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We show that the lowest-energy solution of the Hartree–Fock–Bogoliubov (HFB) equation has
even particle-number parity as long as the time-reversal symmetry is conserved in the HFB
Hamiltonian without null eigenvalues. Based on this finding, we give a rigorous foundation
for a method for solving the HFB equation to describe the ground state of odd-mass nuclei
by employing a time-reversal antisymmetric constraint operator to the Hamiltonian, where one
obtains directly the ground state as a self-consistent solution of the cranked-HFB-type equation.
Numerical analysis is performed for the neutron-rich Mg isotopes with a reasonable choice for
the operator, and it is demonstrated that the anomalous increase in the matter radius of 37Mg is
well described when the last neutron occupies a low-angular-momentum orbital in the framework
of the nuclear energy density functional method, revealing the deformed halo structure.
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1. Introduction

Odd-mass nuclei, composed of an odd number of nucleons, display unique features that one cannot
observe in even–even nuclei. Even–even nuclei, for instance, have spin J π = 0+ in the ground
state, where nucleons are paired off due to the correlation, while odd-mass nuclei have nonzero
ground-state spin, where the last nucleon does not take part in the pair correlation and is responsible
for the total spin. The spin gives us information on the single-particle orbitals near the Fermi level.
With the increase in structure information on unstable nuclei thanks to recent advancements in
radioactive-isotope beam technology [1], more and more exotic features in odd-mass nuclei have
been showing up. Highlights in the latest discoveries include the shape staggering in 181–185Hg [2],
and the deformed halo structures of 31Ne [3,4] and 37Mg [5,6]. A great theoretical challenge under
these circumstances is to describe odd-mass nuclei in a wide mass region of the nuclear chart, where
the pair correlation, shape deformation, and weak binding of nucleons are all considered in a unified
manner.

Nuclear density-functional theory (DFT) or the self-consistent mean-field model have been exten-
sively employed for describing the systematic features of both ground and excited states [7,8]. The
nuclear landscape has been investigated in the framework of both non-relativistic and relativistic
energy-density functional (EDF) methods [9,10]. The Hartree–Fock–Bogoliubov (HFB) theory or
the Kohn–Sham–Bogoliubov–de Gennes scheme in DFT is capable of providing a unified description
of the ground-state properties for both even–even nuclei and odd-mass nuclei taking superfluidity and
shape deformation into account [11]. In spite of the successful application of DFT, the calculations
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have been mostly restricted to even–even nuclei, and odd-mass nuclei remain largely unexplored [12].
This may be partly because the primary interest has been on determining the drip lines [13]. With the
recent advent of computational resources sufficient to perform global calculations in the framework
of DFT, systematic odd–even alternations in atomic nuclei such as the odd–even staggering of the
binding energies have attracted renewed interest [14].

There seem to be many obstacles to tackling the systematic investigation of odd-mass nuclei in
DFT, some of which are:

(1) The coexistence of multiple levels at low energy: to excite even–even nuclei we have to
break at least one pair of nucleons whose binding energy is of the order of 1–2 MeV, whereas
for odd-mass nuclei an excitation can be achieved by putting up the last nucleon by a few
hundred keV. As a result, one-quasiparticle and phonon states appear in the low-excitation
energy and they can admix with one another [15], and thus the HFB describes the ground state
of even–even nuclei better. High-precision calculation with high accuracy is also required for
resolving the near degeneracy of several levels and identifying the ground state for odd-mass
nuclei. This is not restricted to DFT but is a challenge for any theoretical model.

(2) Non-vanishing time-odd densities: an EDF is a time-even scalar constructed from various
densities, and includes the densities and currents that are odd with respect to time reversal to
preserve the Galilean or Lorentz invariance and to properly describe, e.g., the spin-dependent
observables. While the time-odd densities and the related time-odd fields automatically vanish
for the ground state of even–even nuclei, they are nonzero in odd-mass nuclei where the
time-reversal symmetry is intrinsically broken [7]. Allowing the breaking of time-reversal
symmetry increases the computational cost [16]. Furthermore, the EDFs commonly used in
practical calculations are phenomenologically constructed by using the properties of time-
even states only. Thus, in the non-relativistic case, the coupling constants of time-odd fields
are highly uncertain. In the relativistic case, on the other hand, the coupling constants of
time-odd fields are defined from those of time-even fields through the Lorentz invariance, so
there are no such uncertainties [17–20].

(3) Complexity of the blocking procedure: one cannot usually obtain the ground state of odd-
mass nuclei as the lowest-energy solution, so we need an additional procedure to excite
one quasiparticle on top of the ground state of even–even nuclei [21]. Therefore, pragmatic
techniques are needed in an actual calculation [22,23].

We are going to focus on (3).
In this study, we investigate the non-relativistic case and show that the Bogoliubov transformation,

the particle-number parity, and the time-reversal symmetry in HFB are closely related to one another.
From these findings, we can give a rigorous foundation for a method initiated by Bertsch et al. [24]
to describe the ground state of an odd-particle system as the lowest-energy state under an appropriate
time-odd constraint in HFB theory. This method has a high affinity with DFT in the sense that either
an odd-particle system or an even-particle system is described as the ground state uniformly. We
apply this method to the neutron-rich Mg isotopes near the drip line and demonstrate that it produces
the exotic behavior in radii observed experimentally.

The article is organized as follows. In Sect. 2, after recapitulating the basics of HFB theory, the
relationships among the Bogoliubov transformation, the particle-number parity, and the time-reversal
symmetry are presented. In Sect. 3, based on the relationships found in Sect. 2, we give the foundation
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for a method describing the ground-state of odd-mass nuclei under a time-odd constraint. In Sect. 4
we give a numerical procedure for describing weakly bound neutron-rich nuclei by employing the
non-relativistic Skyrme-type EDF with the inclusion of the time-odd fields. Then, the results of the
numerical analysis for Mg isotopes are presented. Finally, a summary is given in Sect. 5.

Part of the preliminary results of this work are reported in Ref. [25].

2. Hartree–Fock–Bogoliubov theory for even- and odd-particle systems
2.1. Basics of HFB theory

We begin by recalling the basics of HFB theory. The notation used here follows Ref. [11]. The Bogoli-
ubov quasiparticle (qp) creation and annihilation operators β̂

†
k , β̂k are defined as linear combinations

of the single-particle (sp) creation and annihilation operators ĉ†
k , ĉk :

β̂
†
k =

∑
l

(Ulk ĉ†
l + Vlk ĉl), (1)

where the indices k and l run over the whole configuration space (k = 1, . . . , M ). Since we consider
spin-1/2 particles, M is an even number. The Bogoliubov transformation between the qp and sp
bases is represented by the 2M × 2M matrix

W :=
(

U V ∗
V U ∗

)
(2)

as (
β̂

β̂†

)
=W†

(
ĉ
ĉ†

)
. (3)

In order to satisfy the fermion anticommutation relations for quasiparticles, W must be unitary:
W†W = WW† = I2M , with In representing the n × n identity matrix. The ground state wave
function of the many-body system in HFB theory, or the HFB vacuum, |�〉, is defined as the vacuum
of the quasiparticles:

β̂k |�〉 = 0 for all k . (4)

The complete information about |�〉 is contained by the density matrix ρkl := 〈�|ĉ†
l ĉk |�〉 =

(V ∗V T)kl and pairing tensor κkl := 〈�|ĉl ĉk |�〉 = (V ∗U T)kl , or by the generalized density matrix

R :=
(

ρ κ

−κ∗ 1− ρ∗

)
=W

(
OM OM

OM IM

)
W†, (5)

where On represents the n × n zero matrix. The unitarity of W guarantees that R is idempotent:
R2 = R. Under the idempotency of R, the variational principle with a constraint on the expectation
value of the particle number, δ 〈�|Ĥ − λN̂ |�〉 = 0, where Ĥ , N̂ , and λ are the Hamiltonian of the
system, the particle-number operator, and the chemical potential, respectively, leads R to commute
with the HFB Hamiltonian

H :=
(

h− λIM 	

−	∗ −h∗ + λIM

)
, (6)
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where hkl := δ 〈�|Ĥ |�〉 /δρlk and 	kl := δ 〈�|Ĥ |�〉 /δκ∗kl are the sp and pair Hamiltonian, respec-
tively. It follows that R and H are simultaneously diagonalized, and thus the HFB equations are
represented in a matrix form as

(
h− λIM 	

−	∗ −h∗ + λIM

)(
U V ∗
V U ∗

)
=
(

U V ∗
V U ∗

)(
E 0
0 −E

)
, (7)

or

W†HW = E , (8)

where E := diag(E,−E) and E is a diagonal matrix of qp energies Ek . Note that the HFB Hamiltonian
inherently has the particle–hole symmetry:


xH∗
x = −H, (9)

where


x :=
(

0 1
1 0

)
⊗ IM =

(
OM IM

IM OM

)
.

