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Abstract 13 

A new concept of a ‘lower-bound transfer function (LBTF)’ and a new frequency-domain optimal 14 

damper design method are presented. LBTF expresses an ideal performance for response control in the 15 

frequency domain under a constant sum of added damping coefficients (or the total cost of dampers). 16 

The effectiveness of the damper design for each mode can be captured visually through plotting the 17 

transfer function amplitudes of the model and the LBTF. An efficient generation method of LBTFs is 18 

also proposed. The proposed design method provides designs with multi-modal adaptability (effective 19 

for multi-modes). It does not require much computational load to implement the method since the 20 

optimization is conducted in the frequency domain and the first-order or second-order sensitivities of 21 

the objective function can be derived analytically. The proposed design and the fundamental mode 22 

optimal damper placement are compared for shear-mass systems and moment-resisting frames through 23 

the transfer functions and the Incremental Dynamic Analysis (IDA). It is demonstrated that the 24 

proposed designs effectively reduce the floor acceleration responses and the elastic deformation 25 

responses. Moreover, it is shown that the proposed designs can effectively reduce the elastic-plastic 26 

responses although the optimization is conducted for linear elastic models. 27 
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1. Introduction 35 

Researches on passive control of structural systems have been widely investigated so far1-4. Zhang 36 

and Soong5 and Garcia6 proposed sequential procedures for damper placement. Takewaki7 applied an 37 

incremental inverse problem approach to the simultaneous optimization of story stiffness and viscous 38 

damping. Trombetti and Silvestri8 demonstrated the effectiveness of mass-proportional damping 39 

systems and investigated the applicability of the systems to realistic building models. Lavan and 40 

Levy9 effectively used an active earthquake to save the computational load for damper optimization 41 

under multiple ground motions. Cimellaro and Retamales10 and Silvestri et al.11 used design 42 

earthquake response spectrums to obtain preliminary designs of structures and dampers. Lavan and 43 

Dargush12 treated a multi-objective optimization problem for simultaneous placement of viscous, 44 

viscoelastic and hysteretic dampers. Apostolakis and Dargush13 proposed a design framework for 45 

hysteretic dampers. Yamamoto et al.14 conducted H  optimization of the transfer function of 46 

interstory drifts. Whittle et al.15 compared several optimization techniques in view of reduction 47 

performances in peak responses, usability and computational load. Sonmez et al.16 applied an 48 

artificial bee colony algorithm to damper optimization. Martínez et al.17 treated an optimization 49 

problem of hysteretic damper placement in the frequency domain by using the stochastic equivalent 50 

linearization technique. Pollini et al.18 tackled a simultaneous optimization of nonlinear fluid viscous 51 

dampers and their supporting braces. Cetin et al.19 dealt with an optimization problem of damper 52 

placement under the critical excitation. De Domenico and Ricciardi20 incorporated a nonlinear 53 

response estimation method of fluid viscous dampers using a non-Gaussian stochastic linearization 54 

formulation into an optimization procedure. Aydin et al.21 investigated the effect of soil-structure 55 

interaction on the optimal damper placement. Apostolakis22 introduced a multiscale approach to a 56 

genetic algorithm-based optimization of friction damper placement for 3D building structures. 57 

Marzok and Lavan23 tackled an optimal design problem for multiple-rocking systems. 58 

In almost all of the above-mentioned researches, elastic structural frames were treated. However, it is 59 

important to take the elastic-plastic responses of the frames into account when structural optimization 60 

is conducted because recently observed ground motions greatly exceed the level of the code-specified 61 

ground motions. There have been a few researches which take into account the elastic-plastic 62 

responses of frames in the damper optimization problems24-27. Attard28 applied a gradient-based 63 

method for optimal viscous damper placement for nonlinear shear building structures. Akehashi and 64 

Takewaki29 developed a consecutive design generation method to obtain damper designs which are 65 

effective for multi-level ground motions. 66 

As stated above, the optimal damper placement methods can be classified in view of response 67 

evaluation as follows: (i) response spectrum-based methods, (ii) time-domain optimization methods, 68 

