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There are strong interests in considering ultra-light scalar fields (especially axion) around a
rapidly rotating black hole because of the possibility of observing gravitational waves from
axion condensate (axion cloud) around black holes. Motivated by this consideration, we propose
a new method to study the dynamics of an ultra-light scalar field with self-interaction around a
rapidly rotating black hole, which uses the dynamical renormalization group method. We find
that for relativistic clouds, saturation of the superradiant instability by the scattering of the axion
due to the self-interaction does not occur in the weakly non-linear regime when we consider
the adiabatic growth of the cloud from a single superradiant mode. This may suggest that for
relativistic axion clouds, an explosive phenomenon called the Bosenova may inevitably happen,
at least once in its evolutionary history.
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1. Introduction

String theory provides us with an interesting scenario in which our universe contains plenty of
ultralight axion-like particles and is thus called the axiverse [1]. Detecting particles of this type will
provide us with a lot of information about physics beyond the Standard Model, or even a clue to the
string theory. In Ref. [1], the authors proposed that these axion-like particles may cause observable
astrophysical or cosmological phenomena, such as the polarization of CMB or the step-like features
in the matter power spectrum. In this paper, we will concentrate on the other possible phenomena
involving a black hole.

We consider a massive scalar field around a Kerr black hole. As is well known, a rotating black
hole possesses an ergoregion. If the negative energy field excitations allowed in the ergoregion fall
into the black hole, energy conservation implies that the external field gains energy from the black
hole. This is the superradiance, i.e., energy extraction from a black hole via waves, analogous to the
famous Penrose process [2].

Now, recall that the scalar field is massive. The mass makes the scalar field bounded around the
black hole. This bound state continues to gain energy by the superradiance and keeps growing, which
is called superradiant instability. Because we mainly concern QCD axion or axion-like particles from
string theory in this paper, we refer to such an unstable bound state as an axion cloud [1,3].

The growth rate of an axion cloud was calculated approximately in Refs. [4,5] and numerically in
Ref. [6]. These works show that the largest growth rate isωI ∼ 10−7M−1 in units of G = c = � = 1,
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where M is the mass of the black hole. ωI can be understood as the imaginary part of the scalar
field oscillation frequency ω. The largest growth rate is achieved when the effective gravitational
coupling governed by αg = μM is ∼ 1, with μ being the mass of the axion field. For example, if we
consider a solar-mass black hole, μ ∼ 10−10 eV gives the largest growth rate. For the superradiant
instability to be efficient within the age of the Universe, the mass of the scalar field has to be in the
range 10−20 ∼ 10−10 eV. Axion-like particles motivated by string theory naturally have a mass in
this range [7].

If ultralight particles beyond the Standard Model such as an axion exist, an axion cloud would form
around a black hole and interesting phenomena would happen. Similar to the photon emission from
a hydrogen atom, the axion cloud can emit gravitational waves by the transition between different
energy levels. Also, axion pair annihilation can result in gravitational wave emission [3,8]. Another
phenomenon is the loss of spin and energy of the black hole as the axion cloud grows. As a result, a
characteristic feature in black hole spin and mass distribution is expected [3,9].

Including the self-interaction of axions can have dramatic effects on the axion cloud. The self-
interaction of the axion is typically attractive, and thus when an axion cloud gets heavy enough,
this attractive force would lead to a collapse of the axion cloud. This collapse is called bosenova
and a burst of gravitational waves is expected during the collapse [3,10,11]. These phenomena have
attracted great interest owing to the possibility of their detection [12,13]. To prepare for the future
detection of axion clouds through observations of gravitational waves or astronomical observations
of black hole spins, precise analysis of the evolution of axion clouds is important.

To do so, we must correctly take into account the self-interaction of the axion. Only a few works
have discussed the self-interaction incisively. Numerical simulation [10,11] and analytic treatment
within the non-relativistic approximation [3] were carried out to show that the self-interaction causes
the bosenova. However, in the numerical simulations, there is a difficulty due to the huge hierarchy of
time scales between the growth rateωI and the dynamical time scaleωR. In Refs. [10,11], they used a
large amplitude axion cloud as the initial condition to overcome this problem. However, in a realistic
scenario, an axion cloud would start to evolve with a small amplitude seeded by fluctuation. To answer
the question of whether bosenova occurs in a realistic case, adopting a particular configuration with
a large amplitude as the initial condition would be difficult to justify. Also, the most interesting
case, in which the growth rate is maximized, is in the relativistic regime, so that the non-relativistic
approximation would not be satisfactory.

Apart from the bosenova, the self-interaction has one more important effect: the energy loss of
the axion cloud due to the scattering of the axion. Using the order estimate in Ref. [3], the energy
loss due to the self-interaction is typically more important than that due to the gravitational wave
emission when the axion cloud grows by superradiant instability, but this effect is usually ignored in
the literature. Our naive expectation is that when the cloud gets denser, this energy loss may balance
the superradiant instability. This is because the time scale of the energy gain scales as ∝ |A|0, while
the energy loss scales as ∝ |A|−4, where |A| is the amplitude of the cloud. Thus, superradiant growth
of the cloud should terminate in the weakly non-linear regime, and no explosive phenomena induced
by the strong non-linear effects should happen.