It follows that when ϕk is an eigenvector of H with eigenvalue Ek , 
xϕ
∗
k is also an eigenvector

with eigenvalue −Ek . Thus, the eigenvalues of H always come in pairs of opposite sign, but the
theory says nothing about the individual signs of Ek . Therefore, we have to choose for each k
(k = 1, . . . , M ) whether to take Ek positive or negative. This choice for the solution of the HFB
equations in superfluid systems corresponds to the choice of “occupied” or “unoccupied” orbits for
the solution of the Hartree–Fock (HF) equations in normal systems. A naïve choice to describe the
ground state of the system is to take all Ek positive, as in the HF case the ground state is obtained
by filling sp levels from below. Indeed, the state obtained by this choice has the lowest energy in
the sense that all the qp excitations cost positive energies. As will be seen below, however, the state
is not always the ground state of the system with the desired particle-number parity [26]. We shall
therefore call the state obtained by taking all Ek positive the lowest-energy state, as distinct from
other choices, and the ground state with the proper particle-number parity.

2.2. Particle-number parity and the Bogoliubov transformation

We first show a relationship between the particle-number parity πN and the Bogoliubov transforma-
tion matrix W . The famous theorem of Bloch and Messiah says that a unitary matrix W of the form
in Eq. (2) can always be decomposed into three matrices of very special form [27]:

W =
(

D 0
0 D∗

)(
Ū V̄
V̄ Ū

)(
C 0
0 C∗

)
. (10)
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Here, C and D are unitary matrices, and Ū , V̄ are real matrices of the general form

Ū =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ON1

Ū (1) 0
Ū (2)

. . .

0 Ū (N2)

IN3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, V̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

IN1

V̄ (1) 0
V̄ (1)

. . .

0 V̄ (N2)

ON3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(11)

where N3 = M − N1 − 2N2, and Ū (p), V̄ (p) are 2× 2 matrices of the form

Ū (p) =
(

up 0
0 up

)
, V̄ (p) =

(
0 vp

−vp 0

)
(p = 1, 2, . . . , N2), (12)

where up and vp satisfy the conditions up > 0, vp > 0, u2
p + v2

p = 1 (p = 1, 2, . . . , N2). One
can explicitly construct the HFB vacuum |�〉 in terms of the so-called canonical basis defined as
â†

k =
∑

l Dlk ĉ†
l [11]:

|�〉 =
N1∏
i=1

â†
i

N2∏
p=1

(up + vpâ†
pâ†

p̄) |0〉. (13)

Here, |0〉 is the empty state defined as ĉk |0〉 = 0 for all k . The index p̄ represents an orbital paired
with the orbital p, and N2 indicates the maximum number of pairs in |�〉. N1 represents the number of
unpaired particles, and corresponds to the seniority number in the quasi-spin theory [28]. Depending
on whether N1 is even or odd, |�〉 is a superposition of states with either even or odd particles,
but never both. This means that the HFB vacuum |�〉 is an eigenstate of the operator P̂N = eiπ N̂ ,
where N̂ is the particle-number operator. The eigenvalue πN = (−1)N1 is a good quantum number,
called the particle-number parity, or the number parity for short [29]. Note that the number parity
has nothing to do with the average particle number 〈�|N̂ |�〉, which can be even, odd, or fractional,
depending on the value of the chemical potential λ in Eq. (6).

Taking the determinant of both sides of Eq. (10), we obtain

det W = det

(
D 0
0 D∗

)
det

(
Ū V̄
V̄ Ū

)
det

(
C 0
0 C∗

)
= |det D|2 det(Ū + V̄ ) det(Ū − V̄ ) |det C|2

= det

{
diag

[
IN1 ,

(
u1 v1

−v1 u1

)
,

(
u2 v2

−v2 u2

)
, . . . ,

(
uN2 vN2

−vN2 uN2

)
, IN3

]

× diag

[
−IN1 ,

(
u1 −v1

v1 u1

)
,

(
u2 −v2

v2 u2

)
, . . . ,

(
uN2 −vN2

vN2 uN2

)
, IN3

]}

= det

(
−IN1 0

0 IM−N1

)
= (−1)N1, (14)
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where we used the fact that C and D are unitary matrices, and

(
up vp

−vp up

)(
up −vp

vp up

)
=
(

u2
p + v2

p 0
0 u2

p + v2
p

)
=
(

1 0
0 1

)
(p = 1, 2, . . . , N2).

Equation (14) shows that det W is nothing less than the number parity:

πN = det W . (15)

Before continuing, we give a useful formula that relates the number parity πN to the HFB Hamil-
tonian H and the qp energies Ek . The fact that the determinant of W is either +1 or −1 implies that
W can be unitarily transformed into an orthogonal matrix. In fact, by use of the unitary matrix

X = 1√
2

(
1 1
i −i

)
⊗ IM , (16)

W is transformed into a real orthogonal matrix:

WX := XWX † =
(

Re(U + V ) Im(U + V )

− Im(U − V ) Re(U − V )

)
. (17)

In the same way, the HFB Hamiltonian H is transformed into a pure-imaginary skew-symmetric
matrix:

HX := XHX † = i

(
Im(h′ +	) −Re(h′ −	)

Re(h′ +	) Im(h′ −	)

)
, (18)

where h′ := h− λIM . Then the HFB equations in Eq. (8) are rewritten as follows:

WT
X HX WX = EX , (19)

where

EX := XEX † = −i

(
0 E
−E 0

)
. (20)
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Since both sides of Eq. (19) are 2M × 2M skew-symmetric matrices, we can take Pfaffian1 of
each side. Using the properties of the Pfaffian (pf (WT

X HX WX ) = det WX pf HX and pf EX =
(−1)M (M−1)/2 det(−iE)) we obtain

det WX pf HX = (−1)M (M−1)/2 det(−iE).

Since M is an even number, E = diag(E1, E2, . . . , EM ), and det WX = det W , it follows that

det W pf HX =
M∏

k=1

Ek . (21)

Thus, we arrive at a useful relation between the number parity πN , the HFB Hamiltonian H, and the
qp energies Ek :

πN pf HX =
M∏

k=1

Ek . (22)

We emphasize that Eq. (22) is a general relation that holds regardless of the signs of Ek . For the
lowest-energy state, the right-hand side of Eq. (22) is positive by definition. Therefore, the number
parity of the lowest-energy state, πLE

N , depends only on the sign of pf HX :

πLE
N = sgn pf HX . (23)

Note that an equivalent formula to Eq. (23) is obtained in Ref. [32] to investigate topological properties
of a one-dimensional superfluid system.

2.3. Symmetries in HFB theory

Before investigating the time-reversal symmetry of the HFB Hamiltonian, we discuss a general prop-
erty of the symmetry in HFB theory. Since the HFB equations are nonlinear, the HFB Hamiltonian
H does not necessarily hold the same symmetries as the Hamiltonian of the system Ĥ . Nevertheless,
certain symmetries are still conserved in HFB theory. Such symmetries are called self-consistent
symmetries, and they often significantly reduce the dimension of the eigenvalue problem [33].

1 For a 2n× 2n skew-symmetric matrix A with matrix elements aij, the Pfaffian of A is defined as

pf (A) = 1

2nn!
∑
σ∈S2n

sgn(σ )aσ(1)σ (2)aσ(3)σ (4) · · · aσ(2n−1)σ (2n),

where S2n is the set of permutations on 2n elements. Pfaffians have the following properties:
For a 2n× 2n skew-symmetric matrix A,

(pf A)2 = det A.

For a 2n× 2n skew-symmetric matrix A and an arbitrary 2n× 2n matrix B,

pf (BTAB) = det B pf A.

For an arbitrary n× n matrix C,

pf
(

0 C
−CT 0

)
= (−1)n(n−1)/2 det C.

For the proof of these properties and more details on the Pfaffian, see, e.g., Ref. [30] and the appendix of
Ref. [31].
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Consider a symmetry transformation realized by a unitary or anti-unitary operator Ûs which maps
the sp space into itself by a M ×M unitary matrix Us:

Û †
s ĉk Ûs =

∑
l

Us kl ĉl , (24)

or in the 2M -dimensional space,

Û †
s

(
ĉ
ĉ†

)
Ûs =

(
Us 0
0 U ∗s

)(
ĉ
ĉ†

)
= Us

(
ĉ
ĉ†

)
, (25)

where Us := diag(Us, U ∗s ) is a 2M × 2M unitary matrix. Under the transformation |�〉 → Ûs |�〉,
the generalized density matrix R transforms as2

R→ (UsRU†
s )(∗). (26)

Here, (· · · )(∗) denotes that the complex conjugate is taken if Ûs is an anti-unitary operator. Assuming
that Ûs is a symmetry operator of the system, that is [Ĥ , Ûs] = 0, we find that the HFB Hamiltonian
H transforms in the same way as the generalized density matrix R:

H→ (UsHU†
s )(∗). (27)

Now suppose that the HFB vacuum |�〉 is invariant up to a phase under the operation Ûs, i.e. Ûs is
a symmetry operator of the intrinsic system; it follows that

H = (UsHU†
s )(∗). (28)

When Ûs is a unitary operator, it leads to [H, Us] = 0. This indicates that the HFB Hamilton-
ian H is block diagonalized with respect to the conserved quantum numbers associated with the
transformation Ûs.

