1

)]
. (3.12)

It remains to determine the coefficients αn,d and βn,d to calculate the renormalized free
energy. We fix them by comparing the two representations, (3.3) and (3.10), of g(d)(`).
Using the asymptotic expansion in [78, 5.11.14],

Γ(x+ a)
Γ(x+ b) =

∞∑
k=0

(
x+ a+ b− 1

2

)a−b−2k (a− b
2k

)
B

(a−b+1)
2k

(
a− b+ 1

2

)
, (3.13)

where B
(m)
k (x) is the generalized Bernoulli polynomial which reduces to the Bernoulli

polynomial Bk(x) = B
(1)
k (x) when m = 1, and comparing both sides, we find

αn,d = (−1)
d−1

2 +n
(

d− 2
d− 1− 2n

)
B

(d−1)
d−1−2n

(
d− 1

2

)
, (3.14)

for odd d and
βn,d = (−1)

d−2
2 +n

(
d− 2

d− 2− 2n

)
B

(d−1)
d−2−2n

(
d− 1

2

)
, (3.15)

for even d.

3.1.1 Odd d

When d is odd the zeta function (3.12) reduces to

ζSd(s)= 2
Γ(d)

d−1∑
k=0

d−1
2∑

n=d k2 e

(−1)
d−1

2 +n+kαn,d

(
2n
k

)
2k−2n

[
ζH

(
s−k,d2

)
+(−1)kζH

(
s−k,d2−1

)]
.

(3.16)
Using the identity (B.9) for the Hurwitz zeta functions the terms in the bracket become

ζH

(
s−k, d2

)
+(−1)k ζH

(
s−k, d2−1

)
(3.17)

= ζH

(
s−k, 12

)
+(−1)k ζH

(
s−k, 12

)
−
b d2 c−1∑
m=0

(
m+ 1

2

)k−s
−
b d2 c−2∑
m=0

(−1)k
(
m+ 1

2

)k−s
.

Rearranging the summations ∑d−1
k=0

∑ d−1
2

n=d k2 e
= ∑ d−1

2
n=0

∑2n
k=0 the zeta function becomes

ζSd(s) = 2
Γ(d)

d−1
2∑

n=0

2n∑
k=0

(−1)
d−1

2 +n+k αn,d

(
2n
k

)
2k−2n(1 + (−1)k) ζH

(
s− k, 1

2

)

− 2
Γ(d)

b d2 c−1∑
m=1

[(
m+ 1

2

)−s
+
(
m− 1

2

)−s] d−1
2∑

n=0
(−1)

d−1
2 +n αn,dm

2n

= 4
Γ(d)

d−1
2∑

n=0

n∑
l=0

(−1)
d−1

2 +n αn,d

(
2n
2l

)
2−2n(2s − 22l) ζ(s− 2l)

(3.18)
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where we used the identity (B.12) and removed the summation over m by resorting to the
definition (3.10) of αn,d in the third equality.

Taking the s → 0 limit we find ζSd(0) = 0 as (1 − 22k) ζ(−2k) = 0 holds for a non-
negative integer k. Thus, there is no conformal anomaly in the free energy and only the
universal finite part remains in the free energy (3.8):

Fren[Sd] = Ffin[Sd]

=
Γ(d2)

2 Γ(d) Γ(2− d
2)

log 2

+
d−1

2∑
k=1


d−1

2∑
n=k

(−1)
d+1

2 +n+k αn,d (1− 22k)(2n− 2k + 1)2k
22k+2n π2k Γ(d)

 ζ(2k + 1) ,

(3.19)

where we used (B.2) and (B.6). We also used the Pochhammer symbol (n)k ≡ Γ(n+k)/Γ(n)
to simplify the expression. The explicit values of Ffin[Sd] up to d = 9 are shown in table 3
in appendix A.

3.1.2 Even d

Performing a similar reduction for odd d using the identity (B.9) with a = 1, the zeta
function (3.12) for even d can be written as

ζSd(s) = 2
Γ(d)

d−1∑
k=0

d
2−1∑

n=b k2 c

(−1)
d
2 +n+k 2k−2n−1

(
2n+ 1
k

)
βn,d

·
[
(1 + (−1)k−1) ζ (s− k) + (−1)k−1 δd,2 (ζH(s− k, 0)− ζ(s− k))

]
.

(3.20)

In contrary to the odd-dimensional case, there is a logarithmic divergent term associated
with the conformal anomaly in the free energy (3.8):

Fren[Sd] = −A[Sd] log(ΛR) + Ffin[Sd] , (3.21)

where the anomaly coefficient A[Sd] can be read off from (3.12) as10

A[Sd] = 1
Γ(d)

d
2−1∑
n=0

βn,d
(−1) d2 +n

n+ 1

(
B2n+2

(1
2

)
+ 2n+ 1

22n+2

)
+ 1

2 δd,2 (3.22)

while the universal term becomes

Ffin[Sd] = 1
Γ(d)

d
2−1∑
n=0

n∑
m=0

(−1)
d
2 +n 22m−2n+1

(
2n+ 1
2m+ 1

)
βn,d ζ

′ (−2m− 1)

− δd,2
1∑

k=0
2k−1 (∂sζH(−k, 0)− ζ ′(−k)

)
.

(3.23)

For d = 2, ∂sζH(0, 0) is ill-defined, which reflects the IR divergence due to the zero mode.
10We used the Taylor expansion of the Bernoulli polynomials Bn(x+ y) =

∑n

k=0

(
n
k

)
Bk(x) yn−k.
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Tables 2 and 3 in appendix A show the anomaly coefficients and the finite parts of the
free energies on Sd for even d up to d = 10.11 Our result (3.22) correctly reproduces the
conformal anomaly of the free scalar theory obtained in literature (e.g. [19, 22, 66–68, 79]).
The finite part is less known as it depends on the regularization scheme (i.e., the choice of
the UV cutoff Λ) when there exists a conformal anomaly. When d = 4 (3.23) agrees with
the result in [28] which uses the same zeta regularization as ours.

3.1.3 Interpolating a and F

The finite parts of the free energy (3.19) for odd d and the anomaly parts of the free
energy (3.22) for even d are universal in the sense that they are independent of the cutoff
choice. Thus it will be convenient to introduce the “universal” free energy:

Funiv[Sd] =


Ffin[Sd] d : odd

−A[Sd] log
(
R

ε

)
d : even

(3.24)

where we use ε for the cutoff instead of Λ. While the structure of the universal free
energy appears to depend on the dimensionality it is shown in [22] to have an integral
representation which smoothly interpolates between even and odd d:

Funiv[Sd] = − 1
sin
(
πd
2

)
Γ(d+ 1)

∫ 1

0
dν ν sin(πν) Γ

(
d

2 ± ν
)
. (3.25)

Here we used the shorthand notation Γ(x± y) ≡ Γ(x+ y) Γ(x− y). The prefactor is finite
for odd d, but divergent for even d due to the pole from the zeros of the sine function. This
divergence may be replaced with the logarithmic divergence by introducing a small cutoff
parameter ε:

− 1
sin
(
πd
2

) =


(−1)

d+1
2 d : odd

(−1)
d
2

2
π

log
(
R

ε

)
d : even

(3.26)

See [80, 81] for a proof of the equivalence of the two expressions (3.24) and (3.25).12

3.2 Free energy on HSd

The free energies on hemisphere are obtained in [28, 31, 63, 69, 82]. Here we extend them to
higher dimensions by using the zeta function regularization. See also [55] for a related work.

In the coordinate system (2.8), the Dirichlet boundary condition is given by13

φ

(
π

2

)
= 0 , (3.27)

11When we compare our results with (3.25), the divergent factor,
(
sin
(
πd
2

))−1, should be replaced with
the logarithmic term according to (4.7).

12We thank J. S.Dowker for drawing our attention to these works.
13To derive the boundary condition from the action, one needs to add a boundary term to the action.

See appendix C in [31].
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and the Neumann boundary condition is given by

∂ϕφ

(
π

2

)
= 0 . (3.28)

If we put the theory on the sphere (2.8) with the defect at ϕ = π/2, the Dirichlet boundary
condition is equivalent to imposing an anti-symmetric condition at ϕ = π/2:

φ(ϕ) = −φ(π − ϕ) , (3.29)

and the Neumann boundary condition is equivalent to imposing a symmetric condition at
ϕ = π/2:

φ(ϕ) = φ(π − ϕ) . (3.30)

If the scalar field is expanded into the spherical harmonics on Sd−1,

φ(ϕ, θ) =
∑
m

fm(ϕ)Ym,Sd−1(θ) , (3.31)

Ym,Sd−1(θ) with odd (even) `−m are odd (even) functions about ϕ = π/2 and satisfy the
Dirichlet (Neumann) boundary condition. Then, the degeneracies for the Dirichlet and
Neumann boundary condition are given by

Dirichlet: g
(d)
+ (`) =

(
`+ d− 2
d− 1

)
= `

Γ(`+ d− 1)
Γ(d)Γ(`+ 1) ,

Neumann: g
(d)
− (`) =

(
`+ d− 1
d− 1

)
= (`+ d− 1) Γ(`+ d− 1)

Γ(d)Γ(`+ 1) .
(3.32)

We use a subscript + (−) for the Dirichlet (Neumann) boundary condition.14 The degen-
eracy can also be written as

g
(d)
± (`) = 1

2 g
(d)(`)∓ 1

2 Γ(d− 1)
Γ
(
ν

(d)
` + d−1

2

)
Γ
(
ν

(d)
` −

d−1
2 + 1

) , (3.33)

by using ν(d)
` defined by (3.3).