Our main focus of this paper is to clarify the effects of self-interaction on the dynamics of an axion
cloud whileavoiding the drawbacks in numerical simulation and non-relativistic approximation.
We use perturbation theory to tackle the problem of axion self-interaction. When we apply the
perturbation theory to a non-linear problem, we often encounter a secular term that destroys the
validity of the perturbation theory. We encounter the same difficulty in the problem that we are

2/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/4/043E02/6179819 by KYO

TO
 U

N
IVER

SITY M
edical Library user on 12 O

ctober 2022



PTEP 2021, 043E02 H. Omiya et al.

concerned with. To overcome this difficulty, we use the renormalization group (RG) method for
differential equations [14].

Using the RG method, we obtain the evolution equation that describes the long-term behavior
of the axion cloud composed of a single superradiant mode. Our main conclusion is that the axion
self-interaction would not terminate the superradiant instability by the energy loss within the validity
range of our approximation, contrary to our naive initial expectation. What we will find is that the
non-linearity accelerates the superradiant instability of the axion cloud because of the attractive
nature of axion self-interaction.

This paper is organized as follows. In Sect. 2, we review superradiant instability and how a growing
cloud around a rotating black hole is formed. In Sect. 3 we derive the evolution equation of the axion
cloud by the RG method. In Sect. 4 we analyze the evolution of the axion cloud by the equations
derived in Sect. 3. In Sect. 5, we make some comments on the recent paper REf. [15], the claim of
which may look conflicting with ours. Finally, we summarize our result and discuss the implication
of our result in Sect. 6. Since the RG method is important for our analysis, we provide two simple
examples of the RG method for differential equations inAppendixA that may help with understanding
the application of the RG method to the current problem. In this paper, we use G = c = � = 1 units,
unless otherwise stated.

2. Superradiant instability

In this section, we review the superradiant instability of an axion field around a Kerr black hole. For
a recent review on this topic, see Ref. [2].

We consider the following action for an axion field φ:

S =
∫

d4x
√−g

{
−1

2
gμν∂μφ∂νφ − μ2F2

a

(
1 − cos

(
φ

Fa

))}
. (1)

Here, Fa is the decay constant of axion and gμν is the metric of the Kerr spacetime, which gives the
line element

ds2 = −
(

1 − 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2 dtdϕ

+
[
(r2 + a2) sin2 θ + 2Mr

ρ2 a2 sin4 θ

]
dϕ2 + ρ2



dr2 + ρ2dθ2, (2)

with


 = r2 − 2Mr + a2 , ρ2 = r2 + a2 cos2 θ . (3)

There are two horizons in the Kerr spacetime specified by the solutions of 
 = 0, which are

r± = M ±
√

M 2 − a2. (4)

As we are interested in axions, we adopt the cosine type potential induced by the quantum effect [16].
From the action (1), the equation of motion for the axion field is(

�gφ − μ2Fa sin
(
φ

Fa

))
= 0. (5)

Here, �g is the d’Alembertian on the Kerr metric.
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In this section, we solve the linearized version of Eq. (5), which is(
�g − μ2)φ = 0. (6)

In the Kerr spacetime, separation of variables is possible [17]. We take

φ = Re
[
e−i(ωt−mϕ)Slmω(θ)Rlmω(r)

]
, (7)

as an ansatz for the axion field, to get

1

sin θ

d

dθ

(
sin θ

dSlmω

dθ

)
+
[

c2(ω) cos2 θ − m2

sin2 θ

]
Slmω = −�lm(ω)Slmω, (8)

d

dr

(



dRlmω

dr

)
+
[

K2(ω)



− μ2r2 − λlm(ω)

]
Rlmω = 0, (9)

where

c2(ω) = a2(ω2 − μ2), K(ω) = (r2 + a2)ω − am ,

λlm(ω) = −2amMω + a2ω2 +�lm(ω). (10)

�lm(ω) is the separation constant and has to be calculated numerically. Also, we normalize the
angular solution as ∫

d cos θ Slmω(θ)
2 = 1 . (11)

Following Refs. [4] and [6], we can show that this system develops instability, i.e., ωI = Im [ω] >
0. In the Kerr spacetime, there is a timelike Killing vector ξμ ≡ (∂t)

μ. Using the conservation of Tμν
and the Killing equation, we obtain

(Tμνξ
ν);μ = 0. (12)

Here, we introduce the ingoing Kerr coordinates (t̃, r, θ , ϕ̃) defined by

dt̃ = dt + r2 + a2



dr , dϕ̃ = dϕ + a



dr. (13)