In particular, we are interested in such a Ûs generated by a Hermitian particle–hole one-particle
operator Ŝ = ∑kl Skl ĉ

†
k ĉl: Ûs = eiθ Ŝ or eiθ Ŝ K̂ , where θ is a real parameter and K̂ is the complex

conjugation operator which leaves the sp basis |k〉 = c†
k |0〉 invariant: K̂ |k〉 = |k〉. In this case,

Us = eiθS . In particular, when Ûs = eiθ Ŝ , Eq. (28) leads to[
H,

(
eiθS 0

0 e−iθS∗

)]
= 0. (29)

If this holds for an arbitrary θ , one sees[
H,

(
S 0
0 −S∗

)]
= 0. (30)

Note that since the HFB vacuum is always an eigenstate of the number parity operator P̂N = eiπ N̂ ,
Eq. (29) reduces to a trivial commutation relation [H,−I2M ] = 0 when Ŝ = N̂ and θ = π .

The HFB equations achieve self-consistency between the densities and the potentials by an iterative
process. We are going to discuss here whether the intrinsic symmetry defined in Eq. (28) is affected

2 Note the property of an anti-unitary operator �̂: (〈�| �̂†) Ô (�̂ |�〉) = (〈�|(�̂†Ô�̂)|�〉)∗.
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by the iterations. From Eqs. (26) and (27) the HFB Hamiltonian has the following property as a
functional of the generalized density matrix R for a symmetry Ûs of the system, as in the case of
HF: (

UsH[R]U†
s

)(∗) = H
[
(UsRU†

s )(∗)
]
. (31)

This means that if the initial density R(0) has a certain symmetry, then the mean-field Hamiltonian
H[R(0)] for the first step of the iteration has it too. The density R(1) for the next step is found
by diagonalization of H[R(0)], hence the same symmetry holds. In each step of the iteration, the
intrinsic symmetry is thus conserved. Note that the average particle number is fixed at the desired
value by adjusting the chemical potential λ in H throughout the iterations.

2.4. Time-reversal symmetry and number parity

Using the results obtained above, we show that the time-reversal symmetry of the HFB Hamiltonian
and the number parity of the HFB vacuum are directly related to each other.

Let us consider the case when the HFB Hamiltonian has time-reversal symmetry. Paying attention
to the anti-unitarity of the time-reversal operator T̂ = exp(−iπ Ŝy)K̂ , where Ŝy is the y-component
of the total spin operator, we have the following equality relation from Eq. (28):

H = T H∗T T, (32)

where

T :=
(

T 0
0 T

)
, T := e−iπSy = IM/2 ⊗−iσy =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1
1 0 0

0 −1
1 0

. . .

0 0 −1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (33)

It follows that when ϕk is an eigenvector of H with eigenvalue Ek , the time-reversed state T ϕ∗k
is an independent eigenvector of H with the same eigenvalue Ek . In other words, ϕk and T ϕ∗k are
degenerate, i.e. the Kramers degeneracy shows up. Since the particle–hole symmetry in Eq. (9)
is always kept in HFB theory, 
xϕ

∗
k and 
xT ϕk are also Kramers-degenerate eigenvectors with

eigenvalue −Ek . Therefore, a specific solution of the HFB equations is constructed as follows:

W̃ =
(

Ũ Ṽ ∗
Ṽ Ũ ∗

)
, (34)

Ũ =
(

u1 Tu∗1 u2 Tu∗2 · · · uM/2 Tu∗M/2

)
, (35)

Ṽ =
(

v1 Tv∗1 v2 Tv∗2 · · · vM/2 Tv∗M/2

)
, (36)

where ϕk =
( uk

vk

)
, T ϕ∗k =

( Tu∗k
Tv∗k

)
, 
xϕ

∗
k =

( v∗k
u∗k

)
, and 
xT ϕk =

( Tvk
Tuk

)
are orthonormal eigenvectors

of H with eigenvalues Ek , Ek , −Ek , and −Ek , respectively. Here, we take all Ek non-negative
without loss of generality. The orthogonality of ϕk and T ϕ∗k is ensured as ϕ

†
k T ϕ∗k = (ϕ

†
k T ϕ∗k )T =
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ϕ
†
k T Tϕ∗k = −ϕ

†
k T ϕ∗k = 0. If Ek 
= 0, ϕk is orthogonal to 
xϕ

∗
k because they are eigenvectors of the

same Hermitian matrix with different eigenvalues, and even if Ek = 0, it is possible to redefine ϕk

to be orthogonal to 
xϕ
∗
k by mixing ϕk and T ϕ∗k . Thus, W̃ is a unitary matrix. In addition, we find

that W̃ is a symplectic matrix; that is, it satisfies

W̃TT W̃ = T . (37)

This is shown as follows: Multiplying both sides of Eq. (35) by T from the left and T T from the
right, we get

TŨT T = T
(

u1 Tu∗1 u2 Tu∗2 · · · uM/2 Tu∗M/2

)
T T

=
(

Tu1 −u∗1 Tu2 −u∗2 · · · TuM/2 −u∗M/2

)
T T

=
(

u∗1 Tu1 u∗2 Tu2 · · · u∗M/2 TuM/2

)
= Ũ ∗.

In the same way, one obtains TṼ T T = Ṽ ∗. Thus, it follows that

T W̃T T = W̃∗. (38)

Then, multiplying both sides of Eq. (38) by W̃T from the left and T from the right, and using the
fact that W̃ is a unitary matrix and T is an orthogonal matrix, we obtain Eq. (37). It is known that the
determinant of any symplectic matrix is+1.This is easily shown through the use of Pfaffian: taking the
Pfaffian of both sides of Eq. (37), it follows that det W̃ pf T = pf T , and since pf T = (−1)M 
= 0,
one sees

det W̃ = +1. (39)

Now the HFB equations are written as

W̃†HW̃ = Ẽ , (40)

where Ẽ = diag(Ẽ,−Ẽ) and Ẽ = diag(E1, E1, E2, E2, . . . , EM/2, EM/2). From Eqs. (21) and (39) we
have

pf HX =
M/2∏
k=1

E2
k . (41)

It follows that pf HX ≥ 0, with equality if Ek = 0 for at least one k . This, together with Eq. (23),
means that the lowest-energy solution of the HFB equations has even number parity as long as the
time-reversal symmetry is conserved in the HFB Hamiltonian with no null eigenvalues.

Next, we show that the lowest-energy state is not well defined when the HFB Hamiltonian has null
eigenvalues. A general solution of the HFB equations under the time-reversal symmetry is obtained
by

W = W̃Z , (42)

10/27

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/1/013D

01/5981141 by Kyoto U
niversity user on 12 O

ctober 2022



PTEP 2021, 013D01 H. Kasuya and K. Yoshida

where Z is a 2M × 2M unitary matrix which consists of the unitary transformations containing
the permutation of columns as well as the phase transformation and mixing of the degenerate qp
states. From Eqs. (15), (39), and (42), the number parity of the state under consideration is now
given by πN = det Z . Only the permutation of the kth and (M + k)th columns (k ≤ M ), that is,
a quasi-particle state with eigenvalue Ek and the corresponding quasi-hole state with eigenvalue
−Ek , changes the number parity. This is because, for W to be written in the form of Eq. (2), the
permutation of the kth and lth columns (k < l ≤ M ) accompanies the permutation of the (M + k)th
and (M + l)th columns, and no other permutations except that of the kth and (M + k)th columns are
allowed. For the lowest-energy state, however, the permutation of the quasi-particle and quasi-hole
states is permitted only if Ek = 0, because the permutation means swapping of Ek and−Ek and goes
against the definition of the lowest-energy state unless Ek = 0. When Ek = 0, any mixing of ϕk ,
T ϕ∗k , 
xϕ

∗
k , and 
xT ϕk , or the kth, (k + 1)th, (M + k)th, and (M + k + 1)th columns, is allowed

for the lowest-energy state since they are all degenerate, and such a mixing can change the number
parity of the lowest-energy state as discussed above. Therefore, we cannot uniquely determine the
lowest-energy state with a specific number parity when the HFB Hamiltonian has null eigenvalues.