(iii) frequency-domain optimization methods. Especially, as for the frequency-domain optimization 69 

methods, Takewaki30 treated an optimal viscous damper placement problem for a shear building 70 

structure with respect to the sum of amplitudes of interstory drifts at the fundamental natural 71 

frequency of the structure under a constant sum of added damping coefficients. Aydin et al.31 72 

extended this approach to the transfer function amplitude in terms of the base shear force at the 73 

fundamental natural frequency. When sufficient amount of added damping is given, this method 74 
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provides a design with high safety margin since the structure performs elastically and the higher-75 

mode responses hardly contribute to the displacement responses. Akehashi and Takewaki32 extended 76 

the concept developed by Takewaki30 into higher modes and proposed the concept of ‘the n-th mode 77 

optimal damper placement’. At the same, it is also important to reduce floor acceleration responses in 78 

view of the damage of nonstructural components and facilities33-36. Moreover, in the case of high-rise 79 

buildings, the predominant periods of ground motions may coincide with the second, or third natural 80 

periods of the buildings. Therefore, both of the fundamental natural mode and the higher modes 81 

should be taken into account for damper designs.  82 

It is widely known that the transfer function-based design methods directly treat the system 83 

characteristics and need low computational load. However, most of recent researches on the optimal 84 

damper placement deal with time-domain optimization methods. This is because nonlinear responses 85 

of dampers and structures need to be treated and the performances of computers have been 86 

increasing. However, since the transfer function-based method still has an advantageous feature, an 87 

alternative optimization method using transfer functions is newly proposed in this paper. The purpose 88 

of the proposed method is to obtain designs which are effective for multi modes. Such designs will 89 

effectively reduce both elastic deformation responses and floor acceleration responses. Moreover, 90 

such designs may also be safe for large-amplitude ground motions. The amplification of the higher-91 

mode effect due to the elastic-plastic responses is unpredictable because it strongly depends on the 92 

nature of input ground motions and that of the structural design. However, if a design is not effective 93 

for the specified modes, the corresponding modes are largely amplified due to the elastic-plastic 94 

responses. Therefore, if an optimal design method using transfer functions for linear elastic models 95 

can realize designs which are effective for multi modes, such designs are expected to effectively 96 

reduce the elastic-plastic responses. 97 

In this paper, a new concept of ‘lower-bound transfer function (LBTF)’ and a new frequency-domain 98 

optimal damper design method are presented. LBTF expresses an ideal performance for response 99 

control in the frequency domain under the constant sum of added damping coefficients (or the total 100 

cost of dampers). The effectiveness of a damper design for each mode can be captured visually 101 

through plotting the transfer function amplitudes of the model and LBTF. An efficient generation 102 

method of LBTFs is also proposed. The proposed design method provides designs with multi-modal 103 

adaptability (effective for multi-modes). It does not require much computational load to implement 104 

the method since the optimization is conducted in the frequency domain and the first-order or second-105 

order sensitivities of the objective function can be derived analytically. The proposed design and the 106 

optimal damper placement for the fundamental mode are compared for shear-mass systems and 107 

moment-resisting frames through the transfer functions and incremental dynamic analysis (IDA)37. It 108 

is demonstrated that the proposed designs effectively reduce the floor acceleration responses, the 109 

elastic deformation responses. Moreover, it is shown that the proposed design can effectively reduce 110 

the elastic-plastic responses although the optimization is conducted for linear elastic models. 111 

 112 

 113 

 114 
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2. Optimization problem 115 

Takewaki30 treated an optimal viscous damper placement problem for a shear building structure with 116 

respect to the sum of the interstory drift amplitudes at the fundamental natural frequency of the 117 

structure under a constant sum of added damping coefficients. Since the sum of added damping 118 

coefficients is almost proportional to the total cost of added dampers, the constraint on the sum of 119 

added damping coefficients is almost equivalent to the constraint on the total cost of added dampers. 120 

When a sufficient amount of added damping is given, this method provides a design with high safety 121 

since the structure performs elastically and the higher-mode responses hardly contribute to the 122 

displacement responses. Akehashi and Takewaki32 extended the concept developed by Takewaki30 123 

into higher modes and proposed the concept of ‘the n-th mode optimal damper placement’. Both the 124 

fundamental natural mode and the higher modes should be taken into account for damper designs 125 

because the floor acceleration responses are directly related to the damage of the nonstructural 126 

components and facilities. Especially in the case of high-rise buildings, the predominant period of 127 

ground accelerations may coincide with the second or third natural period of the buildings. Moreover, 128 

in the case that the ground motion exceeds the level of the ground motion for the damper design, the 129 

structure performs inelastically and the higher-mode responses are amplified.  130 

In Section 2.1, the problems which Takewaki30 and Akehashi and Takewaki32 treated are explained 131 

briefly. In Section 2.2, a new concept of ‘lower-bound transfer function (LBTF)’ is proposed for the 132 

visualization of the effectiveness of a damper design for each mode and its generation method is 133 

explained. Figure 1a illustrates the concept of LBTF and the 1-3th mode optimal damper placements. 134 