Integrating Eq. (12) over t̃ = constant surface �, we obtain

− ∂

∂ t̃

(∫
�

√
−g̃00ρ2 sin θdrdθdϕ̃ Tμνξ

νnμ

)
=
∫
∂�

ρ2 sin θdθdϕ̃ Tμνξ
νkμ, (14)

where nμ = −δ0
μ and kμ = −δ1

μ. By substituting the ansatz (7) into Eq. (14), we find

2ωI

∫
�

√
−g̃00ρ2 sin θdrdθdϕ̃ T 0

0 = −2Mr+2π |Rlmω(r+)|2(|ω|2 − m�HωR), (15)

where �H is the angular velocity of the outer horizon given by �H ≡ a/2Mr+. Note that the
contribution to the right-hand side from the boundary at r = ∞disappears because we are considering
a bound state, which vanishes exponentially there. We refer to the real part of ω as ωR. Equation (15)
shows that the instability occurs when

|ω|2
ωR

< m�H (16)
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holds. Because the condition for the instability to occur is the same as the superradiance condition
ω < m�H ifωI � ωR, we will denote this unstable mode as the superradiant mode. The superradiant
mode grows exponentially around the black hole to develop a condensate of the axion field, which
is called an axion cloud.

There are several papers on the evaluation ofωI . In Ref. [4], the Wentzel-Kramers-Brillouin method
was used with the assumption μM � 1, and in Ref. [5], the matched asymptotic expansion method
was used with μM � 1. These works show that ωI is the largest in the parameter region with
μM ∼ 1. In this regime, ωI has to be calculated numerically [6,18]. For this purpose, the continued
fraction method is used, which shows that ωI takes the maximum value ωI/M ∼ 1.5 × 10−7 at
l = m = 1, a/M ∼ 1 and μM ∼ 0.42. We confirm that our new code using the continued fraction
methods to evaluate ωI consistently reproduces the results of Ref. [6].

3. Renormalization group analysis of an axion cloud

In this section, we formulate how to apply the RG method to the time evolution of an axion cloud.
We are interested in whether the dissipative effect of self-interaction terminates the instability or not.
Therefore, we will develop our formulation to second-order perturbation theory, where the dissipative
effect first appears. We assume that one can neglect the gravitational perturbation caused by the axion
field, for simplicity.

3.1. Derivation of the evolution equation

To consider the effect of the axion self-interaction, we solve Eq. (5) using perturbation theory. We
assume that the amplitude of axion field is small enough, which allows us to approximate Eq. (5) as

(�g − μ2)φ + λφ3 = 0, (17)

where λ = μ2/6F2
a . This means that we have approximated the potential of the axion as

V (φ) = μ2F2
a

(
1 − cos

(
φ

Fa

))
∼ μ2

2
φ2 − μ2

4!F2
a
φ4 . (18)

The negative sign of the term proportional to φ4 clearly indicates that the self-interaction of the axion
is attractive.

We solve Eq. (17) by expanding the solution in λ as

φ = φ(0) + λφ(1) + λ2φ(2) + · · · . (19)

Substituting Eq. (19) to Eq. (17), we obtain,

(�g − μ2)φ(0) = 0, (20)

(�g − μ2)φ(1) = −φ3
(0), (21)

(�g − μ2)φ(2) = −3φ2
(0)φ(1). (22)

Since we are interested in the dynamical evolution of an axion cloud, we take the fastest growing
superradiant mode as the zeroth-order solution:

φ(0) = A(t0)e
−i(ω0t−m0ϕ)Sl0m0ω0(θ)Rl0m0ω0(r)+ c.c., (23)
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where Sl0m0ω0(θ) and Rl0m0ω0(r) are the solutions of Eqs. (8) and (9) with ω0,I > 0. The label
(l0, m0,ω0) specifies the fastest growing superradiant mode that we are considering. A(t0) is the
amplitude of the cloud at t = t0, and c.c. denotes the complex conjugate. Here, we introduce an
arbitrary reference time t0, which is used in the RG method later. We first demonstrate the use of
the RG method with the first-order perturbation equation (21) in Sect. 3.1.1, and then proceed to the
second order in Sect. 3.1.2.

3.1.1. First-order perturbation
Using the retarded Green’s function Gret, the first-order equation (21) is formally solved as

φ(1) = −
∫ √−g(x′) d4x′ Gret(x, x′)φ3

(0)(x
′)+ (initial value). (24)

Here, the Green’s function is defined to satisfy

(�g − μ2)Gret(x, x′) = 1√−g(x)
δ(4)(x − x′). (25)

Separation of variables on Kerr space-time allows spectral decomposition of the Green’s function as

Gret(x, x′) = 1

2π

∑
l,m

∫
C

dω

2π
e−iω(t−t′)eim(ϕ−ϕ′)Slmω(θ)Slmω(θ

′)Gω
lm(r, r′), (26)

where

Gω
lm(r, r′) = 1

Wlm(ω)

(
Rr+

lmω(r)R
∞+
lmω (r

′)θ(r′ − r)+ Rr+
lmω(r

′)R∞+
lmω (r)θ(r − r′)

)
, (27)

and the function Wlm(ω) is the Wronskian of Rr+ and R∞+ defined by

Wlm(ω) = 

(
Rr+∂rR∞+ − R∞+∂rRr+) . (28)

The integration contour C is as shown in Fig. 1. As the integral over ω in Eq. (26) picks up poles
of the integrand, which correspond to zeros of the Wronskian, we need to choose the integration
contour C to pass above all the poles so that the Green’s function satisfies the retarded boundary
condition.