For a conformally coupled scalar on HSd, the free energy is given by (3.25) with the
degeneracy replaced by those for the Dirichlet/Neumann boundary conditions:15

F [HSd±] = 1
2

∞∑
`=0

g
(d)
± (`)

log

ν(d)
` + 1

2
Λ̃R

+ log

ν(d)
` −

1
2

Λ̃R

 . (3.34)

Here we added the suffix to manifest boundary conditions explicit. Since the sum of the
degeneracies satisfies the relation,

g
(d)
+ (`) + g

(d)
− (`) = g(d)(`) , (3.35)

14We adopt this unusual convention because we use + for the Dirichlet boundary condition on Hd.
15We choose this normalization for the free energy on HSd. Hence our free energy satisfies (3.36) contrary

to appendix C in [31].
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the sum of the free energies on a hemisphere equals the free energy on a sphere,

F [HSd+] + F [HSd−] = F [Sd] . (3.36)

The zeta functions of each boundary condition are given by

ζHSd±
(s) = 1

2 ζSd(s)∓
1

2 Γ(d− 1)

∞∑
`=0

Γ
(
ν

(d)
` + d−1

2

)
Γ
(
ν

(d)
` −

d−1
2 + 1

) [(ν(d)
` + 1

2

)−s
+
(
ν

(d)
` −

1
2

)−s]
,

(3.37)
and the renormalized free energies become

Fren[HSd±] ≡ −1
2 ζHSd±

(0) log(ΛR)− 1
2 ∂sζHSd±

(0) , (3.38)

as in the previous section.
In the following, we compute the zeta functions by using the relation,

Γ
(
ν

(d)
` + d−1

2

)
Γ
(
ν

(d)
` −

d−1
2 + 1

) =



d−1
2∑

n=0
(−1)

d−1
2 +n αn,d

2n−1∑
k=0

(
2n− 1
k

)
xk c2n−1−k d : odd

d
2−1∑
n=0

(−1)
d
2−1+n βn,d

2n∑
k=0

(
2n
k

)
xk c2n−k d : even

(3.39)

where x = ν
(d)
` − c.16

3.2.1 Odd d

Using the expansion (3.39) and performing a similar computation in section 3.1.1, the zeta
functions can be written as

ζHSd±
(s)− 1

2 ζSd(s)

= ∓ 1
Γ(d− 1)

d−1
2∑

n=1

n−1∑
l=0

(−1)
d−1

2 +n αn,d

(
2n− 1
2l + 1

)
21−2n (2s − 22l+1) ζ (s− 2l − 1) .

(3.40)

Since ζSd(0) = 0 for odd dimension, we find

ζHSd±
(0) = ± 1

Γ(d− 1)

d−1
2∑

n=1
(−1)

d−1
2 +n αn,d

(
B2n
2n −

2−2n−1

n

)
, (3.41)

16This follows from (3.10) and the binomial theorem for ν(d)
` .
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where we again used the Taylor expansion of the Bernoulli polynomials. The derivative of
the zeta functions reduces to17

∂sζHSd±
(0)− 1

2 ∂sζSd(0) = ∓ 1
Γ(d− 1)

d−1
2∑

n=1

n−1∑
l=0

(−1)
d−1

2 +n 21−2n αn,d

(
2n− 1
2l + 1

)
·
[
(1− 22l+1) ζ ′ (−2l − 1) + ζ (−2l − 1) log 2

]
.

(3.43)

It follows that the renormalized free energies on HSd is

Fren[HSd±] = −A[HSd±] log(ΛR) + Ffin[HSd±] , (3.44)

where

A[HSd±] = ± 1
2 Γ(d− 1)

d−1
2∑

n=1
(−1)

d−1
2 +n αn,d

(
B2n
2n −

2−2n−1

n

)
, (3.45)

and

Ffin[HSd±] = 1
2 Ffin[Sd]± 1

2 Γ(d− 1)

d−1
2∑

n=1

n−1∑
l=0

(−1)
d−1

2 +n 21−2n αn,d

(
2n− 1
2l + 1

)
·
[
(1− 22l+1) ζ ′ (−2l − 1) + ζ (−2l − 1) log 2

]
.

(3.46)

The renormalized free energies on HSd for odd d have logarithmic divergences due
to the presence of the boundary. The anomaly parts of the boundary free energies for
the Neumann boundary condition are always greater than those of the Dirichlet boundary
condition, and this is consistent with C-theorems in BCFTd as we will see in section 5.1.
The anomaly parts and the finite parts of the renormalized free energies are listed in table 4
in appendix A. In the presence of the boundary anomaly the finite terms depend on the
regularization scheme and are not universal.18

3.2.2 Even d

Repeating a similar computation to section 3.1.2, the zeta functions reduce to

ζHSd±
(s)− 1

2 ζSd(s) = ∓ 1
Γ(d− 1)

d
2−1∑
n=0

n∑
l=0

(−1)
d
2−1+n βn,d

(
2n
2l

)
22l−2n ζ (s− 2l)

∓ 1
2 δd,2 (ζH(s, 0)− ζ(s)) .

(3.47)

17The term including log 2 can be simplified further to

∓ 1
Γ(d− 1)

 d−1
2∑

n=1

(−1)
d−1

2 +n 2−2n αn,d
1−B2n

n
−

Γ
(
d
2

)
2 Γ
(
2− d

2

)
 log 2 . (3.42)

18It is still meaningful to consider the difference of the finite parts in the same regularization as it no
longer depends on the scheme.
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Then, at s = 0 we find

ζHSd±
(0)− 1

2 ζSd(0) = 0 ,

∂sζHSd±
(0)− 1

2 ∂sζSd(0) = ∓ 1
Γ(d− 1)

d
2−1∑
n=1

n∑
l=1

(−1)
d
2−1+n βn,d

(
2n
2l

)
22l−2nζ ′ (−2l)

∓ 1
2 δd,2

(
∂sζH(0, 0) + ζ ′(0)

)
.

(3.48)

It follows that the renormalized free energies on HSd are

Fren[HSd±] = −A[HSd±] log(ΛR) + Ffin[HSd±] , (3.49)

where
A[HSd±] = 1

2 A[Sd] , (3.50)

and

Ffin[HSd±] = 1
2 Ffin[Sd]± 1

2 Γ(d− 1)

d
2−1∑
n=1

n∑
l=1

(−1)
d
2−1+n βn,d 22l−2n

(
2n
2l

)
ζ ′ (−2l)

± 1
4 δd,2

(
∂sζH(0, 0) + ζ ′(0)

)
.

(3.51)

The bulk anomaly of HSd is just a half of the bulk anomaly on Sd as is consistent
with the fact that the type A anomaly coefficient is fixed by the Euler characteristic of the
manifold. The boundary free energy with Neumann boundary condition is always greater
than that with Dirichlet boundary condition. The anomaly parts and finite parts of the
free energies are listed in table 4 in appendix A.

4 Free energy for Dirichlet boundary condition

We move onto the calculation of the free energies on the hyperbolic space Hd and a prod-
uct space Hp+1 × Sq−1 in the zeta regularization. Most parts of the calculations are the
same as before, but the only difference from section 3 is the continuous spectrum of the
conformal laplacian on the hyperbolic space. The main results of this section can be found
in (4.14), (4.15), (4.22), (4.23) and (4.24) for Hd, (4.37), (4.38) and (4.51) for Hp+1 × S1,
and (4.60), (4.61) and (4.75) for Hp+1 × Sq−1.

4.1 Free energy on Hd

Next we consider the case on the hyperbolic space Hd. Since Hd is non-compact the
conformal laplacian of the free scalar has a continuous spectrum ω = [0,∞):

−∇2
Hd φω =

(
ω2

R2 +
(
d− 1
2R

)2)
φω . (4.1)
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Thus, the free energy on Hd of radius R is given by19

F [Hd] = 1
2

∫ ∞
0

dω µ(d)(ω)
[
log

(
ω + i ν

Λ̃R

)
+ log

(
ω − i ν

Λ̃R

)]
, (4.2)

where we introduced the parameter ν as

ν = ∆− d− 1
2 , ∆(∆− d+ 1) = −d(d− 2)

4 . (4.3)

There are two solutions to the above equation, which correspond to the Dirichlet and
Neumann boundary conditions on Hd. They are given by ∆+ = d

2 and ∆− = d
2 − 1

respectively, or equivalently ν = 1
2 and ν = −1

2 in terms of ν.20
The Plancherel measure µ(d)(ω) on Hd of unit radius takes the form [74, 75]:

µ(d)(ω) = cd

∣∣∣∣ Γ
(
d−1

2 + iω
)

Γ(iω)

∣∣∣∣2

= cd



d−3
2∏
j=0

(ω2 + j2) d : odd

ω tanh(πω)
d−3

2∏
j= 1

2

(ω2 + j2) d : even

(4.4)

where the product should be omitted for d = 2. The coefficient

cd ≡
Vol(Hd)

2d−1 π
d
2 Γ

(
d
2

) , (4.5)

is proportional to the volume Vol(Hd) of the hyperbolic space of unit radius, which may
be given in dimensional regularization by

Vol(Hd) = π
d−1

2 Γ
(1− d

2

)
= − π

d+1
2

sin
(
π d−1

2

)
Γ
(
d+1

2

) . (4.6)

The hyperbolic volume is finite for even d, but divergent for odd d due to the pole in the
gamma function, which may be replaced by the logarithmic divergence by introducing a
small cutoff parameter ε :

− 1
sin
(
π d−1

2

) =


(−1)

d−1
2

2
π

log
(
R

ε

)
d : odd

(−1)
d
2 d : even

(4.7)

19As noted in the footnote 9, there are ambiguities to decompose log(ω2 + ν2) into a sum of logarithmic
functions.

20The free energy (4.2) appears to be invariant under ν → −ν, but it should be understood to be defined
only for ν > 0 as the Plancherel measure is well defined only for normalizable modes. Hence the Dirichlet
and Neumann boundary conditions have different free energies as we will see in section 5.

– 22 –



J
H
E
P
0
5
(
2
0
2
1
)
0
7
4

After the regularization, the coefficient takes the form:

cd = − 1
sin
(
π d−1

2

)
Γ(d)

=


(−1) d−1

2

Γ(d)
2
π

log
(
R

ε

)
d : odd

(−1) d2
Γ(d) d : even

(4.8)

The free energy (4.2) is divergent and we regularize it by introducing the renormalized
free energy with the zeta regularization as in section 3:

Fren[Hd] = −1
2 ζHd(0, ν) log(ΛR)− 1

2 ∂sζHd(0, ν) , (4.9)

where the zeta function is defined by

ζHd(s, ν) ≡
∫ ∞

0
dω µ(d)(ω)

[
(ω + i ν)−s + (ω − i ν)−s

]
. (4.10)

In what follows, we will compute the renormalized free energy for the Dirichlet bound-
ary condition with ν = 1

2 by evaluating the zeta function (4.10) following the method
in [71, 83].

4.1.1 Odd d

When d is odd we expand the Plancherel measure µ(d)(ω) in an analogous way as in (3.10):

d−3
2∏
j=0

(ω2 + j2) ≡
d−1

2∑
k=1

αk,d ω
2k . (4.11)

Then we can perform the integration over ω in the zeta function (4.10) which is convergent
for Re s > d/2:21

ζHd(s, ν) = cd

d−1
2∑

k=1
αk,d

∫ ∞
0

dω
[

ω2k

(ω + i ν)s + ω2k

(ω − i ν)s

]

= 2cd

d−1
2∑

k=1
(−1)k αk,d ν2k+1−s sin

(
πs

2

)
Γ (2k + 1)

2k+1∏
i=1

1
s− i

.