Finally, we would like to make sure that the above conclusion is not broken via nonlinear effects.
If the HFB Hamiltonian does not have null eigenvalues, there is no mixing between quasi-particle
and quasi-hole states for the lowest-energy state. Thus, the lowest-energy solution WLE is written
as

WLE = W̃
(

X 0
0 X ∗

)
, (43)

where X is a M × M unitary matrix. Then, det WLE = |det X |2 = +1, and we get the above
conclusion again: the lowest-energy solution of the HFB equation has even number parity as long
as the time-reversal symmetry is conserved in the HFB Hamiltonian without null eigenvalues. From
Eq. (5), the generalized density matrix for the lowest-energy state is obtained by

RLE =WLE

(
OM OM

OM IM

)
W†

LE = W̃
(

OM OM

OM IM

)
W̃†. (44)

From Eq. (38), this RLE has the time-reversal symmetry:

T R∗LET T = RLE. (45)

Therefore, from the discussion in Sect. 2.3, the lowest-energy state constructed as Eq. (43) has even
number parity at each step of the iteration.

3. Methodology for describing odd-mass nuclei

We demonstrated above that the lowest-energy state is always an even number-parity state, that is,
an even particle system, in HFB theory as long as the time-reversal symmetry is conserved for the
intrinsic Hamiltonian. The procedure called the blocking method, which has conventionally been
used to describe an odd number-parity state [12,21,34], can be viewed as follows: One solves the
time-reversal symmetric HFB equations to generate a reference state with det W = +1, and then
swaps one set of columns of W to obtain a state whose determinant sign is reversed. Alternatively,
one can use the strategy of describing an odd number-parity state as the lowest-energy state under
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the constraint which breaks time-reversal symmetry. The difference between our method and the
blocking method is explained in Eq. (22). In the blocking method, to change the number parity πN

one replaces Ek by −Ek for a certain k on the right-hand side of Eq. (22), leaving pf HX as it is.
In our method, on the other hand, we change the sign of pf HX by a time-odd constraint while
keeping the sign of the right-hand side to change πN . The idea of obtaining odd-mass nuclei by such
a constraint was proposed by Bertsch et al., stimulated by the non-collective cranking method [24].
In what follows, we generalize this approach and encapsulate the essential point of this method.

Assuming that the intrinsic system is invariant under any unitary transformation generated by
a Hermitian time-odd particle–hole-type one-body operator, Ŝ = ∑ij Sijc

†
i cj with S† = S, and

TS∗T T = −S. For example, the z-component of the total angular momentum Ĵz can be employed as
Ŝ for an axially symmetric system around the z-axis. Since Ŝ is a symmetry of the intrinsic system,
the mean-field representation of Ŝ commutes with the HFB Hamiltonian H [see Eq. (30)]:

[H, S] = 0, (46)

where

S =
(

S 0
0 −S∗

)
. (47)

Introducing a Lagrange multiplier λs to fix the expectation value of Ŝ along with the chemical
potential λ, we consider the variational principle

δ 〈Ĥ − λN̂ − λsŜ〉 = 0. (48)

This then gives the HFB Routhian

H′ = H− λsS. (49)

From the commutation relation in Eq. (46), H can be block diagonalized for each eigenvalue of S.
Since S is proportional to the identity matrix in each block, the eigenvalues of H′ are linearly shifted
from those of H. Then, as shown below, the sign of pf H′X can change according to λs, and thus the
number parity of the lowest-energy state can vary from positive to negative.

Because of the time-odd character of Ŝ, the eigenvalues of S always come in pairs of opposite
signs. Let {x±α

n }n=1,2,... be sets of orthonormalized eigenvectors of S with eigenvalues ±ωα (α > 0,
ωα > 0), where n is a label that distinguishes states other than α. Then,{(

xα
n

0

)
,

(
0

x−α∗
n

)}
n=1,2,...

(50)

is a set of orthonormalized eigenvectors of S with eigenvalue ωα . An appropriate linear combination

χα
n =

∑
m

[
Uα

mn

(
xα

m

0

)
+ V α

mn

(
0

x−α∗
m

)]
(51)
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is a simultaneous eigenstate of S and H with an eigenvalue ωα and Eα
n , respectively. Thanks to the

particle–hole symmetry of H,

ϕα
n := 
x

(
χ−α

n

)∗ =∑
m

[
V−α∗

mn

(
xα

m

0

)
+ U−α∗

mn

(
0

x−α∗
m

)]
(52)

is also a simultaneous eigenstate of S and H with an eigenvalue ωα and −E−α
n , respectively.

Therefore, the HFB equations are block diagonalized for each eigenvalue of S as follows:

Wα†HαWα = Eα , (53)

where

Hα =
(

(h− λI )α 	α

−	−α∗ −(h− λI )−α∗

)
, Wα =

(
Uα V−α∗
V α U−α∗

)
, Eα =

(
Eα 0
0 −E−α

)
, (54)

and

(h− λI )αmn = xα†
m (h− λIM )xα

n , 	α
mn = xα†

m 	x−α∗
n , Eα = diag(Eα

1 , Eα
2 , . . .). (55)

Since χα
n and ϕα

n are simultaneous eigenstates of S and H, they are also eigenstates of H′ with
eigenvalue Eα

n − λsωα and −E−α
n − λsωα , respectively. In other words,

Wα†H′αWα = Eα − λsωαIα , (56)

where H′α = Hα − λsωαIα , and Iα is the identity matrix for the block with eigenvalue ωα . In this
way, one sees that the constraint on the intrinsic symmetry Ŝ does not change individual single-qp
states, but shifts only the qp energies according to the eigenvalues of S. Reflecting the time-odd
character of Ŝ, the qp energies of time-reversal pairs split in the opposite direction. Therefore, even
if the original HFB Hamiltonian H has time-reversal symmetry, the Kramers degeneracy is resolved
at λs 
= 0.

We now show that the number parity of the lowest-energy state can change according to λs. The
following unitary matrix diagonalizes H and H′ simultaneously:

W =
(

U V ∗
V U ∗

)
, (57)

U =
(

U 1 U−1 U 2 U−2 · · ·
)

, Uα
n =

∑
m

xα
mUα

mn, (58)

V =
(

V 1 V−1 V 2 V−2 · · ·
)

, V α
n =

∑
m

x−α∗
m V α

mn. (59)

Then, the HFB equations for H and H′ read

W†HW = E , W†H′W = E ′, (60)

where E = diag (E,−E), E = diag (E1, E−1, . . .), and E ′ = diag (E′,−E′), E′ = diag (E1 −
λsω1I 1, E−1 + λsω1I 1, . . .). From Eq. (21) one obtains

det W pf HX =
∏

n,α>0

Eα
n E−α

n , (61)
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(a) (b) (c)

Fig. 1. Schematic picture of the single-qp levels with Ĵz eigenvalues � (� > 0: solid line; � < 0:
dashed line) as functions of the parameter λs for the cases employing the operator (a) Ĵz, (b) Ĵz/|Jz|,
and (c) |Jz = 1/2〉 〈Jz = 1/2| − |Jz = −1/2〉 〈Jz = −1/2| as the constraint operator Ŝ. Twelve levels with
|�| = 1/22, 5/2 are shown. At λs = 0, the nth lowest (positive) single-qp energies with ±� are degenerate
and displayed as E�

n . With increasing λs, the number parity of the lowest-energy state keeps +1 for λs < λ1,
the sign changes at λs = λ1, and the number parity is −1 for λ1 < λs < λ2.

det W pf H′X =
∏

n,α>0

(Eα
n − λsωα)(E−α

n + λsωα). (62)

When the original HFB Hamiltonian H is time-reversal symmetric, from Eq. (41) one obtains

pf HX =
∏

n,α>0

(Eα
n )2. (63)

Substituting this into Eq. (61), together with Eα
n = E−α

n , one sees that

det W = +1. (64)

Substituting this into Eq. (62), one sees that

pf H′X =
∏

n,α>0

[
(Eα

n )2 − (λsωα)2]. (65)

Therefore, from Eq. (23) the number parity of the lowest-energy state under the constraint is given
by

πLE
N =

∏
n,α>0

sgn
[
(Eα

n )2 − (λsωα)2]. (66)

At λs = 0, πLE
N = +1, namely the lowest-energy state has even number parity. For λs 
= 0, the

number parity changes according to the magnitude relation between Eα
n and λsωα . The number parity

of the lowest-energy state thus changes according to the magnitude of λs.
Figure 1 shows a schematic picture of the single-qp energies under the constraint. When λs is set

to an appropriate value λ1 < λs < λ2, where a pair of levels intersect the axis at λs = λ1, an odd
number-parity state is automatically obtained as the lowest-energy state. Determined by the operator
Ŝ are the orbital whose qp energy changes with an increase in λs and the level which intersects the
axis first. In this sense Ŝ is considered as a selector of the vacuum. Note that when two levels cut
across the axis by increasing λs, the number parity of the system becomes even, corresponding to
the two-qp excitation state. Specifically, when the z-component of the total angular momentum Ĵz
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is a symmetry of the intrinsic system, different vacuums are selected depending on the choice of Ŝ.
We consider three cases:

Case (i): When Ĵz itself is taken as Ŝ, each qp level rises or falls with the slope of the corresponding
eigenvalue Jz = �, see Fig. 1(a). As λs increases, the orbital with high � is preferably selected as
the level to be excited. This is equivalent to the so-called non-collective cranking, where particles
with high angular momentum about the symmetry axis are aligned.