We introduced Rr+ and R∞± as the solutions of Eq. (9) satisfying the boundary conditions

Rr+ −→
⎧⎨
⎩e−i(ω−m�H )r∗ , (r → r+)

Ain(ω)
e−i

√
ω2−μ2r∗
r + Aout(ω)

e+i
√
ω2−μ2r∗
r , (r → +∞)

, (29a)

R∞+ −→
⎧⎨
⎩Bin(ω)e−i(ω−m�H )r∗ + Bout(ω)e+i(ω−m�H )r∗ , (r → r+)

e+i
√
ω2−μ2r∗
r , (r → +∞)

, (29b)

R∞− −→
⎧⎨
⎩B∗

out(−ω∗)e−i(ω−m�H )r∗ + B∗
in(−ω∗)e+i(ω−m�H )r∗ , (r → r+)

e−i
√
ω2−μ2r∗
r , (r → +∞)

, (29c)

where the superscript ∗ denotes the complex conjugate of the variable and r∗ is the tortoise coordinate
defined by dr∗ = (r2 + a2)
−1dr. The boundary condition for Rr+ (see Eq. 29a) implies that
there exist only ingoing waves at the outer horizon and that for R∞± (see Eq. 29b) means purely
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O

ωQNM

ωSR = ω0

Ω

C

ωI

ωR

Fig. 1. Line C shows the contour of integration on the complex plane of the frequency ω. ωSR and ωQNM

denote the frequency of the superradiant mode and that of the quasi-normal mode, respectively. The frequency
� denotes the frequency of the source.

outgoing/ingoing waves at infinity. The asymptotic forms at r → ∞ (see Eqs. 29a and 29b) determine
the value ofthe Wronskian as

Wlm(ω) = 2i
√
ω2 − μ2Ain(ω). (30)

At the frequency of the superradiant mode ω = ω0, Wlm(ω) vanishes. This is because superradi-
ant modes satisfy the ingoing boundary condition at the outer horizon and the decaying boundary

condition at infinity (we chose the Im
[√
ω2 − μ2

]
> 0 branch).

Substituting Eq. (26) into Eq. (24), we obtain

φ(1) = − 1

2π

∑
l,m

∫ 2π

0
dϕ′

∫ 1

−1
d cos θ ′

∫ +∞

r+
dr′ (r′2 + a2 cos2 θ ′)

×
∫ t

−∞
dt′
∫

C

dω

2π
e−iω(t−t′)eim(ϕ−ϕ′)Slmω(θ)Slmω(θ

′)Gω
lm(r, r′)φ3

(0)(x
′). (31)

Integration over ϕ′ gives δmm′ . In the present case, the source φ3
(0) (see Eq. 23 for the definition of

φ(0)) contains only m = m0 and m = 3m0 components. Therefore, the summation over m only picks
up m = m0 and m = 3m0. Notice that if we take the integration contours carefully so that both t′ and
ω integrals converge, we can exchange their order. We first perform the integration with respect to t′.
When Im [�− ω] > 0, which is satisfied by taking the contour C as shown in Fig. 1, the integration
over t′ gives

e−iωt
∫ t

−∞
dt′ ei(ω−�)t′ = e−i�t

i(ω −�)
. (32)

Next, we integrate over ω. The form of this integration is∫
C

dω

2π i

e−i�t

ω −�
Slmω(θ)Slmω(θ

′)Gω
lm(r, r′)φ3

(0)(x
′). (33)

At large |ω|, the integrand falls faster than |ω|−2, if the mode functions Rlmω and Slmω do not grow
faster than |ω|0 as |ω| → ∞. This |ω|−2 factor partly comes from the 1/ω factor in the Wronskian.

Now, we modify the integration contour C to a large semi-circle in the upper half of the plane and
a small circle around the pole at ω = �. As we have stated above, the integrand falls off as fast as
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∝ |ω|−2, and the integral at a large semicircle vanishes. Therefore, all contributions to the integral
come from the pole at ω = �.

In Eq. (31), the source contains frequencies with ω = ω0 + 2iω0,I and 3ω0, which are the only
frequencies that appear in the first-order particular solution:

φ(1)(x) = −
∑

l

[
A3e−3i(ω0t−m0ϕ)Sl3m03ω0(θ)f

(1)
l3m03ω0

(r)

+3A|A|2e2ω0,I te−i(ω0t−m0ϕ)Slm0ω0+2iω0,I (θ)f
(1)

lm0ω0+2iω0,I
(r)
]

+ c.c.