(4.12)

It follows that ζHd(0, ν) and ∂sζHd(0, ν) become

ζHd(0, ν) = 0 ,

∂sζHd(0, ν) = cd

d−1
2∑

k=1
(−1)k+1 π αk,d ν

2k+1

2k + 1 .
(4.13)

21The integral with respect to ω produces a factor Γ(s−2k−1)/Γ(s), which equals the product
∏2k+1
i=1 (s−

i)−1 for integer k.
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Hence the renormalized free energy (4.9) does not have a logarithmic divergence depending
on the UV cutoff Λ, but has a logarithmic divergence that arises from the regularized volume
of the hyperbolic space (4.6):

Fren[Hd] = −A[Hd] log
(
R

ε

)
, (4.14)

where the anomaly coefficient is given by

A[Hd] = (−1) d−1
2

Γ(d)

d−1
2∑

k=1
(−1)k+1 αk,d

22k+1(2k + 1) . (4.15)

Since there are no bulk anomalies when d is odd, we interpret A[Hd] as defect anomaly
from the boundary theory in (d− 1) dimensions.

The anomaly coefficients for d ≤ 9 are listed in table 2 in appendix A.

4.1.2 Even d

When d is even, we expand the product in the Plancherel measure as
d−3

2∏
j= 1

2

(ω2 + j2) ≡
d
2−1∑
k=0

βk,d ω
2k . (4.16)

We decompose the zeta function (4.10) into two parts using the identity

tanh(π ω) = 1− 2
e2πω + 1 , (4.17)

and perform a similar integration to (4.12) for the first part to obtain

ζHd(s, ν) = 2 cd

d
2−1∑
k=0

(−1)k+1 βk,d

[
ν2k+2−s cos

(
πs

2

)
Γ(2k + 2)

2k+2∏
i=1

1
s− i

(4.18)

−
∫ ∞

0
dω ω2k+1

e2πω + 1
(
(ω + i ν)−s + (ω − i ν)−s

)]
.

While we do not know how to perform the remaining integral in the square bracket it is
analytic in s and convergent in the s→ 0 limit to give

ζHd(0, ν) = cd

d
2−1∑
k=0

(−1)k+1 βk,d
k + 1

[
(ν2)k+1 + (1− 2−2k−1)B2k+2

]
,

∂sζHd(0, ν) = cd

d
2−1∑
k=0

βk,d

[
(−ν2)k+1 (H2k+2 − log ν)

k + 1 + 2 fk(ν)
]
,

(4.19)

where B2k+2 ≡ B2k+2(0) and H2k+2 are Bernoulli and Harmonic numbers respectively and
we introduced fk(ν) by

fk(ν) ≡
∫ ∞

0
dω ω2k+1

e2πω + 1 log(ω2 + ν2) , (4.20)

whose details may be found in appendix C.
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For ν = 1/2, the derivative of the zeta function can be simplified to

∂sζHd

(
0, 1

2

)
= cd

d
2−1∑
k=0

βk,d (−1)k
2k+1∑
j=1

(−1)j
22k−j

(
2k + 1
j

)
ζ ′(−j)− δd,2 ζ ′(0) , (4.21)

where we use an identity (C.12) which we conjecture to hold in appendix C.22
The renormalized free energy (4.9) has the UV logarithmic divergence which reflects

the bulk conformal anomaly:

Fren[Hd] = −A[Hd] log(ΛR) + Ffin[Hd] , (4.22)

where the anomaly coefficient is given by

A[Hd] = (−1) d2
2Γ(d)

d
2−1∑
k=0

(−1)k+1 βk,d
k + 1

[
2−2k−2 + (1− 2−2k−1)B2k+2

]
(4.23)

The finite term follows from (4.21):

Ffin[Hd] = (−1) d2
Γ(d)

d
2−1∑
k=0

2k+1∑
j=1

(−1)k+j+1

22k+1−j βk,d

(
2k + 1
j

)
ζ ′(−j) + 1

2 δd,2 ζ
′(0) . (4.24)

The anomaly coefficients and finite parts for d ≤ 10 are summarized in tables 2 and 3 in
appendix A. From the table we argue without proof the following identity holds for even d:

A[Hd] = 1
2 A[Sd] . (4.25)

4.1.3 Comparison to HSd

Let us compare the anomaly coefficients and finite parts of the free energies on Hd with
those on HSd with Dirichlet boundary condition.

Odd d. From (3.45) and (4.15), the difference of the anomaly coefficients is given by

A[Hd]−A[HSd+] = (−1) d−1
2

Γ(d)

d−1
2∑

k=1
(−1)k+1 αk,d

[ 1
22k+1(2k + 1) + d− 1

4k

(
B2k −

1
22k

)]
.

(4.26)
We argue the right hand side always vanishes, thus

A[Hd] = A[HSd+] (4.27)

holds for arbitrary d. This relation is difficult for us to prove analytically but we check
it explicitly for a number of d. However, by employing an alternative expression for the
anomaly coefficients for HSd+ in odd d given by [84],

A[HSd+] = 1
2 Γ(d+ 1) B

(d)
d

(
d

2 − 1
)
, (4.28)

22The odd j terms are the same as the half of the derivative of the zeta function on Sd, (3.23).
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one can prove the identity (4.27) using the integral representation (see e.g. [82])

B
(d)
d

(
d

2 − 1
)

= −2 d
∫ 1

2

0
dν

d−3
2∏
j=0

(
ν2 − j2

)
, (4.29)

and the expansion (3.10).23

For the finite parts of the free energies, Ffin[Hd] is different from Ffin[HSd+]. However,
the finite parts are not universal in the sense that they depend on the choice of the cutoffs
Λ and ε in the presence of the boundary anomalies, so we can always make Ffin[Hd] equal
Ffin[HSd] by tuning ε appropriately in comparing the two.

Even d. For the anomaly parts, both anomaly coefficients (3.50) and (4.23) on HSd and
Hd are given by a half of the bulk anomaly on Sd. Thus, the difference of the free energies
equals to that of the finite parts (3.51) and (4.24):

Fren[Hd]− Fren[HSd+] = − 1
Γ(d)

d
2−1∑
k=1

εk ζ
′(−2k) , (4.30)

where we rearrange the ranges of n and k, ∑ d
2−1
n=1

∑n
k=1 = ∑ d

2−1
k=1

∑ d
2−1
n=k , to find

εk ≡
d
2−1∑
n=k

βn,d
(−1) d2 +n

22(n−k)+1

[(
2n+ 1

2k

)
− (d− 1)

(
2n
2k

)]

= γ2k,d

(1
2

)
− (d− 1)

d
2−1∑
n=k

βn,d
(−1) d2 +n

22(n−k)+1

(
2n
2k

)
.

(4.31)

We check that εk≥1 = 0 for 4 ≤ d ≤ 20, and further speculate it holds for any even d. To
sum up we observe that the free energy on Hd with Dirichlet boundary condition coincides
with that on HSd with Dirichlet boundary condition. The values of the free energies for
d ≤ 8 are summarized in table 4 in appendix A.

From the agreements of the free energies, we observe the Dirichlet boundary condi-
tion on Hd can be identified with the Dirichlet boundary condition on HSd for any d as
mentioned in [63].

4.2 Free energy on Hp+1 × S1

We treat the free energy on Hp+1 × S1 separately from the case on Hp+1 × Sq−1 as the
degeneracy of S1 is different from Sq−1 with q ≥ 3. This space is associated with a codi-
mension q = 2 defect and has been a focus of research due to the relation to entanglement
entropy [19, 64, 85].

23We are indebted to J. S.Dowker for providing us a proof of the identity (4.27) and valuable correspon-
dences.
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Expanding the eigenfunctions with respect to the angular modes ` ∈ Z, the free energy
Hp+1 × S1 is given by

F [Hp+1 × S1] = 1
2 tr log

[
Λ̃−2

(
−∇2

Hp+1 −∇2
S1 −

p2

4R2

)]

= 1
2

∞∑
`=−∞

∫ ∞
0

dω µ(p+1)(ω) log
(
ω2 + `2

Λ̃2R2

)
,

(4.32)

with the Plancherel measure µ(p+1)(ω) (4.4). It will be convenient to decompose the loga-
rithmic function into two logarithmic functions. Here we employ two different decomposi-
tions depending on the ordering of the integral over ω and the summation over `.

4.2.1 Even p

Since the Plancherel measure µ(p+1)(ω) (4.4) for even p is a polynomial, the integral over ω
can be performed before the summation over `. Requiring the convergence in the ω →∞
limit fixes the decomposition of the free energy:

F [Hp+1 × S1] = 1
2

∞∑
`=−∞

∫ ∞
0

dω µ(p+1)(ω)
[
log

(
ω + i |`|

Λ̃R

)
+ log

(
ω − i |`|

Λ̃R

)]
(4.33)

= −1
2

∫ ∞
0

dt
t

∞∑
`=−∞

∫ ∞
0

dω µ(p+1)(ω)
[
e−t(ω+i |`|)/(Λ̃R) + e−t(ω−i |`|)/(Λ̃R)

]
.

Repeating the same regularization as in section 4.1.1, the renormalized free energy on
Hp+1 × S1 is given by

Fren[Hp+1 × S1] ≡ −1
2 ζHp+1×S1(0) log(ΛR)− 1

2 ∂sζHp+1×S1(0) , (4.34)

where

ζHp+1×S1(s) ≡
∞∑

`=−∞
ζHp+1(s, |`|) (4.35)

= 4cp+1

p
2∑

k=1
αk,p+1 (−1)k sin

(
πs

2

)
Γ (2k + 1) ζ(s− 2k − 1)

2k+1∏
i=1

1
s− i

.

To regularize the divergence from the zero mode from ` = 0 we introduce a mass m for the
scalar. This IR regularization amounts to replacing |`| with

√
`2 + (mR)2 above. Then it

can be shown that the resulting zeta function for ` = 0 vanishes in the m→ 0. From this
expression, we immediately obtain

ζHp+1×S1(0) = 0 ,

∂sζHp+1×S1(0) = 2cp+1

p
2∑

k=1
αk,p+1

(−1)k+1π

2k + 1 ζ(−2k − 1) .
(4.36)
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Since both bulk and defect are even dimensional when p is even the renormalized free
energy (4.34) may have both types of anomalies:

Fren[Hp+1 × S1] = −A[Hp+1 × S1] log(ΛR)−A[Hp+1 × S1] log
(
R

ε

)
, (4.37)

but from (4.36) we find

A[Hp+1 × S1] = 0 ,

A[Hp+1 × S1] = (−1)
p
2

Γ(p+ 1)

p
2∑

k=1
αk,p+1

2(−1)k+1

2k + 1 ζ(−2k − 1) .
(4.38)

Thus defect anomalies are there while bulk anomalies vanish in this case.
The explicit values of the anomaly coefficients for d ≤ 10 are listed in table 2 in

appendix A.