LBTF expresses an ideal performance for response control in the frequency domain under a constant 135 

sum of added damping coefficients. For examples, when a design is effective for the fundamental 136 

natural mode but not effective for the 2, 3th modes, the amplitudes of the transfer function is plotted 137 

away from the LBTF near the 2, 3th natural frequencies. On the other hand, when a design is 138 

effective for multi modes, the transfer function is plotted near LBTF for a broader frequency range. 139 

Figure 1b shows an example of such designs. In Section 2.3, an optimization problem to obtain 140 

designs with multi-modal adaptability is formulated and its solution algorithm is presented. 141 

 142 
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 143 
 144 

Fig. 1 Concept of lower-bound transfer function (LBTF) and response control performance in frequency 145 
domain, (a) LBTF, (b) response control performance in frequency domain. 146 

 147 

 148 

2.1 Optimal damper placement with respect to sum of transfer function amplitudes at natural 149 

circular frequency 150 

Consider an N-story shear-mass system. Let 1( ,..., )T
Nc cc  and ( )i   denote the added damping 151 

coefficient vector and the transfer function of the i-th interstory drift, and 1( ,..., )T
Nδ   . The 152 

problem which Takewaki30 and Akehashi and Takewaki32 treated is described as follows. 153 

 154 

 155 

 156 

 157 
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[Problem] 159 

1

1

( ,..., )

ˆ| ( , ) |

( .)

0 (for 1,..., )

T
N

N
ii

T
c

U
i i

Find c c

so as to minimize f

W const
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c c i N
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



  


  


c

c

c 1

  ,                                       (1) 160 

where , ,U
c iW c 1  denote the sum of added damping coefficients, the upper bound of the damping 161 

coefficient added at the i-th story and the vector with 1 at every component. Takewaki30 adopted the 162 

undamped fundamental natural circular frequency 1  for the value of ̂  and Akehashi and 163 

Takewaki32 adopted the undamped 1-3th natural circular frequencies 1 2 3, ,   . It is noted that 164 

| ( |i   corresponds to the i-th steady-state intersroty drift under the harmonic excitation with single 165 

frequency ̂ . 166 

When the constraints on the upper bound of ic  are not included in the problem, the Lagrangian 167 

function L  for the problem is expressed by 168 

1 1 1( ... ) { ( ) ... ( )}c N c N NL f c c W c c            ,                   (2) 169 

where ,c i   are the Lagrange multipliers. From Eq. (2), the optimality criteria for the problem can 170 

be obtained by 171 

( / ) 0i c if c              ( 1,..., )i N ,      (3) 172 

1 ... N cc c W   ,                        (4) 173 

0, 0, 0i i i ic c            ( 1,..., )i N        (5) 174 

Takewaki30 developed an optimality criterion-based approach for the solution algorithm of the 175 

problem. Hereafter, the optimal design for the problem is designated by ( , )opt cWc  in place of 176 

ˆ( , )opt cWc   because the specified circular frequency ̂  is extended to all the frequency  . 177 

 178 
2.2 Importance of lower-bound transfer function (LBTF) and its generation method  179 

Let us define LBTF ( , )lb cf W  as follows. 180 
 181 

( , ) ( ( , ), )lb c opt cf W f W c               (6) 182 

Since ( , )opt cWc  is the optimal design for minimizing the sum of the transfer function amplitudes of 183 

the interstory drifts, ( , )lb cf W  is the lower bound of ( , )f c  for any damper designs with 184 

1 ... N cc c W   . In other words, the sum of the transfer function amplitudes of ( , )opt cWc  is 185 

tangent to LBTF ( , )lb cf W  only at the point where   coincides, the sum of the transfer function 186 

amplitudes runs above ( , )lb cf W  at any other points. Therefore, ( , )lb cf W  expresses an ideal 187 

performance for response control in the frequency domain under the constraint 1 ... N cc c W   . 188 
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The effectiveness of the damper design in the frequency domain should be judged through the 189 

comparison between the sum of the transfer function amplitudes and the corresponding LBTF. This 190 

is because the amount of cW  (or the total cost of dampers) greatly affects how small the amplitudes 191 

become. When the transfer function is plotted near LBTF for a broader frequency range, it indicates 192 

that the design is effective for multi modes. 193 

 194 

It is inefficient to repeat the optimization procedure and find ( , )opt cWc  as many as frequencies for 195 

obtaining LBTF. An efficient generation method of LBTF is explained below. 196 

Assume that ( , )opt cWc , which satisfies Eqs. (3)-(5), has been obtained. Since ( , )opt cW c  197 

must satisfy Eqs. (3), (4), the following equations must also be satisfied. 198 
 199 