+ (homogeneous solution). (34)

Here, f (1)l3m03ω0
(r) and f (1)lm0ω0+2iω0,I

(r) are defined by

f (1)l3m0ω
(r) ≡

∫
dr′d cos θ ′ (r′2 + a2 cos2 θ ′)Sl3m0ω(θ

′)Gω
l3m0

(r, r′)

× Sl0m0ω0(θ
′)3Rl0m0ω0(r

′)3, (35)

f (1)lm0ω
(r) ≡

∫
dr′d cos θ ′(r′2 + a2 cos2 θ ′)Slm0ω(θ

′)Gω
lm0
(r, r′)

× |Sl0m0ω0(θ
′)|2Sl0m0ω0(θ

′)|Rl0m0ω0(r
′)|2Rl0m0ω0(r

′). (36)

It is easy to see from Eq. (34) that the perturbative solution grows exponentially so that the solution
would break the assumption that the amplitude of the perturbation is small. We use the RG method to
avoid the breakdown of the perturbative expansion (see Appendix A for a review on the RG method).

To apply the RG method, we identify the term that diverges in the ω0,I → 0 limit. Note that we are
considering the superradiant mode which satisfiesω0,I/ω0,R � 1. Recall that the Wronskian Wlm(ω)

contained in the Green’s function (26) has a zero at (ω, l, m) = (ω0, l0, m0). From the expression
(36), we see that the Green’s function in f (1)l0m0ω0+2iω0,I

(r) contains the factor 1/Wl0m0(ω0 + 2iω0,I ),
which diverges for ω0,I → 0. Taking the leading term in the Taylor expansion of the Wronskian
around ω = ω0,

Wlm(ω) ∼ 2i
√
ω2

0 − μ2αω0(ω − ω0)+ . . . , (37)

we can extract the leading term in f (1)l0m0ω0+2iω0,I
(r) in the limit ω0,I → 0 as

f (1)l0m0ω0+2iω0,I
(r) ∼

∫
dr′d cos θ ′(r′2 + a2 cos2 θ ′)|Sl0m0ω0(θ

′)|2Sl0m0ω0(θ
′)2

× Rl0m0ω0(r)Rl0m0ω0(r
′)

2iαω0

√
ω2

0 − μ22iω0,I Aout

|Rl0m0ω0(r
′)|2Rl0m0ω0(r

′)

≡ C(1)
l0m0ω0

Rl0m0ω0(r), (38)

which we call a divergent term, although, strictly speaking, it is not divergent since ω0,I is small but
not vanishing.

We can claim that the term of O
(
ω−1

0,I

)
in C(1)

l0m0ω0
is purely imaginary. In the limit ω0,I → 0, the

equations for the radial and angular mode functions (8) and (9) are both real, and hence Sl0m0ω0 and
Rl0m0ω0 can be chosen to be real.Also,αω0 and Aout, which are calculated through the mode functions,
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are real in this limit. Thus, the leading term in C(1)
l0m0ω0

is real except for the factor
√
ω2

0 − μ2, which
is purely imaginary in the limit, ω0,I → 0, because a supperradiant state is a bound state satisfying
ω0,R < μ. To summarize, we have

Re
[
C(1)

l0m0ω0

]
= O(ω0

0,I ), (39)

Im
[
C(1)

l0m0ω0

]
= O(ω−1

0,I ). (40)

Using the RG method, we cancel this divergence of Im
[
C(1)

l0m0ω0

]
by adding the homogeneous

solution with an appropriate amplitude. This procedure is the same as inserting the counterterms in
the renormalization in quantum field theory (QFT). After this procedure, the first-order perturbative
solution is given by

φ =
(

A + 3λC̃(1)
l0m0ω0

A|A|2e2ω0,I t0
)

e−i(ω0t−m0ϕ)Sl0m0ω0(θ)Rl0m0ω0(r)

− λ

⎛
⎝ ∞∑

l=3m0

[
A3e−3i(ω0t−m0ϕ)Sl3m03ω0(θ)f

(1)
l3m03ω0

(r)
]

+
∞∑

l=m0

[
3A|A|2e2ω0,I te−i(ω0t−m0ϕ)Slm0ω0+2iω0,I (θ)f

(1)
lm0ω0+2iω0,I

(r)
]⎞⎠

+ c.c., (41)

where

C̃(1)
l0m0ω0

≡ C(1)
l0m0ω0

+ δC(1)
l0m0ω0

. (42)

We explicitly added δC(1)(= O(ω0
0,I )) to express the arbitrariness in identifying the non-divergent

part (see Appendix B for the relation between the choice of δC(1) and the definition of the amplitude
A(t)). This is the same as choosing the scheme of renormalization in QFT.

Now, we demand that the expression (41) satisfies the RG equation:

∂φ

∂t0
= 0. (43)

We substitute Eq. (41) into the RG equation, to obtain the evolution equation for the amplitude as

dA(t0)

dt0
= −6λω0,I C̃(1)

l0m0ω0
A(t0)|A(t0)|2e2ω0,I t0 + O(λ2). (44)

Redefining the amplitude to incorporate the exponentially growing factor contained in the zeroth-
order solutionφ(0) will be more convenient. Namely, we define A(t) ≡ A(t)eω0,I t , and then A satisfies
the following equation,

dA
dt

= ω0,I A − 6λω0,I C̃(1)
l0m0ω0

A|A|2 . (45)
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We decompose this equation into the amplitude and phase parts by writing A in the form A =
|A|(t)e−i�(t) to obtain

d|A|
dt

= ω0,I |A| − 6λω0,I Re
[
C̃(1)

l0m0ω0

]
|A|3, (46)

d�

dt
= 6λω0,I Im

[
C̃(1)

l0m0ω0

]
|A|2. (47)