4.2.2 Odd p

For odd p we use the identity (4.17) to the Plancherel measure µ(p+1)(ω) (4.4) and apply
different decompositions to each term to derive

F [Hp+1×S1] = cp+1
2

p−1
2∑

k=0
βk,p+1

∞∑
`=−∞

∫ ∞
0

dωω2k+1
[
log
(
ω+ i |`|

Λ̃R

)
+log

(
ω− i |`|

Λ̃R

)]
(4.39)

−cp+1

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω+1

∞∑
`=−∞

[
log
( |`|+ iω

Λ̃R

)
+log

( |`|− iω
Λ̃R

)]
.

Here the ordering between the integral and the summation is important in this expression.
In the Schwinger representation of (4.39), the first term is convergent in the ω →∞ limit,
while the second term is convergent in the |`| → ∞ limit.24

Repeating similar computations as in section 3 and section 4.1.2, the renormalized free
energy on Hp+1 × S1 is given by the same form as (4.34) with the zeta function consisting

24For odd p, it is possible to use a different representation of the zeta function

ζHp+1×S1 (s) =
∫ ∞

0
dω µ(p+1)(ω)

∞∑
`=−∞

[
(|`|+ iω)−s + (|`| − iω)−s

]
=
∫ ∞

0
dω µ(p+1)(ω) [ζH(s,−iω) + ζH(s, 1− iω) + ζH(s, iω) + ζH(s, 1 + iω)] .

(4.40)

In the s→ 0 limit, the zeta function and its derivative are given by

ζHp+1×S1 (0) = 0 ,

∂sζHp+1×S1 (0) = −2
∫ ∞

0
dω µ(p+1)(ω) log(2 sinh(πω)) ,

(4.41)

where we use (4.46) and (4.48). Hence we obtained the same expression of the free energy in [62]. However,
the derivative of the zeta function still diverges. Hence we need to use the same regularization as in [19, 62].
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of two parts:

ζHp+1×S1(s) = ζ
(1)
Hp+1×S1(s) + ζ

(2)
Hp+1×S1(s) ,

ζ
(1)
Hp+1×S1(s) = cp+1

p−1
2∑

k=0
βk,p+1

∞∑
`=−∞

∫ ∞
0

dω ω2k+1
[
(ω + i |`|)−s + (ω − i |`|)−s

]
, (4.42)

ζ
(2)
Hp+1×S1(s) = −2cp+1

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω + 1

∞∑
`=−∞

[
(|`|+ iω)−s + (|`| − iω)−s

]
.

The first term can be computed as

ζ
(1)
Hp+1×S1(s) = 4cp+1

p−1
2∑

k=0
βk,p+1 (−1)k+1 cos

(
πs

2

)
Γ(2k+2) ζ(s−2k−2)

2k+2∏
i=1

1
s− i

, (4.43)

where we regulate the ` = 0 mode in the same way as for the even p case. It follows that
ζ

(1)
Hp+1×S1(s) and its derivative at s = 0 are given by

ζ
(1)
Hp+1×S1(0) = 0 ,

∂sζ
(1)
Hp+1×S1(0) = 2cp+1

p−1
2∑

k=0

βk,p+1 (−1)k+1

k + 1 ζ ′(−2k − 2) .
(4.44)

The second one can be written as

ζ
(2)
Hp+1×S1(s) = −2cp+1

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω + 1

· [ζH(s,−iω) + ζH(s, 1− iω) + ζH(s, iω) + ζH(s, 1 + iω)] .

(4.45)

Although it is difficult to perform the integration over ω, it is possible to compute
ζ

(2)
Hp+1×S1(0) and ∂sζ

(2)
Hp+1×S1(0). Since the combination of the Hurwitz zeta function van-

ishes,
ζH(0,−iω) + ζH(0, 1− iω) + ζH(0, iω) + ζH(0, 1 + iω) = 0 , (4.46)

in the s→ 0 limit, we obtain
ζ

(2)
Hp+1×S1(0) = 0 . (4.47)

Using the derivative of the combination of the Hurwitz functions,

lim
s→0

∂s [ζH(s,−iω)+ζH(s,1− iω)+ζH(s, iω)+ζH(s,1+ iω)] =−2log(2sinh(πω)) , (4.48)

which is the same as the regularization of ∑` log(ω2 + |`|2) [19, 62], the derivative of
ζ

(2)
Hp+1×S1(s) reduces to

∂sζ
(2)
Hp+1×S1(0) = 4cp+1

p−1
2∑

k=0
βk,p+1

Γ(2k + 2)
(2π)2k+2

[
k∑

m=1
(1− 22m−2k−2) ζ(2m) ζ(−2m+ 2k + 3)

− (1− 2−2k−3) ζ(2k + 3) + 2(1− 2−2k−2) ζ(2k + 2) log 2
]
, (4.49)

where we use formulas eq. (4) and eq. (14) in [86] after changing a variable u = e−2πω.
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Since ζHp+1×S1(0) = ζ
(1)
Hp+1×S1(0) + ζ

(2)
Hp+1×S1(0) = 0, neither bulk nor defect anomaly

appear:
A[Hp+1 × S1] = A[Hp+1 × S1] = 0 . (4.50)

This is consistent with the fact that both p+ q and p are odd. Hence the renormalized free
energy has only a finite term:

Fren[Hp+1×S1] =−2cp+1

p−1
2∑

k=0
βk,p+1

Γ(2k+2)
(2π)2k+2

[
k∑

m=1
(1−22m−2k−2)ζ(2m)ζ(−2m+2k+3)

−1−2−2k−2

2 ζ(2k+3)+2(1−2−2k−2)ζ(2k+2) log2
]
. (4.51)

Let us compare the free energy on Hp+1 × S1 with the free energy on Sp+2 (3.19). We
argue the equivalence between (4.51) and (3.19) for arbitrary p:

Fren[Hp+1 × S1] = Fren[Sp+2] . (4.52)

We are not aware of an analytic proof of this identity, but we check it holds up to p of order
O(100). Given the equivalence of the free energies one can derive a number of mathematical
identities for the Riemann zeta functions which appear to be unknown in literature.

4.3 Free energy on Hp+1 × Sq−1

Expanding the scalar field by the spherical harmonics labeled by ` on Sq−1 the free energy
for Dirichlet boundary condition on Hp+1 × Sq−1 is given by

F [Hp+1 × Sq−1] = 1
2 tr log

[
Λ̃−2

(
−∇2

Hp+1 −∇2
Sq−1 + (q − p− 2)(d− 2)

4R2

)]

= 1
2

∞∑
`=0

g(q−1)(`)
∫ ∞

0
dω µ(p+1)(ω) log

ω2 +
(
ν

(q−1)
`

)2

Λ̃2R2

 ,

(4.53)

with the Plancherel measure µ(p+1)(ω) given by (4.4), the degeneracy g(q−1)(`) and ν(q−1)
`

for q > 2 by (3.3). Repeating the same regularization as in section 4.2.1, the renormalized
free energy takes the form:

Fren[Hp+1 × Sq−1] ≡ −1
2 ζHp+1×Sq−1(0) log(ΛR)− 1

2 ∂sζHp+1×Sq−1(0) , (4.54)

where ζHp+1×Sq−1(s) is the summation of the zeta function on Hp+1 over the angular modes:

ζHp+1×Sq−1(s) ≡
∞∑
`=0

g(q−1)(`) ζHp+1(s, ν(q−1)
` ) . (4.55)

As in section 4.2, we use different expressions for the decompositions of the logarithmic
functions depending on the cases so that the resulting forms have good convergent behaviors
in the Schwinger representation.
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4.3.1 Even p

The regularized volume of Hp+1 (4.6) has a logarithmic divergence after the regulariza-
tion (4.7) and the renormalized free energy (4.54) has two types of logarithmic divergences:

Fren[Hp+1 × Sq−1] = −A[Hp+1 × Sq−1] log(ΛR)−A[Hp+1 × Sq−1] log
(
R

ε

)
. (4.56)

Using the degeneracy (3.9) and the expansion (3.11), we can perform the sum over `
to get

ζHp+1×Sq−1(s) = 4 cp+1
Γ(q − 1)

p
2∑

k=1
(−1)k αk,p+1 sin

(
πs

2

)
Γ (2k + 1)

2k+1∏
i=1

1
s− i

·



q
2−1∑
n=0

(−1)
q
2−1+n αn,q−1 ζH

(
s− 2k − 2n− 1, q − 2

2

)
q : even

q−3
2∑

n=0
(−1)

q−3
2 +n βn,q−1 ζH

(
s− 2k − 2n− 2, q − 2

2

)
q : odd

(4.57)

Using the identities (B.9), (B.12), (B.2) and the relations (3.10) we obtain

ζHp+1×Sq−1(0) = 0 ,

∂sζHp+1×Sq−1(0) = 2π cp+1
Γ(q − 1)

p
2∑

k=1
αk,p+1

(−1)k+1

2k + 1

·


q
2−1∑
n=0

(−1)
q
2 +n

2k + 2n+ 2 αn,q−1 B2k+2n+2 q : even

0 q : odd

(4.58)

Hence we find the following:

• For even q, the renormalized free energy has the logarithmic divergence

Fren[Hp+1 × Sq−1] = −A[Hp+1 × Sq−1] log
(
R

ε

)
, (p : even, q : even) , (4.59)

where the anomaly coefficient is given by

A[Hp+1×Sq−1]= (−1)
p+q

2

Γ(p+1)Γ(q−1)

p
2∑

k=1

q
2−1∑
n=1

αk,p+1αn,q−1
(−1)k+n+1

(2k+1)(k+n+1)B2k+2n+2 .

(4.60)

• For odd q, we find A[Hp+1 × Sq−1] ∝ ζHp+1×Sq−1(0) = 0 and A[Hp+1 × Sq−1] ∝
∂sζHp+1×Sq−1(0) = 0, and there are no conformal anomalies. From (4.58) the finite
term of the renormalized free energy also vanishes, so

Fren[Hp+1 × Sq−1] = 0 , (p : even, q : odd) . (4.61)

This is consistent with the results obtained by [62].
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4.3.2 Odd p

As in section 4.2.2, we decompose the zeta function into two parts:25

ζHp+1×Sq−1(s) = ζ
(1)
Hp+1×Sq−1(s) + ζ

(2)
Hp+1×Sq−1(s) , (4.62)

where ζ(1)
Hp+1×Sq−1(s) and ζ(1)

Hp+1×Sq−1(s) are defined by

ζ
(1)
Hp+1×Sq−1(s) = cp+1

p−1
2∑

k=0
βk,p+1

∞∑
`=0

g(q−1)(`)

·
∫ ∞

0
dω ω2k+1

[(
ω + i ν(q−1)

`

)−s
+
(
ω − i ν(q−1)

`

)−s]
,

ζ
(2)
Hp+1×Sq−1(s) = −2 cp+1

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω + 1

·
∞∑
`=0

g(q−1)(`)
[(
ν

(q−1)
` + iω

)−s
+
(
ν

(q−1)
` − iω

)−s]
.