2 2
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

  ( 1,..., )i N ,      (7) 200 

1 ... 0Nc c    ,             (8) 201 
 202 

Eq. (7) corresponds to Eq. (3) and Eq. (8) corresponds to Eq. (4). Then ig  is introduced to delete 203 

c  from Eq. (7). 204 
 205 

1

2 2 2 2

11
1 1

( )

0

i i

N
j ij
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

   ( 2,..., )i N ,     (9) 206 

 207 

Since 1 ... 0Ng g   , 2 ... 0Ng g     is required. The simultaneous formulation of 208 

2( ,..., )T
Ng g   0  and Eq. (8) leads to 209 

 210 
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       (10) 211 

 212 

By solving Eq. (10), ( , ) ( , )opt c opt cW W     c c c  can be obtained. It is noted that i  is set 213 

to zero when ic  is large enough. In the case that ic  is nearly zero or equal to zero, i ic c  is 214 
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calculated with 0i   first. If 0i ic c  , i  is updated so that i ic c  becomes zero. Figure 2 215 

represents the relation between ic  and i . The generation method of LBTF may be described as 216 

follows. 217 

 218 

[Algorithm] 219 

Step 1 Set the search range as L U    . Put 1i  . 220 

Step 2 Solve the problem expressed by Eq. (1) and obtain the optimal damper placement 221 

( , )opt i cW


c , where i
  is the i -th undamped fundamental natural circular frequency. 222 

Step 3 Set ( , )opt i cW


c  as an initial design, then solve Eq. (10) repeatedly to obtain the optimal 223 

designs and the corresponding transfer functions in the range of 1min{ , }U
i i 

      . 224 

Step 4 Set ( , )opt i cW


c  as an initial design, then solve Eq. (10) repeatedly to obtain the optimal 225 

designs and the corresponding transfer functions in the range of 1max{ , }L
i i 

      . 226 

When 1i  , the range is replaced with L
i

    . 227 

Step 5 If i n  , go to Step 6. Otherwise, put 1i i    and return to Step 2. 228 

Step 6 Select the design which exhibits the minimum value of f  at each  , then finalize the 229 

process. 230 

 231 

Figure 3 shows the search order of LBTF. It is noted that the added dampers can decrease the transfer 232 

function amplitudes near the natural circular frequencies. However, the added dampers hardly affect 233 

the transfer function amplitudes in the intermediate range between two adjacent natural circular 234 

frequencies 1,i i 
   . Although the search with ( , )opt i cW


c  as an initial design works well near 235 

i
 , it may lead to local optimal solutions in the intermediate range between 1,i i 

   , and the 236 

solutions obtained near 1i
   may not be global optimum. To avoid such unsuccessful search near 237 

1i
  , the initial design is changed n  times in the proposed method. As a result, the search is carried 238 

out multiple times in the specific frequency range. Therefore, the design which exhibits the minimum 239 

value of f  is selected in the Step 6. 240 

 241 
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 242 
 243 

Fig. 2 Relation between added damping coefficient ic  in i-th story and Lagrange multiplier i  244 

corresponding to constraint 0ic  . 245 

 246 

 247 
 248 

Fig. 3 Search order of LBTF. 249 

 250 

 251 

2.3 Design problem of damper placement effective for multi modes and its solution algorithm 252 

When the transfer function is close to the LBTF for a broader frequency range, such design has 253 

multi-modal adaptability. Consider the following problem to systematically obtain damper designs 254 

with multi-modal adaptability. 255 
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The objective function tff  for an integrated transfer function amplitude is an approximation of the 258 

integration of f  by the rectangle rule (Figure 4a). It is noted that it does not require much 259 

computational load to solve this problem since the optimization is conducted in frequency domain 260 

and the first-order or second-order sensitivities of the objective function can be derived analytically 261 

(the first-order or second-order sensitivities of f  have been derived by Takewaki30). This problem 262 

ic

i

0

2 31

f
lower-bound transfer function

UL2 31

f
lower-bound transfer function

UL 2 31

f
lower-bound transfer function

UL

search range for 2i  search range for 3i search range for 1i 



Akehashi and Takewaki                                                       Frequency‐domain Optimal Viscous Damper Placement 

  10
This is a provisional file, not the final typeset article 

can be solved by the algorithm proposed by Takewaki30. The algorithm is briefly explained here, 263 

although some expressions of the formulations are rewritten in a simpler manner. 264 