Substituting the solution of Eq. (45) to Eq. (41), and setting t0 = t, we finally obtain the
renormalized first-order perturbative solution as

φ =A(t)e−i(ω0,Rt−m0ϕ)Sl0m0ω0(θ)Rl0m0ω0(r)

− λ

⎛
⎝ ∞∑

l=3m0

A3(t)e−3i(ω0,Rt−m0ϕ)Sl3m03ω0(θ)f
(1)

l3m03ω0
(r)

+
∞∑

l>m0

[
3A(t)|A(t)|2e−i(ω0,Rt−m0ϕ)Slm0ω0+2iω0,I (θ)f

(1)
lm0ω0+2iω0,I

(r)
]

+ 3A(t)|A(t)|2e−i(ω0,Rt−m0ϕ)δφ(1)

)
+ c.c., (48)

where

δφ(1) ≡ Sl0m0ω0+2iω0,I (θ)f
(1)

l0m0ω0+2iω0,I
(r)− C̃(1)

l0m0ω0
Sl0m0ω0(θ)Rl0m0ω0(r) (49)

is the non-divergent part of f (1)l0m0ω0+2iω0,I
(r). Two types of modes appear in Eq. (48). The first term

in the parentheses has the frequency 3ω0,R > μ, which means that the mode is unbounded and can
dissipate to infinity. The second and third terms have the frequency ω0,R < μ, and thus these are
bounded and cannot dissipate energy to infinity. Also, an important property common to all modes
is that they satisfy the superradiant condition ω < m�H . Therefore, dissipation of the energy of the
cloud back to the black hole does not occur in our setup describing the adiabatic evolution starting
with a single dominant superradiant mode.

3.1.2. Second-order perturbation
Now, we proceed to the second-order analysis to incorporate the dissipative effect from scattering
via self-interaction. This calculation is almost in parallel to the first-order one: we first solve Eq. (22)
formally, then identify the divergent part in the formal solution, and finally apply the RG method to
eliminate this divergence.

A formal solution of Eq. (22) is given by

φ(2) = −3
∫ √−g(x′)d4x′Gret(x, x′)φ2

(0)φ(1) + (initial value). (50)

As we have seen before, the part that diverges in the limit ω0,I → 0 originates from the Wronskian
Wl0m0(ω0). Using the spectral representation (26), we see that φ(2) contains the Wronskian in the
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following part of the solution:

φ(2) ⊃3
∑
l,l′

∫
d cos θ ′

∫
dr′(r′2 + a2 cos2 θ ′)A|A|4e4ω0,I te−i(ω0t−m0ϕ)

× Slm0ω0+4iω0,I (θ)Slm0ω0+4iω0,I (θ
′)Gω0+4iω0,I

lm0
(r, r′)

×
(

S∗
l0m0ω0

(θ ′)2R∗
l0m0ω0

(r′)2Sl′3m03ω0(θ
′)f (1)l′3m03ω0

(r′)

+6|Sl0m0ω0(θ
′)|2|Rl0m0ω0(r

′)|2Sl′m0ω0+2iω0,I (θ
′)f (1)l′m0ω0+2iω0,I

(r′)

+ 3Sl0m0ω0(θ
′)2Rl0m0ω0(r

′)2S∗
l′m0ω0+2iω0,I

(θ ′)f (1)∗l′m0ω0+2iω0,I
(r′)
)

. (51)

From this expression we identify the divergent part as

3C(2)
l0m0ω0

A|A|4e4ω0,I te−i(ω0t−m0ϕ)Sl0m0ω0Rl0m0ω0 , (52)

where C(2) is defined by

C(2)
l0m0ω0

= 1

2iαω0

√
ω2

0 − μ24iω0,I Aout

∑
l′

∫
d cos θ ′

∫
dr′

× (r′2 + a2 cos2 θ ′)Sl0m0ω0(θ
′)Rl0m0ω0(r

′)

×
(

S∗
l0m0ω0

(θ ′)2R∗
l0m0ω0

(r′)2Sl′3m03ω0(θ
′)f (1)l′3m03ω0

(r′)

+6|Sl0m0ω0(θ
′)|2|Rl0m0ω0(r

′)|2Sl′m0ω0+2iω0,I (θ
′)f (1)l′m0ω0+2iω0,I

(r′)

+3Sl0m0ω0(θ
′)2Rl0m0ω0(r

′)2S∗
l′m0ω0+2iω0,I

(θ ′)f (1)∗l′m0ω0+2iω0,I
(r′)
)

. (53)

In the same way as for the first-order solution (see Eq. 48 and discussion below), there are two
contributions to C(2). One is due to the ω > μ modes, which dissipate energy to infinity, and the
other is due to the ω < μ modes, which decay at infinity and conserve energy.