(4.63)

By performing the integration first for ζ(1)
Hp+1×Sq−1(s), we obtain

ζ
(1)
Hp+1×Sq−1(s) = 4 cp+1

Γ(q − 1)

p−1
2∑

k=0
(−1)k+1 βk,p+1 cos

(
πs

2

)
Γ(2k + 2)

2k+2∏
i=1

1
s− i

(4.64)

·



q
2−1∑
n=1

(−1)
q
2−1+n αn,q−1 ζ (s− 2k − 2n− 2) q : even

q−3
2∑

n=0
(−1)

q−3
2 +n βn,q−1 (2s−2k−2n−3 − 1) ζ (s− 2k − 2n− 3) q : odd

where we used (3.10) with d → q − 1. For ζ(2)
Hp+1×Sq−1(s) we sum over ` first and use the

expansion (3.9) with d→ q − 1 and c→ iω and the identity (B.9) as in section 3 to write

ζ
(2)
Hp+1×Sq−1(s) =− 4cp+1

Γ(q−1)

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω+1 (4.65)

·



q−2∑
n=0

[γn,q−1(iω)ζH (s−n, iω)+γn,q−1(−iω)ζH (s−n,1− iω)] q : even

q−2∑
n=0

[
γn,q−1(iω)ζH

(
s−n, 12 + iω

)
+γn,q−1(−iω)ζH

(
s−n, 12− iω

)]
q : odd

For odd p the regularized volume of Hp+1 is finite and the coefficient cp+1 given by (4.8)
does not give rise to a logarithmic divergence in the zeta function. It follows from (4.54)
that the logarithmic divergence of the free energy is determined by

Fren[Hp+1 × Sq−1] = −A[Hp+1 × Sq−1] log(ΛR) + Ffin[Hp+1 × Sq−1] , (4.66)
25We use the regularization scheme for ζ(2)

Hp+1×Sq−1 (s) which is different from that of ζ(1)
Hp+1×Sq−1 (s).
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where the anomaly part and the finite part are

A[Hp+1 × Sq−1] = 1
2
(
ζ

(1)
Hp+1×Sq−1(0) + ζ

(2)
Hp+1×Sq−1(0)

)
,

Ffin[Hp+1 × Sq−1] = −1
2
(
∂sζ

(1)
Hp+1×Sq−1(0) + ∂sζ

(2)
Hp+1×Sq−1(0)

)
.

(4.67)

From (4.64) we read

ζ
(1)
Hp+1×Sq−1(0) = 2 cp+1

Γ(q − 1)

p−1
2∑

k=0

(−1)k+1βk,p+1
k + 1 (4.68)

·


0 q : even
q−3

2∑
n=0

(−1)
q−3

2 +n βn,q−1 (2−2k−2n−3 − 1) ζ (−2k − 2n− 3) q : odd

while from (4.65) and after a bit of calculation, we obtain

ζ
(2)
Hp+1×Sq−1(0)

= 8 cp+1
Γ(q − 1)

p−1
2∑

k=0
βk,p+1 (4.69)

·



0 q : even
q−3

2∑
m=0

2m+1∑
n=0

(−1)
q−1

2 +n

n+ 1

(
2m+ 1
n

)
βm,q−1

·
bn+1

2 c∑
r=0

(−1)r (1− 21−2r)
(
n+ 1

2r

)
B2r

·1− 2−2m−2k−3+2r

(2π)2m+2k+4−2r Γ(2m+ 2k + 4− 2r) ζ(2m+ 2k + 4− 2r) q : odd

From (4.64) and (4.65), we read

∂sζ
(1)
Hp+1×Sq−1(0)

= 2 cp+1
Γ(q − 1)

p−1
2∑

k=0

(−1)k+1

k + 1 βk,p+1 (4.70)

·



q
2−1∑
n=1

(−1)
q
2−1+n αn,q−1 ζ

′ (−2(k + n+ 1)) q : even

q−3
2∑

n=0
(−1)

q−3
2 +n βn,q−1

[
(2−2n−2k−3 − 1) ζ ′ (−2k − 2n− 3)

+
(
(2−2n−2k−3 − 1)H2k+2 + 2−2n−2k−3 log 2

)
ζ (−2k − 2n− 3)

]
q : odd
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and

∂sζ
(2)
Hp+1×Sq−1(0)

= − 4 cp+1
Γ(q − 1)

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω + 1

q−2∑
n=0

(4.71)

·



q
2−1∑

m=dn2 e
(−1)

q
2−1+m+n

(
2m
n

)
αm,q−1 (iω)2m−n

· [ ∂sζH (−n, iω) + (−1)n∂sζH (−n, 1− iω)] q : even
q−3

2∑
m=bn2 c

(−1)
q−1

2 +m+n
(

2m+ 1
n

)
βm,q−1 (iω)2m+1−n

·
[
∂sζH

(
−n, 1

2 + iω
)

+ (−1)n−1∂sζH

(
−n, 1

2 − iω
)]

q : odd

For even q, the bracket can be written by using the polylogarithm functions Lin(x),

∂sζ
(2)
Hp+1×Sq−1(0)

=− 4cp+1
Γ(q−1)

p−1
2∑

k=0
βk,p+1

∫ ∞
0

dω ω2k+1

e2πω+1

q−2∑
n=0

q
2−1∑

m=dn2 e
(−1)

q
2−1+n

(
2m
n

)
αm,q−1 (4.72)

· ω2m−n

(−1)nΓ(n+1)
(2π)n Lin+1(e−2πω)+

bn+1
2 c∑
l=0

(−1)l−1 π

n+1

(
n+1

n+1−2l

)
B2lω

n+1−2l

 ,
where we use (B.19) and the facts Bn+1−r vanishes for even n − r > 0 and the sum over
m vanishes for n = r in the third line. Our method reproduces the known regularization
of ∑` g

(q−1)(`) log(ω2 + (ν(q−1)
` )2) ((3.38) and (3.50) in [62]) and is easily generalized to

higher dimensions.
For odd p and even q the anomaly parts vanish while for odd p and odd q they turn

out to equal the bulk anomaly of Sp+q. We thus find a set of identities relating the anomaly
coefficients on the conformally equivalent spaces:

A[H2k × Sd−2k] = A[Sd] . (4.73)

Combined with the result in section 4.2.2, the above relation holds for k = 1, · · · , dd/2e−1.
A similar relation holds also for the finite parts of the free energies:

Ffin[H2k × Sd−2k] = Ffin[Sd] . (4.74)

The equality between the finite parts is pointed out in [62] for odd d ≤ 7.
Furthermore, these relations can be extended to the equivalence of the renormalized

free energies:

Fren[H2k × Sd−2k] = Fren[Sd] , (k = 1, · · · , dd/2e − 1) . (4.75)
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We checked them either analytically or numerically for d of order O(10).26 They should
hold for any d on physical ground as there are no defect anomalies when p is odd while
H2k×Sd−2k has the same Euler characteristic as Sd, thus has the same bulk anomaly as Sd.

Substituting various values for p and q to the anomaly parts and the finite parts of the
free energies, we obtain tables 2 and 3 in appendix A.

5 Free energy for Neumann boundary condition

In section 4, we computed the free energies on Hd and Hp+1× Sq−1 for Dirichlet boundary
condition. In this section, we turn to the case for Neumann boundary condition. We
calculate the difference of the free energies between Neumann and Dirichlet boundary
conditions in two ways. First we calculate the free energy on Hd for Neumann boundary
condition from the result for Dirichlet boundary condition by analytically continuing the
dimension ∆ from the Dirichlet value ∆+ to the Neumann value ∆−. Next we use the
residue method for the same calculation. These two methods turn out to give the same
answer. We then apply the residue method to the calculation of the free energy on Hp+1×
Sq−1. Finally, we check the defect C-theorem (1.5) holds for all the cases.

5.1 Analytic continuation

The free energy for Neumann boundary condition can be derived from the Dirichlet value
on Hd obtained in section 4 as the latter is analytic in ν, so can be analytically continued
from the positive ν to negative ν region.

Odd d. From (4.13), we read off the free energy as a function of ν,

Fren[Hd](ν) = (−1) d−1
2

Γ(d)

d−1
2∑

k=1
(−1)k αk,d ν

2k+1

2k + 1 log
(
R

ε

)
. (5.1)

The free energy with Neumann boundary condition, ν = −1/2, is given by

Fren[Hd](−1/2) = −Fren[Hd](1/2) . (5.2)

The anomaly parts of the Neumann boundary condition are the minus of those for the
Dirichlet boundary condition. The difference of the free energies between the two boundary
conditions is given by

F∆+ [Hd]− F∆− [Hd] = −2A[Hd] log
(
R

ε

)
, (5.3)

where we introduced the new notations F∆+ [Hd] = Fren[Hd](1/2) and F∆− [Hd] =
Fren[Hd](−1/2) to manifest the boundary conditions in the free energies. It follows from
the relations (4.27) and (3.45) that the anomaly part of the free energy on Hd with the
Neumann boundary condition coincides with that on HSd− provided the two cutoffs ε and
Λ are appropriately identified.

26While we do not write explicitly, this equality leads to the evaluated form of integrals including the
polygamma function, which to our best knowledge has not appeared in literature.
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Even d. The free energy for even d is

Fren[Hd](ν) = −1
2 ζHd(0, ν) log(ΛR)− 1

2 ∂sζHd(0, ν) . (5.4)

The zeta function and its derivative defined by (4.19) are analytical functions of ν, and
they can be analytically continued to the ν < 0 region (log ν should be understood as
(1/2) log ν2). Then most of the terms are canceled out in the difference of the free energy
except for fk(ν), resulting in

F∆+ [Hd]− F∆− [Hd] = −cd
∫ 1

2

0
dµµ sin(πµ) Γ

(
d− 1

2 ± µ
)
, (5.5)

where we use the identities ψ(µ+ 1/2)− ψ(−µ+ 1/2) = π tan(πµ) and

d
2−1∑
k=0

(−1)k βk,d µ2k+1 = µ

π
Γ
(
d− 1

2 ± µ
)

cos(πµ) , (5.6)

which follows from (3.3) and (3.10).
In lower dimensions, the difference of the free energy becomes

F∆+ [Hd]− F∆− [Hd] =



−1
4 log(2π) + 1

2 ∂sζH(0, 0) d = 2
− 1

8π2 ζ(3) d = 4
1

96π2 ζ(3) + 1
32π4 ζ(5) d = 6

− 1
720π2 ζ(3)− 1

192π4 ζ(5)− 1
128π6 ζ(7) d = 8

(5.7)

where we use the identity that follows from (C.9) for d = 2. We find perfect agreement
with the difference of the free energies on HSd listed in table 4 while both of the differences
on H2 and HS2 have the same IR divergences from ∂sζH(0, 0). More generally we argue
the equality

F∆+ [Hd]− F∆− [Hd] = Ffin[HSd+]− Ffin[HSd−] , (5.8)

should hold for even d ≥ 2.27
In total, we conclude from the agreement of the universal parts of the free energies

that the Dirichlet/Neumann boundary conditions on Hd are one-to-one correspondence
with those on HSd for any d. We will derive the same conclusion from a more indirect
method in the following.