The first-order sensitivity of tff  is approximated by the following equation. 265 
 266 

2

1

Ntf tf tf
jj

i i j i

f f f
c

c c c c


  
  

   
c c c c

      ( 1,..., )i N      (12) 267 

Since the first-order sensitivity of tff  at the optimal solution is parallel to the normal vector of the 268 

hyperplane 1 ... N cc c W    (Figure 4b), the following equation is obtained. 269 

 270 

1/ ... /tf tf Nf c f c                           (13) 271 

The simultaneous formulation of 1 | 2 | |( / ) {( / ) ,..., ( / ) }T
tf tf tf Nf c f c f c         c c c c c c1 0  and 272 

1 ... 0Nc c     leads to 273 

 274 

2 2 2 2

2 2
1 2 1 21 1 2

1

2 2 2 2

2 2 2
11 11

01 1

tf tf tf tf tf tf

N N

tf tftf tf tf tf
N

NN N N

f f f f f f

c c c c c cc c c
c

f ff f f f c
c cc c c cc c

       
                                                      



  






               (14) 275 

 276 

By solving the Eq. (14) repeatedly and updating   c c c  ( : small positive number), the 277 

optimal solution is obtained. It is noted that, when 0jc   and 0j jc c   , all the elements 278 

regarding jc  are deleted from Eq. (14) and c  is modified. If 1 0c  , Eq. (14) is replaced with the 279 

simultaneous formulation of 2 | 3 | |( / ) {( / ) ,..., ( / ) }T
tf tf tf Nf c f c f c         c c c c c c1 0  and 280 

2 ... 0Nc c    . The optimal design for the problem is designated by tfc  (optimized for transfer 281 

function) hereafter. 282 

It should be noted that the H  optimization is one of the famous control theories in the frequency 283 

domain. The H  norm of the transfer function of the interstory drifts is expressed by 284 

 2
1

sup | ( ) |
N

ii 
   δ


   . The components of  δ   near the fundamental natural frequency 285 

and those of 2
1
| ( ) |

N
ii    are much larger than those in other range even if a sufficient amount of 286 

added damping is given. Therefore, the H  optimization of  δ   may not be always effective for 287 
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the higher modes. On the other hand, the proposed method aims at damper designs with multi-modal 288 

adaptability. 289 

 290 

      291 
                                       (a)                                                               (b) 292 

 293 
Fig. 4 Overview of optimization problem, (a) objective function, (b) relation between gradient of objective 294 

function and normal vector of hyperplane 1 ... N cc c W    (example for N=2). 295 

 296 

The formulations in Section 2.1-2.3 are applicable to the optimal damper placement for moment-297 

resisting frames by adding some modifications. Numerical examples for shear-mass systems are 298 

shown in Section 3, and numerical examples for moment-resisting frames are shown in Section 4. 299 

 300 

3. Numerical examples for shear-mass system 301 

In this section, 1( )opt c  and tfc  for shear-mass systems are compared through the transfer functions 302 

and incremental dynamic analysis (IDA)37. It is demonstrated that tfc  is effective for the multi 303 

modes, although 1( )optc   is effective only for the fundamental natural mode and not effective for the 304 

higher modes. In addition, it is shown that tfc  effectively reduces the elastic-plastic responses 305 

although the optimization is conducted without considering the nonlinearity of the structures. 306 

2 3 4( ), ( ), ( )opt opt optc c c    are shown in Appendix just for reference. 307 

Consider two shear building models of 12 stories with different story stiffness distributions.  Model 1 308 

has a trapezoidal distribution of story stiffnesses ( 1 12/ 2.5k k  ). Model 2 has the uniform story 309 

stiffness distribution at every four stories (1-4, 5-8, 9-12: stiffness ratio is 2:1.5:1 from the bottom). 310 

The undamped fundamental natural period of these two models is 1.2[s] and the structural damping 311 

ratio is 0.01 (stiffness proportional type).  All the floor masses have the same value 312 

( 3400 10 [kg]im   ). The common story height is 4[m]. In the IDA analyses, the common yield 313 

interstory drift yd  is set to 4/150 [m]. The story shear-interstory drift relation obeys the elastic 314 

perfectly-plastic rule. 315 

El Centro NS component during the Imperial Valley earthquake (1940) and Taft EW component 316 

during the Kern County earthquake (1952) are employed as representatives of ground motions of 317 

random nature. In addition, Rinaldi station fault-normal component during the Northridge earthquake 318 

2 31

f

UL

objective function

1c

2c

0

contour of obj. fun.
(quadratic form)

gradient of obj. fun.