There is another type of source which produces divergence in the second-order solution. This
source comes from the homogeneous solution that we added to eliminate the divergent part in the
first-order solution. Using the Green’s function, the contribution to the second-order solution from
this type of source is

− 9|A|2e2ω0,I t0

∫ √−g(x′) d4x′Gret(x, x′) φ2
(0)(x

′)

×
(

AC̃(1)
l0m0ω0

e−i(ω0t′−m0ϕ
′)Sl0m0ω0(θ

′)Rl0m0ω0(r
′)+ c.c.

)
. (54)

We identify the divergent part in this expression as

− 9A|A|4e2ω0,I t0e2ω0,I t
(

2C(1)
l0m0ω0

C̃(1)
l0m0ω0

+ C̃(1)∗
l0m0ω0

C(1)
l0m0ω0

)
×e−i(ω0t−m0ϕ)Sl0m0ω0(θ)Rl0m0ω0(r)+ c.c.. (55)
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We choose the initial condition for φ(2) at t = t0 to eliminate the divergence derived above. This
turns out to be adding the homogeneous solution

− 3λ2
((

C(2)
l0m0ω0

+ δC(2)
l0m0ω0

)
−3
(

2C(1)
l0m0ω0

C̃(1)
l0m0ω0

+ C̃(1)∗
l0m0ω0

C(1)
l0m0ω0

))
× A|A|4e4ω0,I t0e−i(ω0t−m0ϕ)Sl0m0ω0Rl0m0ω0 (56)

to φ(2). Here, δC(2)
l0m0ω0

represents the arbitrariness in the choice of the non-divergent part.
Now, we can derive the amplitude equation by imposing the RG equation as in the first-order case.

Taking care of the time-dependence of the amplitude, we obtain

dA

dt
+ 3λδC(1)

l0m0ω0

(
2|A|2 dA

dt
+ A2 dA∗

dt

)
e2ω0,I t

= −6λω0,I C̃(1)
l0m0ω0

A|A|2e2ω0,I t + 12λ2ω0,I C̃(2)
l0m0ω0

A|A|4e4ω0,I t , (57)

where C̃(2)
l0m0ω0

is defined by

C̃(2)
l0m0ω0

≡ Ĉ(2)
l0m0ω0

+ δC(2)
l0m0ω0

− 3

2
C(1)

l0m0ω0

(
2δC(1)

l0m0ω0
+ δC(1)∗

l0m0ω0

)
, (58)

and Ĉ(2)
l0m0ω0

is defined by

Ĉ(2)
l0m0ω0

≡ C(2)
l0m0ω0

− 3

2
C(1)

l0m0ω0

(
2C(1)

l0m0ω0
+ C(1)∗

l0m0ω0

)
. (59)

From the expression (58), it seems that the divergence in the second-order perturbation could be
eliminated by adjusting the first-order counterterm δC(1)

l0m0ω0
. However, we see in Appendix B that

this is not true, at least for the real part of the divergence.
We see the cancellation of terms of O(ω−2

0,I ) in Ĉ(2)
l0m0ω0

. In Eq. (53), the O(ω−2
0,I ) terms come from

l = l0, m = m0 mode, which are

C(2)
l0m0ω0

∣∣
O(1/ω2

I )
= 1

2iαω0

√
ω2

0 − μ24iω0,I Aout

∫
d cos θ ′

∫
dr′

× (r′2 + a2 cos2 θ ′)Sl0m0ω0(θ
′)Rl0m0ω0(r

′)

×
(

6|Sl0m0ω0(θ
′)|2|Rl0m0ω0(r

′)|2Sl0m0ω0+2iω0,I (θ
′)f (1)l0m0ω0+2iω0,I

(r′)

+3Sl0m0ω0(θ
′)2Rl0m0ω0(r

′)2S∗
l0m0ω0+2iω0,I

(θ ′)f (1)∗l0m0ω0+2iω0,I
(r′)
)

. (60)

Notice that l = l0, m = m0 contributions to C(2)
l0m0ω0

and
(

C(1)
l0m0ω0

)2
can be put together in the

following form:
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6

2iαω0

√
ω2

0 − μ24iω0,I Aout

∫
d cos θ ′

∫
dr′(r′2 + a2 cos2 θ ′)Sl0m0ω0(θ

′)Rl0m0ω0(r
′)

× |Sl0m0ω0(θ
′)|2|Rl0m0ω0(r

′)|2Sl0m0ω0+2iω0,I (θ
′)f (1)l0m0ω0+2iω0,I

(r′)− 3C(1)2
l0m0ω0

= 6

2iαω0

√
ω2

0 − μ24iω0,I Aout

∫
d cos θ ′

∫
dr′(r′2 + a2 cos2 θ ′)

× Sl0m0ω0(θ
′)|Sl0m0ω0(θ

′)|2Rl0m0ω0(r
′)|Rl0m0ω0(r

′)|2

×
(

Sl0m0ω0+2iω0,I (θ
′)f (1)l0m0ω0+2iω0,I

(r′)− C(1)
l0m0ω0

Sl0m0ω0Rl0m0ω0

)

= 6

2iαω0

√
ω2

0 − μ24iω0,I Aout

∫
d cos θ ′

∫
dr′(r′2 + a2 cos2 θ ′)

× Sl0m0ω0(θ
′)|Sl0m0ω0(θ

′)|2Rl0m0ω0(r
′)|Rl0m0ω0(r

′)|2δφ(1). (61)

Because the function δφ(1) does not contain an O(ω−1
0,I ) factor (see Eq. 49), we see that the O(ω−2

0,I )

factor in C(2)
l0m0ω0

is safely cancelled by
(

C(1)
l0m0ω0

)2
.