5.2 Residue method

In the previous section, we obtained the difference of the free energies via a naive an-
alytical continuation in terms of the parameter ν. The same result can be derived by

27With (3.51) and (5.5) this equality leads to the identity for even d ≥ 4:∫ 1
2

0
dµµ sin(πµ) Γ

(
d− 1

2 ± µ
)

= (d− 1)

d
2−1∑
n=1

n∑
l=1

(−1)n βn,d 22l−2n
(

2n
2l

)
ζ′ (−2l) . (5.9)
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using the residue method [54, 56], which argues that the difference of the derivatives of
the free energies is given by the residue of µ(d)(ω)/(2ω(ω − i ν)) at ω = i ν with suitable
normalization:

∂νF [Hd](ν)− ∂νF [Hd](−ν) = 2πi ν Res
ω=i ν

µ(d)(ω)
2ω(ω − i ν) (5.10)

= −cd ν sin(πν) Γ
(
d− 1

2 ± ν
)
. (5.11)

By integrating the above expression (5.11) from ν = 0 to ν = 1
2 , we obtain

F∆+ [Hd]− F∆− [Hd] = 1
sin(π d−1

2 ) Γ(d)

∫ 1
2

0
dν ν sin(πν) Γ

(
d− 1

2 ± ν
)
. (5.12)

For even d, this expression is the same as (5.5) derived from the analytic continuation.
Also, by replacing the pole from the sine function for odd d with the logarithmic divergence
using (4.7) this also reproduces the boundary anomaly given in (5.3).

Derivation of the residue method. The Green’s function of a massive scalar field
with Dirichlet boundary condition has the integral representation [87]:

G∆+(x1, x2) = 1
Rd−2

∫ ∞
−∞

dω 1

ω2 +
(
∆+ − d−1

2

)2 Ω(d)
ω (x1, x2) . (5.13)

The Green’s function with Neumann boundary condition can be obtained by changing the
contour as in figure 2:

G∆−(x1, x2) = 1
Rd−2

∫
R+C++C−

dω 1

ω2 +
(
∆+ − d−1

2

)2 Ω(d)
ω (x1, x2) , (5.14)

where C+ is a clockwise circle around a pole at ω = i
(
∆+ − d−1

2

)
and C− is a counter-

clockwise circle around a pole at ω = −i
(
∆+ − d−1

2

)
.

In the following, we need the expression of Ω(d)
ω (x1, x2) at the coincident point,

Ω(d)
ω (0) = Ω(d)

ω (x, x) =
Γ
(
d−1

2

)
4π d−1

2 +1Γ(d− 1)

Γ
(
d−1

2 ± iω
)

Γ(± iω) . (5.15)

The Plancherel measure (4.4) can be written by using Ω(d)
ω (0) as

µ(d)(ω) = 2Vol(Hd) Ω(d)
ω (0) . (5.16)

Now the derivative of the free energy can be expressed as

∂νF [Hd](ν) = Vol(Hd) ν G∆+(x, x) ,
∂νF [Hd](−ν) = Vol(Hd) ν G∆−(x, x) .

(5.17)
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Re(ω)

Im(ω)

i

−i

C+

C−

Figure 2. The contours for the Green’s functions for the Dirichlet (the blue real line) and Neumann
boundary conditions (the blue real line and two orange circles C+ and C−).

Then, the difference between them is given by

∂νF [Hd](ν)− ∂νF [Hd](−ν) = −ν2

∫
C++C−

dω µ(d)(ω)
ω2 + ν2

= πi ν
2 Res

ω=i ν

µ(d)(ω)
ω(ω − i ν) −

πi ν
2 Res

ω=−i ν

µ(d)(ω)
ω(ω + i ν)

= π µ(d)(i ν) .

(5.18)

In the last line, we used µ(d)(i ν) = µ(d)(−i ν). This completes the derivation of the residue
method (5.10).

5.3 Application to Hp+1 × Sq−1

Now let us apply the residue method 5.2 to the free energy calculation on Hp+1 × Sq−1

with Neumann boundary condition.28 Since the Neumann boundary condition has negative
ν

(1)
`=±1 for q = 2 or negative ν(q−1)

`=0 for q ≥ 3, it is convenient to express the free energy as
a sum of each mode

F [Hp+1 × Sq−1] =
∞∑
`=0

g(q−1)(`)F`
(
ν

(q−1)
`

)
, (5.19)

where F`
(
ν

(q−1)
`

)
is the free energy for the `-th mode on Hp+1:

F`
(
ν

(q−1)
`

)
≡ 1

2

∫ ∞
0

dω µ(p+1)(ω) log

ω2 +
(
ν

(q−1)
`

)2

Λ̃2R2

 , (5.20)

28It is also possible to apply the analytic continuation method in section 5.1, which gives the same result.
Here we use the residue method due to its simplicity.

– 38 –



J
H
E
P
0
5
(
2
0
2
1
)
0
7
4

and ν(q−1)
` = ∆` − p

2 as before. For q = 2, we have to take a summation from ` = −∞ to
∞. By applying the residue method (5.11), we obtain

∂ν`F`(ν`)− ∂ν`F`(−ν`) = −cp+1 ν` sin(πν`) Γ
(
d− 1

2 ± ν`
)
. (5.21)

Hereafter we omit the superscript (q−1) in ν(q−1)
` to simplify expressions. In the following,

we will compute the difference of the free energies between ∆D and ∆N.

q = 2 case. The allowed boundary conditions are classified in (2.28). The difference
of the free energies between ∆+ and ∆N1 comes from the ν1 mode, where the former has
ν1 = 1 (∆`=1

+ = p
2 + 1) while the latter has ν1 = −1 (∆`=1

− = p
2 − 1). By applying the

residue method (5.21) to the ν1 mode and integrating from ν1 = 0 to ν1 = 1, we obtain

F1(ν1 = 1)− F1(ν1 = −1) = 1
sin
(π p

2
)

Γ(p+ 1)

∫ 1

0
dν1 ν1 sin(πν1) Γ

(
p

2 ± ν1

)
= −Funiv[Sp] .

(5.22)

In the last line, we use the integral expression of the sphere free energy (3.25). This implies

F∆D [Hp+1 × S1]− F∆N1 [Hp+1 × S1] = −Funiv[Sp] . (5.23)

In the same way, the difference of the free energies between the ∆N1 and ∆N2 boundary
conditions reads

F∆N1 [Hp+1 × S1]− F∆N2 [Hp+1 × S1] = −Funiv[Sp] . (5.24)

Note that the difference of the free energies equals the sphere free energy of a p-dimensional
free scalar field. This result conforms with the fact that the Neumann boundary conditions
for q = 2 are trivial in the sense that the defect operator saturates the unitarity bound and
becomes a free field.

q = 3 case. In this case the difference of the free energies between the two boundary
conditions (2.29) comes from the ν0 mode only, where the Dirichlet boundary condition has
ν0 = 1

2 (∆`=0
+ = p+1

2 ) while the Neumann boundary condition has ν0 = −1
2 (∆`=0

− = p−1
2 ).

By applying the residue method (5.21) to the ν0 mode and integration from ν0 = 0 to 1
2 ,

the difference of the free energies is

F0

(
ν0 = 1

2

)
− F0

(
ν0 = −1

2

)
= 1

sin
(π p

2
)

Γ(p+ 1)

∫ 1
2

0
dν0 ν0 sin(πν0) Γ

(
p

2 ± ν0

)
= F∆+ [Hp+1]− F∆− [Hp+1] .

(5.25)

In the final line, we use the integral expression of the difference of the free energy on
Hp+1 (5.12). Hence we conclude that

F∆D [Hp+1 × S2]− F∆N [Hp+1 × S2] = F∆+ [Hp+1]− F∆− [Hp+1] . (5.26)
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q = 4 case. The difference of the free energies between the two boundary condi-
tions (2.29) comes from the ν0 mode for p ≥ 2, where the Dirichlet condition has ν0 = 1
(∆`=0

+ = p
2 + 1) while the Neumann condition has ν0 = −1 (∆`=0

− = p
2 − 1). By applying

the residue method (5.21) to the ν0 mode and integrating from ν0 = 0 to 1, we find

F0(ν0 = 1)− F0(ν0 = −1) = 1
sin
(π p

2
)

Γ(p+ 1)

∫ 1

0
dν0 ν0 sin(πν0) Γ

(
p

2 ± ν0

)
= −Funiv[Sp] .

(5.27)

Hence we conclude that

F∆D [Hp+1 × S3]− F∆N [Hp+1 × S3] = −Funiv[Sp] . (5.28)

As in q = 2 the difference if given by the sphere free energy of a p-dimensional scalar field.
This also conforms with the saturation of the unitarity bound for the Neumann condition
when q = 4.

Free boundary condition. In this case we see from (2.18) that the free boundary
condition associated with a p-dimensional scalar Wilson loop exists for q = p+ 2 and q ≥ 3
with ∆`=0

− = 0 while the Dirichlet condition has ∆`=0
+ = p. Thus, the difference of the free

energies between the two is given by

F∆D [Hp+1×Sp+1]−F∆F [Hp+1×Sp+1] =F0

(
ν0 = p

2

)
−F0

(
ν0 =−p2

)
(5.29)

= 1
sin
(πp

2
)

Γ(p+1)

∫ p
2

0
dν0 ν0 sin(πν0)Γ

(
p

2±ν0

)
.