1 2 cc c W 
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(1994) and Kobe University NS component during the Hyogoken-nanbu earthquake (1995) are 319 

employed as representatives of ground motions of pulse type. PGV (peak ground velocity) in the IDA 320 

analyses is increased from 0.2 [m/s] to 1.0 [m/s] by the increment 0.02 [m/s]. 321 

The sum of added damping coefficients is set to 720 10 [Ns/ m]cW    so that the fundamental-mode 322 

damping ratio by the dampers becomes about 0.10. 1 40.9 , 1.1 , 4, 1000L U n N         are 323 

employed for obtaining LBTF  and tfc . The search range is set to be slightly wider than the range 324 

between 1  and 4  because the peaks of the transfer function amplitudes do not always coincide 325 

with the undamped natural frequencies. The initial damper design for the search of 326 

1 4( ),..., ( )opt optc c   is set to 1 12( ) ( /12) [Ns / m]T
cc c W 1 . 1( )optc   is employed as the initial 327 

design for the search of tfc . 328 

Figures 5, 6 show the distributions of added damping coefficients of 1( ),opt tfc c  , the normalized 329 

sum of the transfer function amplitudes of the interstory velocities and normalized LBTFs. The 330 

transfer function amplitudes of the interstory velocities are plotted for visibility in place of those of 331 

the interstory drifts. In addition, the transfer function amplitudes and LBTFs are normalized so that 332 

the maximum value of LBTFs becomes one. It can be observed that the added dampers are placed to 333 

the specified stories for 1( )optc  , and the added dampers are placed to relatively many stories for tfc . 334 

Moreover, the transfer function amplitudes of 1( )optc   are away from LBTF near the higher-mode 335 

natural frequencies. However, the transfer function amplitudes are close to LBTF near 1 . On the 336 

other hand, the transfer function amplitudes of tfc  are close to LBTF for a broader frequency range.  337 

Figures 7-10 present the results of the IDA analyses. The distributions of the maximum interstory 338 

drifts and the distributions of the maximum floor accelerations are plotted for PGV = 0.2, 0.4, …, 1.0 339 

[m/s]. It can be observed that the models with 1( )optc   exhibit a large deformation concentration to 340 

specific stories for large PGVs although 1( )optc   effectively reduces the elastic deformation 341 

responses. This tendency is seen clearly in the cases of the pulse type ground motions. On the other 342 

hand, tfc  effectively reduces both the elastic and elastic-plastic deformation responses. Moreover, 343 

tfc  effectively reduces the floor acceleration responses although 1( )optc   does not. In the cases of 344 

1( )optc  , the floor acceleration responses become large because of the occurrence of the high 345 

frequency vibration components due to the elastic higher-mode responses and the inelastic responses. 346 

 347 
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 348 
 349 

Fig. 5 Comparison of 1( ),opt tfc c  (Model 1), (a) distributions of added damping coefficients, (b) 350 

normalized sum of transfer function amplitudes of interstory velocities. 351 
 352 

 353 
 354 

Fig. 6 Comparison of 1( ),opt tfc c  (Model 2), (a) distributions of added damping coefficients, (b) 355 

normalized sum of transfer function amplitudes of interstory velocities. 356 
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 357 

 358 
 359 

Fig. 7 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 360 
accelerations (Model 1), (a) El Centro NS component, (b) Taft EW component 361 

 362 

 363 
 364 

Fig. 8 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 365 
accelerations (Model 1), (a) Rinaldi Sta. FN component, (b) Kobe Univ. NS component. 366 
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 368 
 369 

Fig. 9 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 370 
accelerations (Model 2), (a) El Centro NS component, (b) Taft EW component 371 

 372 

 373 
 374 

Fig. 10 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 375 
accelerations (Model 2), (a) Rinaldi Sta. FN component, (b) Kobe Univ. NS component. 376 
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4 Numerical examples for moment resisting frame 380 

In this section, 1( )opt c  and tfc  for a moment-resisting frame are compared through the transfer 381 

functions and the IDA analyses. Consider a 10-story 3-bay steel moment-resisting frame. The 382 

common story height is 4 [m], and the common span length is 7 [m]. All the floor masses are 383 
3100 10 [kg] . To consider the vertical inertial forces, 3(100 / 6) 10 [kg]  is allocated to the top nodes 384 

of the corner columns, and 3(100 / 3) 10 [kg]  is allocated to the top nodes of the interior columns. 385 