Case (ii): Let us look at the case of using Ĵz/|Jz| as Ŝ. Since Ĵz/|Jz| is an operator that gives +1
for eigenstates with positive � and −1 for eigenstates with negative �, each qp level separates
out with a slope of ±1 independent of the magnitude of � with an increase in λs, see Fig. 1(b).
Therefore, in this case, an orbital with a smaller qp energy is likely to be selected as the level to be
excited. This corresponds to the “two-Fermi level approach” proposed in Ref. [24]. As mentioned
in Ref. [24], this choice may not work well for the case in which the single-qp level density is
high near the Fermi level and the spherical systems where we have (2j + 1)-folded degeneracy.
Introducing a kind of projection operator was conjectured in Ref. [24] to resolve the issue, and
we realize the practical method in the following case.

Case (iii): Let us consider the case of using a time-odd projection operator |Jz = �〉 〈Jz = �| −
|Jz = −�〉 〈Jz = −�| as Ŝ. This is a part of Ĵz/|Jz|, and is an operator which works only for the
state with a certain �. Therefore, in this case, only the level carrying the specified eigenvalue±�

splits for λs 
= 0, and the levels having other eigenvalues of Ĵz do not change even if λs increases,
see Fig. 1(c). Thus, one can select the state of interest easily. The third choice is convenient for
practical use and we perform the calculations using this choice in the following investigation.

We have generalized the method proposed in Ref. [24] with a generic time-odd operator Ŝ, and then
proposed a practical choice for Ŝ of a time-odd projection operator. In Ref. [24] the authors concluded
that their approach had some difficulties compared with the conventional blocking method:

◦ Not all the qp states are easily accessible in their approach, and it describes only the specific
configurations.
◦ The method fails to describe a one-qp state when qp levels show degeneracies beyond the

Kramers degeneracy.
◦ The self-consistent calculations in a high qp-level density near the Fermi surface lead to

numerical instabilities.

Our generalization and practical application of the method overcome these difficulties in some
cases. Even when additional degeneracies are present beyond the Kramers degeneracy, our practical
method gives a one-qp state with a desired quantum number as long as the Ŝ completely lifts those
degeneracies, and the numerical instabilities can be less severe because the qp-level densities change
with increasing λs depending on the choice of Ŝ. For instance, when (2j + 1)-fold degeneracy is
present in a spherical nucleus, one can selectively lower the single-particle energies of qp levels with
a certain � to get the one-qp state with the quantum number. In neutron-drip-line nuclei, however,
a high density of state near the Fermi level causes numerical instability as in the usual blocking
method. Compared to the conventional blocking method, our method has the advantage of being
easy to code for calculating odd-mass nuclei: all we have to do is to add the identity matrix with an
appropriate coefficient to the HFB Hamiltonian, as will be seen in detail in the next section, and then
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odd-mass nuclei are calculated as the lowest-energy solution of the HFB equation just like even–even
nuclei.

4. Numerical analysis for deformed neutron-rich Mg isotopes
4.1. HFB equation for axially symmetric nuclei with time-even and time-odd mean fields

The coordinate-space HFB equation obtained by employing the local EDF containing time-even and
time-odd parts reads [35,36]

∑
σ ′=± 1

2

[
hq
σσ ′(r)− λqδσσ ′ h̃q

σσ ′(r)
4σσ ′h̃q∗

−σ−σ ′(r) −4σσ ′hq∗
−σ−σ ′(r)+ λqδσσ ′

][
ϕ

q
1,i(r σ ′)

ϕ
q
2,i(r σ ′)

]
= Eq

i

[
ϕ

q
1,i(r σ)

ϕ
q
2,i(r σ)

]
, (67)

where q stands for protons (p) and neutrons (n), in which the quasiparticles are assumed to be
eigenstates of the third component of the isospin operator. The sp Hamiltonian h consists of the
mean-field (Kohn–Sham) potentials �t composed of the time-even and time-odd isoscalar (t = 0)
and isovector (t = 1) densities as

hn
σσ ′ =

[
− �

2

2m
�+�even

0 + �odd
0 + �even

1 + �odd
1

]
σσ ′

, (68)

hp
σσ ′ =

[
− �

2

2m
�+�even

0 + �odd
0 − �even

1 − �odd
1 + VCoul

]
σσ ′

. (69)

Here, VCoul is the Coulomb potential, and the explicit expressions for � for the Skyrme-type EDF
are shown in the Appendix. Thanks to the time-reversal (anti)symmetry of the potentials, one sees

h̄n
σσ ′ := 4σσ ′hn∗

−σ−σ ′ =
[
− �

2

2m
�+�even

0 − �odd
0 + �even

1 − �odd
1

]
σσ ′

, (70)

h̄p
σσ ′ := 4σσ ′hp∗

−σ−σ ′ =
[
− �

2

2m
�+�even

0 − �odd
0 − �even

1 + �odd
1 + VCoul

]
σσ ′

. (71)

We employ the pairing EDF that contains only the time-even densities as described below, so that
we see

4σσ ′h̃q∗
−σ−σ ′ = h̃q

σσ ′ . (72)

We solve the HFB equation in Eq. (67) by assuming axial and reflection symmetries so that the
quasiparticles are labeled by {�, π , q}, with � and π being the z-component of the total angular
momentum and parity, respectively. In this case, the qp wave functions can be written in the form

ϕ
q
a,n�π(r σ) = ϕ

q+
a,n�π(�, z) ei�−φχ1/2(σ )+ ϕ

q−
a,n�π(�, z) ei�+φχ−1/2(σ ) (a = 1, 2), (73)

where �± = � ± 1/2 [37], and �, z, and φ are the cylindrical coordinates defining the three-
dimensional position vector as r = (� cos φ, � sin φ, z), while z is the chosen symmetry axis. Also,
the wave functions satisfy the following symmetry:

ϕ
q±
a,n�π(�,−z) = π(−1)�

∓
ϕ

q±
a,n�π(�, z) (a = 1, 2). (74)

The coordinate-space HFB equation has been solved under the assumption of axial symmetry in
many cases; however, time-reversal symmetry is often imposed [38–42]. To keep the present paper
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self-contained, the mean-field potentials containing both the time-even and time-odd densities and
currents in the cylindrical-coordinate representation are shown in the Appendix. With the axial
symmetry, the φ dependencies of the sp and pair Hamiltonians are given by

hq(r) =
[

hq
↑↑(�, z; lz) e−iφhq

↑↓(�, z; lz)

eiφhq
↓↑(�, z; lz) hq

↓↓(�, z; lz)

]
, h̄q(r) =

[
h̄q
↑↑(�, z; lz) e−iφ h̄q

↑↓(�, z; lz)

eiφ h̄q
↓↑(�, z; lz) h̄q

↓↓(�, z; lz)

]
,

(75)
and

h̃q(r) =
[

h̃q
↑↑(�, z; lz) e−iφ h̃q

↑↓(�, z; lz)

eiφ h̃q
↓↑(�, z; lz) h̃q

↓↓(�, z; lz)

]
, (76)

where lz = ∂φ

i , and thus the HFB equation in the (�, z) space for each {�, π , q} reads⎛⎜⎜⎜⎜⎝
h�πq
↑↑ − λq h�πq

↑↓ h̃�πq
↑↑ h̃�πq

↑↓
h�πq
↓↑ h�πq

↓↓ − λq h̃�πq
↓↑ h̃�πq

↓↓
h̃�πq
↑↑ h̃�πq

↑↓ −h̄�πq
↑↑ + λq −h̄�πq

↑↓
h̃�πq
↓↑ h̃�πq

↓↓ −h̄�πq
↓↑ −h̄�πq

↓↓ + λq

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ
q+
1,n�π

ϕ
q−
1,n�π

ϕ
q+
2,n�π

ϕ
q−
2,n�π

⎞⎟⎟⎟⎠ = Eq
n�π

⎛⎜⎜⎜⎝
ϕ

q+
1,n�π

ϕ
q−
1,n�π

ϕ
q+
2,n�π

ϕ
q−
2,n�π

⎞⎟⎟⎟⎠, (77)

where h�πq
ss′ , h̄�πq

ss′ , and h̃�πq
ss′ are defined using �↑ := �− and �↓ := �+ as h�πq

ss′ (�, z) :=
hq

ss′(�, z; lz = �s′), h̄�πq
ss′ (�, z) := h̄q

ss′(�, z; lz = �s′), and h̃�πq
ss′ (�, z) := h̃q

ss′(�, z; lz = �s′).
To describe odd-A isotopes, we employ the time-odd projection operator to the states with a specific
{�, π , q} quantum number, |� π q〉 〈� π q| − |−� π q〉 〈−� π q|, as the constraint operator Ŝ. In
other words, we introduce the Lagrange multiplier λs for the specified {�, π , q} sector of the HFB
equation in Eq. (77) as⎛⎜⎜⎜⎜⎝

h�πq
↑↑ − λq − λs h�πq

↑↓ h̃�πq
↑↑ h̃�πq

↑↓
h�πq
↓↑ h�πq

↓↓ − λq − λs h̃�πq
↓↑ h̃�πq

↓↓
h̃�πq
↑↑ h̃�πq

↑↓ −h̄�πq
↑↑ + λq − λs −h̄�πq

↑↓
h̃�πq
↓↑ h̃�πq

↓↓ −h̄�πq
↓↑ −h̄�πq

↓↓ + λq − λs

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

ϕ
q+
1,n�π

ϕ
q−
1,n�π

ϕ
q+
2,n�π

ϕ
q−
2,n�π

⎞⎟⎟⎟⎠

= (Eq
n�π − λs

)
⎛⎜⎜⎜⎝

ϕ
q+
1,n�π

ϕ
q−
1,n�π

ϕ
q+
2,n�π

ϕ
q−
2,n�π

⎞⎟⎟⎟⎠. (78)