The integral of the right hand side suffers from the IR divergences due to the zero mode
for the free boundary condition with ν0 = −p

2 .29

5.4 Evidence for defect C-theorem

Let us compare the results in sections 5.1, 5.2 and 5.3 with the proposed C-theorem (1.5)
in DCFT. We anticipate that the difference of the defect free energies is invariant under
Weyl transformations. Since one can trigger the defect RG flow from the Neumann to
Dirichlet boundary condition by the double trace deformation [48–54] the difference of the
free energies between the UV and IR fixed points is given by

D̃UV − D̃IR = − sin
(
π p

2

)(
F∆N [Hp+1 × Sq−1]− F∆D [Hp+1 × Sq−1]

)
. (5.30)

For the free boundary condition, however, the double trace deformation does not lead
to a defect RG flow to the Dirichlet boundary condition as the double trace operator has
dimension zero and is proportional to the defect identity operator. Presumably there are
defect RG flows between the free and Dirichlet boundary conditions which we are not

29The defect free energy of a scalar Wilson loop in four dimension has a similar IR divergence, but is
shown to be zero after an IR regularization in [88]. We do not know if such a regularization can be applied
to our case.
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aware of, but we concentrate on our consideration to the flow driven by the double trace
deformation of the Neumann boundary condition with positive dimension ∆N > 0. This
leaves us the cases with q ≤ 4 in the following. We will discuss the implication of the defect
C-theorem (1.5) for the case with the free boundary conditions in section 6.

q = 1 case. In this case we consider the defect RG flow on the boundary of Hd (p = d−1).
From (5.12) we find

D̃UV − D̃IR = 1
Γ(d)

∫ 1
2

0
dν ν sin(πν) Γ

(
d− 1

2 ± ν
)
, (5.31)

which is always positive and the monotonicity of the defect free energy holds for p ≥ 2
(d ≥ 3).

q = 2 case. From (5.23) and (5.24) we obtain

D̃∆N1 − D̃∆D = D̃∆N2 − D̃∆N1 = F̃ [Sp] , (5.32)

where we used ∆N1,∆N2,∆D instead of UV and IR and

F̃ [Sp] ≡ 1
Γ(p+ 1)

∫ 1

0
dν ν sin(πν) Γ

(
p

2 ± ν
)

(5.33)

is positive for any p ≥ 2 [22]. From these equations, the monotonicity of the free energies
for p ≥ 3 follows from the positivity of the right hand side. Hence our C-theorem is satisfied
in this case.

q = 3 case. The relation (5.26) can be translated to

D̃UV[Hp+1 × S2]− D̃IR[Hp+1 × S2] = D̃UV[Hp+1]− D̃IR[Hp+1] , (5.34)

where we make explicit the dependence of D̃ on the space. Hence the monotonicity of the
defect free energy amounts to that of the q = 1 case.

q = 4 case. Since (5.28) can be translated to

D̃UV − D̃IR = F̃ [Sp] , (5.35)

the monotonicity of the defect free energy holds for the same reason as in the q = 2 case
for p ≥ 3.

6 Discussion

In this paper we classified a certain class of conformal defects in the free scalar theory as
boundary conditions on Hp+1 × Sq−1. Our results are consistent with the classification of
the non-monodromy defects in [59] carried out by other means. We believe our methods
for characterizing conformal defects as boundary conditions on Hp+1×Sq−1 can be applied
to the monodromy defects classified in [59] as well. As a special case twist operators of
codimension-two were studied as a boundary condition on Hp+1 × S1 in [64]. It is also
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worthwhile to revisit the O(N) model discussed in a recent paper [56] that admits various
non-trivial boundary conditions and supersymmetric theories with defects [43, 89–107] from
the viewpoint of this paper. (See also [108–113] for related works.)

It should be possible to extend our analysis to fields with spin. For fermion, a non-
trivial boundary condition is allowed, and we can consider an RG flow from Neumann to
Dirichlet boundary condition. We will report this result in [114]. For a symmetric traceless
tensor with spin s, ∆+ always satisfies the unitarity bound

∆ ≥ d+ s− 2 , (6.1)

and ∆+ for Hd also saturates the unitarity bound. However, ∆− always violates the
unitarity bound, which implies that a non-trivial Neumann boundary condition never exists
for higher spin fields.

By comparing our results with the classification by [59] we observe that Dirichlet
boundary condition corresponds to trivial (or no) defects while Neumann boundary con-
dition to non-trivial defects. Indeed, we verified this observation through the free energy
calculations in some cases, which leads us to speculate that defects with Dirichlet boundary
condition have a least D̃ under any RG flow.

In section 5.3 we examined the defect RG flow triggered by the double trace deforma-
tion of the Neumann boundary condition with ∆N > 0. This restriction excludes the flows
from the free boundary condition with zero mode (∆F = 0) from our consideration. While
we are not aware of any defect RG flow between the free and Dirichlet boundary conditions
one can still calculate the difference of the defect free energy from (5.29):

D̃F − D̃D = 1
Γ(p+ 1)

∫ p
2

0
dν0 ν0 sin(πν0) Γ

(
p

2 ± ν0

)
. (6.2)

The integral diverges for odd p due to the IR divergence from the zero mode while it is
positive and finite for p = 4m − 2 (m = 1, 2, · · · ) and negative and finite for p = 4m. In
this case the defect C-theorem implies that the free boundary condition may be a UV fixed
point of some defect RG flow for p = 4m− 2 while it may be an IR fixed point for p = 4m.
(One cannot draw any implication for odd p due to the IR divergence.) We leave further
investigation on this direction as a future work.

The entanglement entropy of a spherical region on flat space Rd can be mapped to
the free energy on Hd−1 × S1 by the Casini-Huerta-Myers map [85]. In this context, the
boundary condition on the entangling surface, or equivalently the boundary condition on
Hd−1 × S1, has not been clarified explicitly. However, our results show that the boundary
condition on Hd−1 × S1 changes the universal parts of the free energy, and this implies
that we should be careful in the boundary condition in the entanglement entropy. In [9]
we derived a universal relation between the defect free energy and defect entropy. They
differ by a term proportional to the one-point function of the stress tensor in the presence
of defects, so one can calculate the defect entropy from our results in this paper given the
one-point function, without relying on conventional methods such as the replica trick.

The free energies for the Neumann boundary conditions were obtained somewhat in-
directly as differences from the Dirichlet cases. This was enough for us to check if the
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defect C-theorem (1.5) holds under the defect RG flow as we assumed the difference of
the free energies is invariant under conformal maps from Sd to Hp+1 × Sq−1. Nonetheless
it is desirable to have a precise relation between the defect free energy on Sd and the free
energy on Hp+1 × Sq−1. A most naive guess would be

D= log |〈D(p)〉| ?=F [Hp+1×Sq−1]−F [Sd] . (6.3)

However, this relation does not hold in general as the bulk anomalies are canceled out in
the left hand side while there can remain a bulk anomaly term in the right hand side. For
instance, F [Sd] should have bulk anomalies when d is even for any d. On the other hand,
there are no bulk anomalies in F [Hp+1 × Sq−1] when p is even as seen from (1.11) (only
defect anomalies are there).30 Hence there remains the bulk anomaly in the right hand side
of (6.3). Finding a correct relation between D and F [Hp+1 × Sq−1] should be of interest.

In BCFTd with even d, the conformal anomalies in the bulk theory have boundary
terms dictated by boundary central charges [55, 115–119]. The free energy has a logarithmic
divergence whose coefficient is completely fixed by the geometry of the boundary such as the
extrinsic curvature at least in lower dimensions [115, 116]. In DCFT, we regard conformal
defects as boundary conditions on Hp+1 × Sq−1, so we may view (∂Hp+1) × Sq−1 as the
codimension-one boundary and are tempted to apply the boundary anomaly formula [115,
116] to the present case. In a few cases, we computed the defect anomaly coefficients from
the boundary anomaly formula, but we were not able to reproduce our results correctly. We
suspect the boundary anomaly formula may not be applicable to manifolds with boundary
which is a product manifold. We hope to address this issue in future.
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A List of tables

· S1 S2 S3 S4

· 0 1
3 0 − 1

90

H2 1
6 0 − 1

90 0 1
756

H3 − 1
48 − 1

360 0 1
1512 0

H4 − 1
180 0 1

756 0 − 23
113400

H5 17
11520

1
3360 0 − 163

1814400 0
H6 1

1512 0 − 23
113400 0 263

7484400

H7 − 367
1935360 − 79

1814400 0 1753
119750400 0

H8 − 23
226800 0 263

7484400 0 − 133787
20432412000

H9 27859
928972800

1759
239500800 0 − 3436133

1307674368000 0
H10 263

14968800 0 − 133787
20432412000 0 157009

122594472000

S5 S6 S7 S8

· 0 1
756 0 − 23

113400

H2 0 − 23
113400 0 263

7484400

H3 − 41
362880 0 491

23950080 0
H4 0 263

7484400 0 − 133787
20432412000

H5 263
14968800 0 − 323117

93405312000 0
H6 0 − 133787

20432412000 0 157009
122594472000

H7 − 403873
130767436800 0 157009

245188944000 0
H8 0 157009

122594472000 0 − 16215071
62523180720000

H9 9134093
15692092416000 0 − 286034933

2286562037760000 0
H10 0 − 16215071

62523180720000 0 2689453969
49893498214560000

Table 2. The bulk anomalies A[Hp+1 × Sq−1] and the defect anomalies A[Hp+1 × Sq−1] (shaded)
on Hp+1 × Sq−1 with Dirichlet boundary conditions.
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M Ffin[M]
S2 −1

4 log(2π)−2ζ ′(−1)− 1
2 ∂sζH(0,0) (IR divergent)

S3 1
8 log2− 3

16π2 ζ(3)
S4 −1

6 ζ
′(−1)− 1

3 ζ
′(−3)

S5 − 1
128 log2− 1

128π2 ζ(3)+ 15
256π4 ζ(5)

S6 1
60 ζ
′(−1)− 1

60 ζ
′(−5)

S7 1
1024 log2+ 41

30720π2 ζ(3)− 5
2048π4 ζ(5)− 63

4096π6 ζ(7)
S8 − 1

420 ζ
′(−1)+ 1

720 ζ
′(−3)+ 1

720 ζ
′(−5)− 1

2520 ζ
′(−7)

S9 − 5
32768 log2− 397

1720320π2 ζ(3)+ 1
32768π4 ζ(5)+ 63

32768π6 ζ(7)+ 255
65536π8 ζ(9)

S10 1
2520 ζ

′(−1)− 31
90720 ζ

′(−3)− 1
8640 ζ

′(−5)+ 1
15120 ζ

′(−7)− 1
181440 ζ

′(−9)

H2 −1
4 log(2π)−ζ ′(−1)

H3 0
H4 − 1

12 ζ
′(−1)+ 1

4 ζ
′(−2)− 1

6 ζ
′(−3)

H5 0
H6 1

120 ζ
′(−1)− 1

48 ζ
′(−2)+ 1

48 ζ
′(−4)− 1

120 ζ
′(−5)