W21201 and W21182 are employed as the sections of the columns in the 1-5th stories and those in 386 

the 6-10th stories. W33130 and W3099 are employed as the sections of the beams in the 1-5th 387 

stories and those in the 6-10th stories. The yield stress of the beams is 240 [N/mm2] and that of the 388 

columns is 320 [N/mm2]. The columns are designed so as to have the large values of the plastic 389 

moment compared with those of the beams. The column bases in the 1st story are fixed. Young’s 390 

modulus is set to 5 22.05 10 [N/ mm ] . The undamped fundamental natural period is 1.29 [s], and the 391 

structural damping ratio is 0.02 (stiffness proportional type).  392 

The linear viscous dampers with the K-type supporting braces are treated and the dampers can be 393 

installed at all the bays in all stories. The sum of added damping coefficients has been set so that the 394 

fundamental-mode damping ratio by the dampers becomes about 0.10. It is noted that the dampers 395 

are allocated symmetrically. 396 

The structural analysis software OpenSees is used to conduct the time-history response analysis for 397 

the elastic-plastic frame38. The P-delta effect of the columns and the corotational formulation of the 398 

beams are taken into account as the geometric nonlinearity. The material Steel01 with the strain 399 

hardening ratio 0.01 is applied to all the beams and the columns. The flanges of the H-shaped cross 400 

sections are modeled by 6 1  fibers, and the webs are also modeled by 6 1  fibers. All the ground 401 

motions adopted in Section 3 are used again.  402 

The parameters in the optimization algorithms are the same as those for the shear-mass systems. The 403 

following 3-type damper placements are employed as initial designs for the search of 404 

1 4( ),..., ( )opt optc c  : (i) uniform placement along height only in the center bay, (ii) uniform 405 

placement along height only in the side bays (no damper at the center bay), (iii) uniform placement 406 

along height in all the bays. As a result, the finally obtained designs have been the same for each 407 

natural frequency. 1( )optc   is employed as an initial design for the search of tfc  here again. 408 

Figure 11 shows the distributions of the added damping coefficients of 1( ),opt tfc c , the normalized 409 

sum of the transfer function amplitudes of the interstory velocities and normalized LBTF. It can be 410 

observed that the added damping of 1( )optc   concentrates to the 2-4, 6, 7th stories, and the added 411 

dampers are placed to relatively many stories for tfc . Since the member sections switch to the 412 

smaller ones beyond the 6th story and the column bases in the 1st story are fixed, the stiffnesses of 413 

those stories are relatively large. As a result, the dampers are not allocated to those stories in the case 414 

of 1( )optc  , and the dampers in those stories are relatively small in the case of tfc . It is noted that all 415 

the dampers in each floor are installed into only the center bay because the vertical deformations of 416 

the interior columns are smaller than those of the corner columns. It is pointed out that all the 417 

dampers are not always allocated to the center bay in the cases of 2 3 4( ), ( ), ( )opt opt opt  c c c  (see 418 
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Appendix). It can also be observed from Figure 11 that the transfer function amplitudes of 1( )optc   419 

are away from LBTF near the higher-mode natural frequencies although the transfer function 420 

amplitudes are close to LBTF near 1 . On the other hand, the transfer function amplitudes of tfc  are 421 

close to LBTF for a broader frequency range.  422 

Figures 12, 13 present the results of the IDA analyses. It can be observed that both of 1( )opt c  and 423 

tfc  effectively reduce the deformation responses under El Centro NS component, Rinaldi Sta. FN 424 

component and Kobe Univ. NS component. This results from the increase of the effectiveness of 425 

1( )optc   for the elastic-plastic responses. The nonlinearity of the story shear-interstory drift relation 426 

of the moment resisting frame is relatively small since the plastic hinges are not formed 427 

simultaneously in all the beams on the same floor. It leads to less amplification of the higher-mode 428 

effect due to the elastic-plastic responses than that in the cases of the shear-mass systems whose story 429 

shear-interstory drift relation obeys the elastic perfectly-plastic rule. In the case of Taft EW 430 

component, 1( )optc   does not effectively reduce the deformation responses in the upper stories. 431 

Moreover, tfc  reduces the floor acceleration responses especially under the ground motions of 432 

random nature more effectively than 1( )optc  . These result from the ineffectiveness of 1( )optc   for 433 

the higher modes. 434 

 435 

 436 

 437 
 438 

Fig. 11 Comparison of 1( ),opt tfc c  (moment-resisting frame), (a) distributions of added damping 439 

coefficients, (b) normalized sum of transfer function amplitudes of interstory velocities. 440 
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 442 
 443 