Here, the chemical potential for protons or neutrons, λq, is adjusted so that the average particle
number has the desired value, i.e. an odd number for odd-A nuclei. We call the introduction of λs

“blocking” since this procedure is equivalent to the traditional blocking method.

4.2. Numerical procedures

We solve Eq. (77) by diagonalizing the HFB Hamiltonian in the cylindrical-coordinate represen-
tation with the box boundary condition. We discretize the coordinates by �i = (i − 1/2) × h
(i = 1, 2, . . . , Nρ) and zj = (j − 1) × h (j = 1, 2, . . . , Nz), with a lattice mesh size h = 0.8 fm,
and use 30 points for Nρ and Nz. Consequently, a qp wave function is expressed as a vector whose
dimension is N = 4NρNz = 3600, and the HFB Hamiltonian is a matrix of size N × N . The qp
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states are truncated according to the qp energy cutoff at 60 MeV, and the qp states up to � = 15/2
with positive and negative parities are included. The differential operators are represented by use
of the 13-point formula of the finite difference method. For diagonalization of the Hamiltonian or
Routhian we use the LAPACK Dsyevx subroutine [43]. A modified Broyden’s method [44] is uti-
lized to calculate new densities during the self-consistent iteration. We consider that the calculation
converges when both the difference of the total energy (in MeV) between two consecutive iterations
and the deviations of the calculated particle numbers from the desired neutron and proton numbers
become smaller than 10−4. The Lagrange multiplier λs is adjusted to λs = (Eq

1�π +Eq
2�π)/2, where

Eq
1�π and Eq

2�π are the lowest and the second lowest positive qp energies for the given {�, π , q} at
each iteration, so that only one pair of qp levels intersect the energy-zero axis.

For the normal (particle–hole) part of a nuclear EDF, we employ the SLy4 functional [45]. The so-
called naïve choice [12] is adopted for determining the coupling constants of the time-odd terms in the
EDF, except that the coupling constants of the terms of the form s ·�s, where s is the spin density, are
set to zero because these terms in some cases lead to divergences of the HFB iterative procedure [12].
For the particle–particle channel, we adopt the density functional in Eq. (A.30) which corresponds
to the density-dependent contact interaction. The parameters are set as V1 = 1 and γ = 1 (surface
pairing), and the pairing strength is taken as V0 = −430 MeV fm3 to approximately reproduce the
experimental pairing gap of neutrons (1.28 MeV based on AME2016 [46]) of 35Mg. The pairing gap
is obtained by use of the three-point formula for the binding energy [47], and the calculated 	

(3)
n for

35Mg is found to be 1.47 MeV.

4.3. Numerical results and discussion

To demonstrate the feasibility of our method, we performed the systematic calculation for the neutron-
rich Mg isotopes with mass number A = 34–40. We excluded 32Mg and 33Mg in the present
investigation, where the loss of spherical magic number of 20 has been under debate, because the
shape fluctuation and the correlation beyond the mean-field approximation may be significant in
32Mg [48–50], and many-particle many-hole states with different shape deformation may coexist in
33Mg [51,52], as mentioned slightly below.

We tried blocking each of �π = 1/2±, 3/2±, 5/2±, and 7/2± orbitals for odd-mass isotopes,
and the ground state was obtained by blocking the orbital with �π = 3/2−, 5/2−, and 1/2− in
35Mg, 37Mg, and 39Mg, respectively. The calculation may be in contradiction with the observation
for 35Mg, where J π = 3/2−, a head of the Kπ = 1/2− band, is suggested for the ground state
[53]. We found that the binding energy obtained by blocking the �π = 1/2− orbital is shallower by
1.0 MeV. For 37Mg, the measurements suggest that the � = 1 component is dominant in the ground
state [5,6], while the �π = 5/2− orbital contains angular momenta higher than � = 3. Below, we
discuss 37Mg on this point. It is noted here that neutron superfluidity vanishes in 35,37Mg.

Figure 2 shows the calculated one-neutron separation energies Sn compared with the experimental
or evaluated data obtained from AME2016. Here, Sn is calculated as

Sn := − [B(N , Z)− B(N − 1, Z)] , (79)

where B(N , Z) is the (negative) binding energy of the nucleus with N neutrons and Z protons. A
nice agreement within the error range and the odd–even staggering feature in the binding energies
can be seen. It is noted that we need the binding energy of 33Mg for the calculation of Sn of 34Mg.
We obtained the near degeneracy by blocking the 1/2− and 7/2− orbitals for 33Mg. For 39Mg, the
calculated one-neutron separation energy is Sn = −0.10 MeV, the calculated chemical potential is
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Fig. 2. Calculated one-neutron separation energies Sn of Mg isotopes denoted by closed circles together with
the experimental data from AME2016 [46] denoted by crosses with error bars. For 37Mg, the results obtained
by blocking the �π = 1/2− orbital are also shown. The symbols for (1/2−) indicate the results obtained by
ignoring the time-odd mean fields.

λn = −0.98 MeV, and the qp energy of the blocked orbital is 0.83 MeV. Thus, the 39Mg nucleus
is unstable with respect to neutron emission, but bound, though quite loosely, in the sense that the
sp energy of the last occupied neutron is negative in the present calculation. On the other hand, we
could not find the bound-state solutions for 41,42Mg.

We show with closed circles in Fig. 3 the calculated quadrupole-deformation parameters β2 and
matter radii

√〈r2〉m, which are defined by

β2 := 4π

5A〈r2〉m
∫

drr2Y20(r̂)ρ0(r), (80)

√
〈r2〉m :=

√
1

A

∫
drr2ρ0(r). (81)

As shown in Fig. 3(a), the Mg isotopes under study are calculated to be constantly deformed and
this is consistent with the preceding theoretical predictions on the Mg isotopes near the drip line
[49,54–60]. The odd–even staggering in deformation is faint compared with that of the one-neutron
separation energies. Therefore, the odd–even staggering seen in the binding energy of these isotopes
can be attributed mainly to the pair correlation.

Let us discuss the systematic feature in matter radii. Figure 3(b) shows the calculated matter radii√〈r2〉m compared with the observation based on the reaction cross section measurement [61]. Except
for 37Mg, the present calculation reproduces the isotopic dependence observed experimentally. How-
ever, we see a systematic underestimation. This is mainly because the calculation gives a systematic
over binding. The irregular dependence revealed in 34–36Mg by the reaction cross section measure-
ment [5] is well described; the matter radius of 35Mg is smaller than the average of the radii of the
neighboring isotopes of 34,36Mg. The suppression of the matter radius in 35Mg can be attributed to
the smaller deformation than in the neighboring isotopes, as shown in Fig. 3(a). To make this point
clear, we shall adopt the following alternative expressions of the deformation and matter radius for
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(a) (b)

Fig. 3. (a) Calculated deformation parameters of Mg isotopes. The closed circles denote the quadrupole-
deformation parameters β2. For reference, the calculated β values defined in Eq. (82) are plotted by the open
circles connected by the dashed line. (b) Matter radii of Mg isotopes. The closed circles denote the calculated
matter radii

√〈r2〉m, compared with the observation denoted by the crosses with error bars taken from Ref. [61].
For reference, the calculated r̄0 values defined in Eq. (82) are plotted by the open circles connected by the
dashed line. As in Fig. 2, the results obtained by blocking the �π = 1/2− orbital are also shown for 37Mg. The
symbols for (1/2−) indicate the results obtained by ignoring the time-odd mean fields.

axially symmetric nuclei [58,61]:

〈x2〉m = 〈y2〉m = 1

A

∫
dr

�2

2
ρ0(r) =:

r̄2
0

3
exp

(
−
√

5

4π
β

)
,

〈z2〉m = 1

A

∫
drz2ρ0(r) =:

r̄2
0

3
exp

(
2

√
5

4π
β

)
. (82)