H7 0

H8
− 1

840 ζ
′(−1)+ 1

360 ζ
′(−2)+ 1

1440 ζ
′(−3)− 1

288 ζ
′(−4)

+ 1
1440 ζ

′(−5)+ 1
1440 ζ

′(−6)− 1
5040 ζ

′(−7)
H9 0

H10
1

5040 ζ
′(−1)− 1

2240 ζ
′(−2)− 31

181440 ζ
′(−3)+ 7

11520 ζ
′(−4)− 1

17280 ζ
′(−5)

− 1
5760 ζ

′(−6)+ 1
30240 ζ

′(−7)+ 1
80640 ζ

′(−8)− 1
362860 ζ

′(−9)

Even p Ffin[Hp+1×Sq−1] = 0
Odd p Ffin[Sd] =Ffin[H2k×Sd−2k] for k= 1, · · · ,dd/2e−1

Table 3. Table of the finite parts of Ffin[Sd], Ffin[Hd], and Ffin[Hp+1×Sq−1] with Dirichlet boundary
conditions.
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d A[HSd±] Ffin[HSd±]−1
2Ffin[Sd]

2 1
6 ∓

(
1
8 log(2π)−1

4∂sζH(0,0)
)

(IR divergent)
3 ∓ 1

48 ∓
(

1
48 log2+1

4ζ
′(−1)

)
4 − 1

180 ∓ 1
16π2 ζ(3)

5 ± 17
11520 ±

(
11

11520 log2+ 1
96ζ
′(−1)− 7

96ζ
′(−3)

)
6 1

1512 ±
(

1
192π2 ζ(3)+ 1

64π4 ζ(5)
)

7 ∓ 367
1935360 ∓

(
211

1935360 log2+ 3
2560ζ

′(−1)− 7
768ζ

′(−3)+ 31
7680ζ

′(−5)
)

8 − 23
226800 ∓

(
1

1440π2 ζ(3)+ 1
384π4 ζ(5)+ 1

256π6 ζ(7)
)

9 ± 27859
928972800 ±

(
15157

928972800 log2+ 5
28672ζ

′(−1)− 259
184320ζ

′(−3)+ 31
36864ζ

′(−5)− 127
1290240ζ

′(−7)
)

Table 4. The anomaly and the finite parts of the free energies on HSd.

B Useful formulas

In this appendix, we summarize useful formulas of the zeta function and the Hurwitz
zeta function. Throughout this appendix, we assume that n be a non-negative integer
(n = 0, 1, 2, 3, · · · ) and m be a positive integer (m = 1, 2, 3, 4 · · · ).

Zeta function. At specific points the Riemann zeta function takes the values:

ζ(0) = −1
2 , (B.1)

ζ(−2m) = 0 , (B.2)

ζ(2m) = (−1)m−1 22m−1 π2m

(2m)! B2m . (B.3)

More generally the zeta function satisfies the relation:

ζ(s) = 2s πs−1 sin
(
πs

2

)
Γ(1− s) ζ(1− s) . (B.4)

The derivatives of the zeta function at non-positive integer points are given by

ζ ′(0) = −1
2 log(2π) , (B.5)

ζ ′(−2m) = (−1)m
22m+1 π2m Γ(2m+ 1) ζ(2m+ 1) , (B.6)

ζ ′(1− 2m) = (−1)m+1 2 Γ(2m)
(2π)2m

[
(ψ(2m)− log(2π)) ζ(2m) + ζ ′(2m)

]
. (B.7)

Hurwitz zeta function. The Hurwitz zeta function ζH(s, a) has two arguments, s and
a. To distinguish derivatives of the Hurwitz zeta function, we explicitly write the differen-
tiation variable such as ∂sζH(s, a).
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For specific values of a the Hurwitz zeta function reduces to the Riemann zeta function:

ζH(s, 1) = ζ(s) ,

ζH(s, 0) =


ζ(s) s < 0
1
2 s = 0

.
(B.8)

The argument a of the Hurwitz zeta functions can be shifted by a positive integer m by
the relation:

ζH(s,m+ a) = ζH(s, a)−
m−1∑
k=0

(k + a)−s . (B.9)

At special values of s it derives

ζH(−n,m) = ζ(−n)−
m−1∑
k=1

kn , (B.10)

ζH(−n,m− 1) = ζ(−n)−
m−2∑
k=1

kn + δm,1 δn,0 . (B.11)

Other useful identities are

ζH

(
s,

1
2

)
= (2s − 1) ζ(s) , (B.12)

ζH(−n, a) = −Bn+1(a)
n+ 1 . (B.13)

The derivative with respect to s at special values are given by

∂sζH(0, a) = log Γ(a)− 1
2 log(2π) , (B.14)

∂sζH

(
s,

1
2

)
= 2s log 2 ζ(s) + (2s − 1) ζ ′(s) , (B.15)

∂sζH

(
1− 2m, 1

2

)
= − B2m

m · 4m log 2− 22m−1 − 1
22m−1 ζ ′ (1− 2m) . (B.16)

Computation of the derivative of the Hurwitz zeta function. From the for-
mula [78, 25.12.13],

Lis(e2πia) + eπis Lis(e−2πia) = (2π)s eπis
2

Γ(s) ζH(1− s, a) , (B.17)

which holds for Re s > 0, 0 < Re a ≤ 1, Im a > 0, or Re s > 1, 0 < Re a ≤ 1, Im a = 0, the
Hurwitz zeta function can be written as

ζH(s, a) = Γ(1− s)
(2π)1−s e

πi(s−1)
2

(
Li1−s(e2πia) + eπi(1−s) Li1−s(e−2πia)

)
, (B.18)

which holds for Re s < 1, Im a > 0, or Re s < 0, Im a = 0. By taking the derivative with
respect to s and replace s with a negative integer −n (n ≥ 0), we obtain

∂sζH(−n, a) + (−1)n ∂sζH(−n, 1− a) = Γ(n+ 1)
(2πi)n Lin+1(e2πia) + πi Bn+1(a)

n+ 1 . (B.19)
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C Derivation of (4.21)

In this appendix, we give a detailed derivation of (4.21). Instead of performing the integral
over ω directly, we take a derivative with respect to ν and integrate the obtained derivative
in terms of ν. The same calculation can be found in appendix A of [120] (see also [121]
and appendix A of [79]). The derivative of fk(ν) is given by

∂νfk(ν) = 2 νgk(ν) , (C.1)

gk(ν) ≡
∫ ∞

0
dω ω2k+1

(e2πω + 1)(ω2 + ν2) . (C.2)

Since gk(ν) satisfies the recursion relation,

gk(ν) = −ν2 gk−1(ν) + 22k − 2
(4π)2k Γ(2k) ζ(2k) , (C.3)

g0(ν) = 1
2ψ

(
ν + 1

2

)
− 1

2 log ν , (C.4)

where ψ(x) is a polygamma function, the general solution can be easily obtained:

gk(ν) = (−ν2)k
[

1
2ψ

(
ν + 1

2

)
− 1

2 log ν +
k∑

m=1

22m − 2
(4π)2m (−ν2)−m Γ(2m) ζ(2m)

]
. (C.5)

By integrating gk(ν) from 0 to ν, we obtain fk(ν) as

fk(ν) = (−1)k
∫ ν

0
dµµ2k+1ψ

(
µ+ 1

2

)
+ (−1)k+1

4(k + 1)2 ν
2k+2 (2(k + 1) log ν − 1)

+
k∑

m=1

(−1)k−m
k −m+ 1

22m − 2
(4π)2m Γ(2m) ζ(2m) ν2k−2m+2 + fk(0) .

(C.6)

For k = 0, the term involving the summation of m should be omitted. The remaining term
fk(0) can be computed as

fk(0) = (−1)k (1− 2−2k−1) ζ ′(−2k − 1) + 2−2k−1 log 2 |B2k+2|
2k + 2 , (C.7)

where we use (B.3), (B.5), (B.7) and

H2k+1 − γ − ψ(2k + 2) = 0 . (C.8)

Using Theorem 4.3 in [122], the remaining integral in (C.6) can be performed∫ ν

0
dµµ2k+1ψ

(
µ+ 1

2

)

=
2k+1∑
j=0

(−1)j
(

2k + 1
j

)
ν2k+1−j

ζ ′H (−j, ν + 1
2

)
−Hj

Bj+1
(
ν + 1

2

)
j + 1


− 2−2k−1 log 2 B2k+2

2k + 2 − (1− 2−2k−1)
(
ζ ′(−2k − 1)−H2k+1

B2k+2
2k + 2

)
,

(C.9)
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where ζ ′H(−j, ν + 1/2) = ∂sζ
′
H(s, ν + 1/2)|s→−j . Specifically, the integral with ν = 1/2

becomes∫ 1
2

0
dµµ2k+1ψ

(
µ+ 1

2

)

=
2k+1∑
j=0

(−1)j
22k+1−j

(
2k + 1
j

) (
ζ ′(−j) +Hj ζ(−j)

)
− 2−2k−1 log 2 B2k+2

2k + 2

− (1− 2−2k−1)
(
ζ ′(−2k − 1)−H2k+1

B2k+2
2k + 2

)
,

(C.10)

and the derivative of the zeta function is given by

∂sζHd

(
0, 12

)
= cd

d
2−1∑
k=0

(−1)kβk,d
[
− 2−2k−2

k+1 H2k+1−
k∑

m=1

2−2k−2(22m−2)
k−m+1

B2m
2m (C.11)

+
2k+1∑
j=0

(−1)j
22k−j

(
2k+1
j

) (
ζ ′(−j)+Hj ζ(−j)

)
+(1−2−2k−1)H2k+1

B2k+2
k+1

]
.

Now we would like to show a sum of the terms except ζ ′(−j) in the bracket vanishes,

− 2−2k−2

k + 1 H2k+1 −
k∑

m=1

2−2k−2(22m − 2)
k −m+ 1

B2m
2m

+
2k+1∑
j=0

(−1)j
22k−j

(
2k + 1
j

)
Hj ζ(−j) + (1− 2−2k−1)H2k+1

B2k+2
k + 1 = 0 .

(C.12)

For k = 0, the summation term ∑k
m=1 should be omitted. We confirmed (C.12) up to

k = 100 numerically. However, we do not know a proof of (C.12). The coefficient of ζ ′(0)
also vanishes for d ≥ 4 because the coefficient is proportional to Γ(d/2)/Γ(2− d/2).

In total we obtain the derivative of the zeta function as

∂sζHd

(
0, 1

2

)
= cd

d
2−1∑
k=0

(−1)kβk,d
2k+1∑
j=1

(−1)j
22k−j

(
2k + 1
j

)
ζ ′(−j)− δd,2 ζ ′(0) . (C.13)
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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