Fig. 12 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 444 
accelerations (moment-resisting frame), (a) El Centro NS component, (b) Taft EW component 445 

 446 

 447 
 448 

Fig. 13 IDA curves, distributions of maximum interstory drifts and distributions of maximum floor 449 
accelerations (moment-resisting frame), (a) Rinaldi Sta. FN component, (b) Kobe Univ. NS component. 450 
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5. Conclusions  454 

A new concept of ‘lower-bound transfer function (LBTF)’ and a new frequency-domain optimal 455 

damper design method were presented. The main conclusions can be summarized as follows.  456 

(1) A new concept of LBTF was proposed for visually capturing the effectiveness of damper design 457 

for each mode. LBTF expresses an ideal performance of response control in the frequency domain 458 

under the constant sum of added damping coefficients (or the total cost of dampers). When a 459 

damper design is effective for multi modes, the transfer function is plotted near the LBTF for a 460 

broader frequency range. On the contrary, when a design is not effective for some specified modes, 461 

the amplitudes of the transfer function is plotted away from the LBTF near the corresponding 462 

natural frequencies.  463 

(2) An efficient generation method of LBTFs was presented. In the proposed method, the distribution 464 

of added damping coefficients is continuously changed so that the optimality criteria are always 465 

satisfied.  466 

(3) An optimization problem was formulated to obtain designs with multi-modal adaptability and its 467 

solution algorithm was presented. It does not require much computational load to solve the problem 468 

since the optimization is conducted in the frequency domain and the first-order or second-order 469 

sensitivities of the objective function can be derived analytically.  470 

(4) The proposed design tfc  for the optimized transfer function and the fundamental mode optimal 471 

damper placement 1( )optc   for shear-mass systems and moment-resisting frames were compared 472 

through the transfer functions and the IDA analyses. It was demonstrated that 1( )optc   is effective 473 

for the fundamental natural mode but not effective for the higher modes. In addition, models with 474 

1( )optc   may exhibit large deformation concentration in specific stories for large PGV although 475 

1( )optc   effectively reduces the elastic deformation responses. On the other hand, tfc  is effective 476 

for multi modes, and effectively reduces the floor acceleration responses and the elastic and elastic-477 

plastic deformation responses.  478 

(5) In the case of a moment-resisting frame, the amplification of the higher-mode effect due to the 479 

elastic-plastic responses is smaller than that in shear-mass systems whose story shear-interstory 480 

drift relation obeys the elastic perfectly-plastic rule. It leads to the increase of the effectiveness of 481 

1( )optc   for the elastic-plastic deformation responses. Both 1( )opt c  and tfc  can effectively 482 

reduce the elastic and elastic-plastic deformation responses. However, 1( )optc   is not effective for 483 

the higher modes as in the case of shear-mass systems. Therefore, tfc  reduces the floor acceleration 484 

responses more effectively than 1( )optc  . 485 
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 581 

 582 

Appendix 583 

Figures A1, A2 illustrates the distributions of the added damping coefficients of 584 

2 3 4( ), ( ), ( )opt opt optc c c    and the corresponding normalized transfer function amplitudes for Model 585 

1, 2 (shear-mass system). Normalized LBTFs are also plotted. Figure A3 shows those for the 586 

moment-resisting frame. It can be observed that the transfer function amplitudes are close to LBTFs 587 

near the corresponding natural circular frequencies. Unlike the case of 1( )optc  , the dampers are 588 

allocated into not only the center bay but also the side bays for the moment-resisting frame. In other 589 

words, the vertical displacements of the nodes (outer nodes) do not always decrease the effectiveness 590 

of the dampers in the cases of the higher modes. The allocation of the dampers into the side bays may 591 

be more effective than the allocation into the center bay due to the relation between the directions of 592 

the lateral displacements and that of the vertical displacements of the nodes.  593 
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 594 

 595   596 

Fig. A1 Comparison of 2 3 4( ), ( ), ( )opt opt optc c c    (Model 1), (a) distributions of added damping 597 

coefficients, (b) normalized sum of transfer function amplitudes of interstory velocities. 598 

 599 

 600   601 

Fig. A2 Comparison of 2 3 4( ), ( ), ( )opt opt optc c c    (Model 2), (a) distributions of added damping 602 

coefficients, (b) normalized sum of transfer function amplitudes of interstory velocities. 603 
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 605 
 606 

Fig. A3 Comparison of 2 3 4( ), ( ), ( )opt opt optc c c    (moment resisting frame), (a) distributions of added 607 

damping coefficients, (b) normalized sum of transfer function amplitudes of interstory velocities. 608 
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