One can see the relation as

β = 1

3

√
4π

5
ln

⎛⎜⎝1+ 2
√

5
4π

β2

1−
√

5
4π

β2

⎞⎟⎠ = β2 − 1

4

√
5

π
β2

2 +O(β3
2 ),

r̄0 =
√
〈r2〉m

⎡⎣(1−
√

5

4π
β2

)2 (
1+ 2

√
5

4π
β2

)⎤⎦
1
6

=
√
〈r2〉m

[
1− 5

8π
β2

2 +O(β3
2 )

]
,

and β ≈ β2 and r̄0 ≈
√〈r2〉m for small deformation. The definitions of the deformation parameter β

and radius r̄0 in Eq. (82) guarantee the volume conservation of a spheroidal nucleus whose density
is given by ρ0 = A/V if �2/a2 + z2/b2 ≤ 1 and zero if �2/a2 + z2/b2 > 1, with V = 4πa2b/3 =
4π/3(5r̄0/3)3/2 [62]. In terms of the parameters β and r̄0, the effects of the deformation and the
spatial extension are decoupled in the spheroidal nuclei with a sharp surface owing to the volume
conservation. We show the calculated β and r̄0 values in Fig. 3 with the open circles. The suppression
of the matter radius

√〈r2〉m in 35Mg disappears in r̄0, while the deformation is reduced in 35Mg
compared with 34,36Mg in terms of β as well as β2. This clearly shows that the reduction of the
deformation accounts for the suppression of the matter radius in 35Mg.
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The discrepancy in the matter radius between calculation and observation for 37Mg is due to
the suppression of spatial extension caused by the high centrifugal barrier of the blocked orbital
of [312]5/2 stemming from the f7/2 shell. As mentioned above, the experimental measurements
suggest that the ground state in 37Mg is dominated by the p-wave [5,6]. When the deformation
develops further, the [312]5/2 orbital crosses with the [321]1/2 orbital.The latter orbital is originating
from the p3/2 shell. Therefore, blocking the �π = 1/2− orbital is worth investigating. Indeed, the
deformed halo structure in 37Mg has been studied by assuming a high deformation of β2 ∼ 0.5
in a deformed Woods–Saxon potential to put a neutron in the [321]1/2 orbital on the even–even
36Mg nucleus [63]. We show in Figs. 2 and 3 the results obtained by blocking the �π = 1/2−
orbital for 37Mg, as indicated by red circles. In Fig. 3(a), the matter radius increases by 0.08 fm by
blocking the �π = 1/2− orbital. Then, we can see a sudden enhancement from 36Mg. As expected,
the deformation develops that we can see in Fig. 3(a). The matter quadrupole deformation obtained
is β2 = 0.35, and we see an increase in β2 by 0.03, which is far lower than the phenomenological
value [63]. Note that β and r̄0 contribute cooperatively to the enhancement of

√〈r2〉m in 37Mg,
indicating dilution of the density with deformation, in contrast to the case of 35Mg, where only the
deformation contributes to the suppression of the matter radius, as seen above and in Ref. [58]. The
total binding energy calculated by blocking the �π = 1/2− orbital is shallower by 0.53 MeV, which
we see in Fig. 2. We found that the neutrons in 37Mg obtained by blocking the �π = 1/2− orbital are
paired. The calculated chemical potential and the qp energy of the blocked orbital are −2.70 MeV
and 2.20 MeV, respectively, while the sp energy of the last occupied neutron is −1.1 MeV obtained
by blocking the �π = 5/2− orbital. The asymptotic behavior of the last occupied orbital is given as
rϕ2,i(r) ∼ exp[−√−2m(λ+ Ei)r/�] for a paired system and∼ exp[−√−2mεir/�] for an unpaired
system, with εi being the sp energy [64]. Thus, we have enhancement in the radius by blocking the
�π = 1/2− orbital, though the chemical potential is not very shallow. This can be considered as
unpaired-particle haloing [58]. It should be noted that in Ref. [58] the self-consistent HFB calculation
with a semirealistic interaction nicely produces the enhancement of the matter radius for the ground
state in 37Mg. Our framework is similar to that of Ref. [58]. The interactions used are different. This
suggests that the ground-state property in 37Mg can impose restrictions on the EDF.

To see the spatial structure of 37Mg, we draw the calculated density distributions in terms of the
equidensity lines on the �–z plane in Fig. 4(a). The contour lines are depicted in a logarithmic
scale at 0.1 fm−3 down to 10−7 fm−3. In Fig. 4(b), the density distributions of neutrons along the
symmetry axis (at � = 0.4 fm) are also shown in a logarithmic scale. The density distributions
obtained by blocking the �π = 5/2− and 1/2− orbitals are presented. In the case of �π = 5/2−,
the density distribution of neutrons is well localized in the center, though the spatial extension is
visible compared with that of protons, forming the neutron skin. Blocking the �π = 1/2− orbital
drastically changes the distribution of neutrons. A long tail emerges, interpreted as the neutron
halo. The spatial distribution is extended toward the symmetry axis, forming a peanut shape. This
is consistent with the previous calculation [58], and results from the p-wave dominance near the
continuum threshold [65–68].

The time-reversal symmetry is intrinsically broken in the odd-mass isotopes possessing nonzero
spin, so that the time-odd components in the mean field may be activated. We discuss finally the
roles of the time-odd mean fields in 37Mg by blocking the �π = 1/2− orbital. The total binding
energy is affected by 0.41 MeV, as shown in Fig. 2(a). Here, the time-odd fields are set to zero, i.e.
equivalent to the equal-filling approximation. This is only 0.16% of the total binding energy, and is
negligibly small. A tiny effect on the nuclear mass has been brought out by the systematic calculation
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(a) (b)

Fig. 4. (a) Contour plot of neutron and proton densities on the �–z plane for 37Mg. Positions of the density
with 0.1, 0.01, 10−3, 10−4, 10−5, 10−6, and 10−7 fm−3 are presented. (b) Neutron density distributions along
the symmetry axis. The results obtained by blocking the �π = 1/2− and 5/2− orbitals are shown. In the case
of �π = 1/2−, also shown are the results obtained by ignoring the time-odd mean fields.

[12]. Accordingly, the deformation property is hardly influenced by the time-odd fields, as shown
in Fig. 2(b). The deformation parameter for neutrons is reduced by 0.01. The radius of neutrons
thus calculated is lessened by 0.02 fm, while the protons are not affected. Then, the matter radius
is reduced by 0.02 fm, as shown in Fig. 3. The chemical potential and the qp energy of the blocked
orbital are−2.73 MeV and 1.92 MeV, respectively. Then, the qp energy of the last neutron is lowered
by 0.28 MeV by ignoring the time-odd fields. It seems that this shift is also negligible. However, the
asymptotic behavior of the halo structure is sensitive to the exponent of the qp wave function. Indeed,
as shown in Fig. 4, the tail structure is influenced by the time-odd fields. Whether the time-odd mean
fields enhance or reduce the halo structure depends on the EDF employed. The spin-density term in
the EDF, the first term on the right-hand side in Eq. (A.3), is responsible for the enhancement in the
radius: the matter radius of 37Mg obtained by ignoring all the time-odd fields except those derived
from the spin-density term is no more than 0.02% different from the result obtained by including all
the time-odd fields. The reaction observables sensitive to the outer surface of the halo nucleus can
put constraints on the time-odd coupling constants, especially on the coefficient of the spin-density
term, of the Skyrme EDF that are uncertain.

5. Summary

We have found relationships among the particle-number parity, the Bogoliubov transformation,
and the time-reversal symmetry of the Hartree–Fock–Bogoliubov Hamiltonian. Then we showed
that the lowest-energy solution of the HFB equation has even particle-number parity as long as
the time-reversal symmetry is conserved in the HFB Hamiltonian without null eigenvalues. Based
on this finding, we gave the foundation of a method for solving the HFB equation to describe the
ground state of odd-mass nuclei by employing an appropriate time-reversal antisymmetric constraint
operator to the Hamiltonian. With this procedure, one can directly obtain the ground state of an odd-
mass nucleus as a self-consistent solution of the cranked-HFB-type equation, while the ground state
of an odd-mass nucleus is described as a one-quasiparticle excitation of a neighboring even–even
nucleus in the usual procedure. This method is further applicable to the low-lying two-quasiparticle
excitations in even–even nuclei. As a numerical example, we applied this method to the neutron-rich
Mg isotopes close to the drip line, and showed that the anomalous increase in the matter radius of
37Mg is well described when a neutron occupies the low-� orbital in the framework of the nuclear
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energy-density functional method. We found that the time-odd mean fields have little influence on
the total binding energy, but an appreciable impact on the asymptotic behavior of the halo structure.
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Appendix A. Mean-field potentials for axially symmetric nuclei

In this appendix we give the explicit expressions of the mean-field potentials obtained from the
Skyrme EDF and the pairing EDF for axially symmetric nuclei.

Appendix A.1. Mean-field potentials in the Skyrme EDF for axially symmetric nuclei

The Skyrme EDF consists of the time-even and time-odd parts [69]:

ESky =
∫

dr
∑
t=0,1

[
H even

t (r)+H odd
t (r)

]
, (A.1)

where

H even
t = Cρ

t [ρ0]ρ2
t + C�ρ

t ρt � ρt + Cτ
t ρtτt + CJ

t
←→
Jt

2 + C∇J
t ρt∇ · J t , (A.2)

H odd
t = Cs

t [ρ0]s2
t + C�s

t st · �st + CT
t st · T t + Cj

t j
2
t + C∇j

t st · (∇ × jt), (A.3)

with t = 0 and 1 denoting isoscalar and isovector, respectively. Here, the definitions of the densities
and currents are given in Ref. [69]. Then, the mean-field potentials are given by the functional
derivatives as [69,70]

�even
Sky,t(r) = −∇ ·Mt(r)∇ + Ut(r)+ 1

2i

[←→∇σ
←→
B t(r)+←→B t(r)

←→∇σ
]
+ δ0tU

′
0(r), (A.4)

�odd
Sky,t(r) = −∇ · (σ · C t(r))∇ + σ ·�t(r)+ 1

2i
[∇ · I t(r)+ I t(r) ·∇]. (A.5)

Here we used the symbol
←→∇σ := ∇ ⊗ σ , and

Ut = 2Cρ
t ρt + 2C�ρ

t � ρt + Cτ
t τt + C∇J

t ∇ · J t , (A.6)

�t = 2Cs
t st + 2C�s � st + CT

t T t + C∇j
t ∇ × jt , (A.7)

Mt = Cτ
t ρt , (A.8)

C t = CT
t st , (A.9)

←→
B t = 2CJ

t
←→
J t − C∇J←→∇ ρt , (A.10)

I t = 2Cj
t jt + C∇j∇ × st , (A.11)

U ′0 =
∑
t=0,1

(
∂Cρ

t

∂ρ0
ρ2

t +
∂Cs

t

∂ρ0
s2

t

)
, (A.12)
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where ∇μν :=∑κ εμνκ∇κ .
The mean-field potentials �Sky are composed of the densities and currents, so we show the expres-

sions in the cylindrical coordinates r = (�, φ, z) employing the ansätze in Eq. (73). The time-even
densities are given as

ρq =
∑

i

[
(ϕ

q+
2,i )2 + (ϕ

q−
2,i )2

]
, (A.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J q
�φ = −

∑
i

(ϕ
q+
2,i ∂�ϕ

q−
2,i − ϕ

q−
2,i ∂�ϕ

q+
2,i ),

J q
φ� =

∑
i

�+i +�−i
�

ϕ
q+
2,i ϕ

q−
2,i ,

J q
φz =

∑
i

[
�−i
�

(ϕ
q+
2,i )2 − �+i

�
(ϕ

q−
2,i )2

]
,

J q
zφ = −

∑
i

(ϕ
q+
2,i ∂zϕ

q−
2,i − ϕ

q−
2,i ∂zϕ

q+
2,i ),

J q
�� = J q

φφ = J q
zz = J q

�z = J q
z� = 0,

(A.14)

and

τ q =
∑

i

⎡⎣(∂�ϕ
q+
2,i )2 + (∂�ϕ

q−
2,i )2 +

(
�−i
�

ϕ
q+
2,i

)2

+
(

�+i
�

ϕ
q−
2,i

)2

+ (∂zϕ
q+
2,i )2 + (∂zϕ

q−
2,i )2

⎤⎦.

(A.15)
The time-odd densities are ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sq
� = −2

∑
i

ϕ
q+
2,i ϕ

q−
2,i ,

sq
z = −

∑
i

[
(ϕ

q+
2,i )2 − (ϕ

q−
2,i )2

]
,

sq
φ = 0,

(A.16)

⎧⎪⎪⎨⎪⎪⎩
jq
φ = −

∑
i

[
�−i
�

(ϕ
q+
2,i )2 + �+i

�
(ϕ

q−
2,i )2

]
,

jq
� = jq

φ = 0,

(A.17)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T q
� = −2

∑
i

[
(∂�ϕ

q+
2,i )(∂�ϕ

q−
2,i )+ (∂zϕ

q+
2,i )(∂zϕ

q−
2,i )+ �−i �+i

�2 ϕ
q+
2,i ϕ

q−
2,i

]
,

T q
z = −

∑
i

⎡⎣(∂�ϕ
q+
2,i )2 − (∂�ϕ

q−
2,i )2 +

(
�−i
�

ϕ
q+
2,i

)2

−
(

�+i
�

ϕ
q−
2,i

)2

+ (∂zϕ
q+
2,i )2 − (∂zϕ

q−
2,i )2

⎤⎦,

T q
φ = 0.

(A.18)
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Substituting these densities into Eqs. (A.4) and (A.5), one obtains

�even
Sky,t(r) =

[
�even

Sky,t ↑↑(�, z; lz) e−iφ�even
Sky,t ↑↓(�, z; lz)

eiφ�even
Sky,t ↓↑(�, z; lz) �even

Sky,t ↓↓(�, z; lz)

]
, (A.19)

�odd
Sky,t(r) =

[
�odd

Sky,t ↑↑(�, z; lz) e−iφ�odd
Sky,t ↑↓(�, z; lz)

eiφ�odd
Sky,t ↓↑(�, z; lz) �odd

Sky,t ↓↓(�, z; lz)

]
, (A.20)

where

�even
Sky,t ↑↑ = −(∂�Mt)∂� − (∂zMt)∂z −Mt �+Ut + δ0tU

′
0 + Bt φz

lz
�

, (A.21)

�even
Sky,t ↑↓ = −Kt − Bt �φ∂� − Bt zφ∂z + Bt φ�

lz
�

, (A.22)

�even
Sky,t ↓↑ = Kt + Bt �φ∂� + Bt zφ∂z + Bt φ�

lz
�

, (A.23)

�even
Sky,t ↓↓ = −(∂�Mt)∂� − (∂zMt)∂z −Mt �+Ut + δ0tU

′
0 − Bt φz

lz
�

, (A.24)

�odd
Sky,t ↑↑ = −(∂�Ct z)∂� − (∂zCt z)∂z − Ct z �+
t z + It φ

lz
�

, (A.25)

�odd
Sky,t ↑↓ = −(∂�Ct �)∂� − (∂zCt �)∂z − Ct � �+
t � − Ct �

lz
�2 , (A.26)

�odd
Sky,t ↓↑ = −(∂�Ct �)∂� − (∂zCt �)∂z − Ct � �+
t � + Ct �

lz
�2 , (A.27)

�odd
Sky,t ↓↓ = (∂�Ct z)∂� + (∂zCt z)∂z + Ct z �−
t z + It φ

lz
�

. (A.28)

Here, lz = ∂φ

i and we defined

Kt := 1

2

[
(∂�Bt �φ)+ (∂zBt zφ)+ 1

�
(Bt �φ + Bt φ�)

]
= CJ

t

[
(∂�Jt �φ)+ (∂zJt zφ)+ 1

�
(Jt �φ + Jt φ�)

]
. (A.29)

Appendix A.2. Mean-field potentials in the pairing EDF for axially symmetric nuclei

For the pairing energy, we adopt the following density functional:

Epair = V0

4

∫
dr

{
1− V1

[
ρ0(r)

ρc

]γ} ∑
q=p,n

|ρ̃q(r)|2, (A.30)

where ρ̃q is the pairing density [64] and ρc is the saturation density. The contributions to the particle–
hole potentials are given by

�even
pair,t σσ ′(r) = δ0tδσσ ′Upair(r), �odd

pair,t σσ ′(r) = 0, (A.31)

where

Upair = −γ V0V1

4ρc

(
ρ0

ρc

)γ−1 ∑
q=p,n

|ρ̃q|2, (A.32)
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and the particle–particle potential, or the pair Hamiltonian, is given by

h̃q
σσ ′(r) = δσσ ′Ũ

q(r), (A.33)

where

Ũ q = V0

2

[
1− V1

(
ρ0

ρc

)γ ]
ρ̃q. (A.34)

With the axial symmetry, the pairing density in the cylindrical coordinates r = (�, φ, z) is given by
employing the ansätze in Eq. (73) as

ρ̃q = −
∑

i

[
ϕ

q+
2,i ϕ

q+
1,i + ϕ

q−
2,i ϕ

q−
1,i

]
. (A.35)

In the end, one obtains

�even
pair,t(r) = δ0t

[
Upair(�, z) 0

0 Upair(�, z)

]
, �odd

pair,t(r) = 0, (A.36)

and

h̃q(r) =
[

Ũ q(�, z) 0
0 Ũ q(�, z)

]
. (A.37)
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