Solutions of Eq. (57) describe the long time behavior of the axion cloud, by which we can exam-
ine whether the self-interaction of the axion terminates the superradiant instability or not. To solve
Eq. (57), we need the values of the coefficients C(1)

l0m0ω0
and C(2)

l0m0ω0
. Unfortunately, we cannot calcu-

late C(1)
l0m0ω0

or C(2)
l0m0ω0

analytically and must calculate them numerically, because of the complexity
of the Kerr space-time. We present the results of numerical calculations in Sect. 4. Note that calcula-
tions of these quantities must be accurate relatively up to O(ω0,I/ω0,R) to capture the divergent part
in the solution correctly.

3.2. Behavior of the amplitude equation

Before calculating the numerical coefficients, we see some analytic features of the evolution equation
(57). In this section, we abbreviate the subscripts l0, m0 and ω0, for brevity. First, we comment on
the validity of the perturbative renormalization. In the same way as for Eqs. (46) and (47), we
can rewrite Eq. (57) as the evolution equations of the amplitude and the phase by substituting
A = |A|(t)e−ω0,I t−i�(t), to obtain

1 + 9λRe
[
δC(1)

] |A|2
ω0,I

d|A|
dt

+ 3λIm
[
δC(1)

]
|A|3 δω

ω0,I

= |A| − 6λRe
[
C̃(1)

]
|A|3 + 9λRe

[
δC(1)

]
|A|3 + 12λ2Re

[
C̃(2)

]
|A|5, (62)

and

(1 + 3λRe
[
δC(1)

]
|A|2) δω

ω0,I
− 9λIm

[
δC(1)

] 1

ω0,I
|A|d|A|

dt

= 6λIm
[
C̃(1)

]
|A|2 − 9λIm

[
δC(1)

]
|A|2 − 12λ2Im

[
C̃(2)

]
|A|4 , (63)

neglecting the terms of higher order in λ. Here, the frequency shift δω is defined by

δω ≡ d�

dt
. (64)
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The explicit dependence on the ambiguous terms δC(1) and δC(2) up to O(λ2) is

1

ω0,I

d|A|
dt

=|A| − 6λRe
[
C(1) + δC(1)

]
|A|3 + 12λ2Re

[
Ĉ(2) + δC(2)

]
|A|5

+ 18λ2Re
[
δC(1)

(
2δC(1) + δC(1)∗)] |A|5, (65)

δω

ω0,I
=6λIm

[
C(1) + δC(1)

]
|A|2 − 12λ2Im

[
Ĉ(2) + δC(2)

]
|A|4

+ 18λ2Im
[
2C(1)δC(1)∗ − δC(1)

(
2δC(1) + δC(1)∗)] |A|4. (66)

From Eqs. (65) and (66), we find that the evolution of the amplitude and the frequency shift depends
on the renormalization scheme, i.e., how to choose δC(1) and δC(2). In Appendix B, we show these
choices are related to the definition of the amplitude.
δω is expected to have a scheme-independent meaning. Therefore, the evolution equation for δω,

1

ω0,I

dδω

dt
= 2δω

(
1 −

(
Im
[
Ĉ(2) + δC(2)

]
+ 3Re

[
C(1)

]
Im
[
C(1)

]

+Re
[
6C(1) + 9δC(1)

]
Im
[
δC(1)

]) δω/ω0,I

3Im
[
C̃(1)

]2

)
, (67)

becomes scheme-independent except for the terms of O(ω0,I ). However, in order to obtain the
evolution equation for δω up to O(λ2), we need to proceed our calculation one order higher, which
turns out to be technically quite challenging. Below, instead of pursuing to obtain the scheme-
independent equation valid up to O(λ2), we choose some schemes by adding conditions that specify
δC(1) and δC(2)without the knowledge of a higher-order perturbation, and see the qualitative behavior
of the cloud.

3.2.1. Minimal subtraction scheme
One scheme is to choose δC(1) = 0 and δC(2) = 0, which corresponds to minimally subtracting the
divergent terms. This choice makes the RG equation quite simple, as one can see from Eqs. (65) and
(66). After taking this scheme, the evolution equations of the amplitude and the phase are given by

1

ω0,I

d|A|
dt

= |A| − 6λRe
[
C(1)

]
|A|3 + 12λ2Re

[
Ĉ(2)

]
|A|5 , (68)

δω

ω0,I
= 6λIm

[
C(1)

]
|A|2 − 12λ2Im

[
Ĉ(2)

]
|A|4. (69)

A qualitative behavior of the axion cloud can be read off from Eq. (68). When the amplitude is

|A|2 =
Re
[
C(1)

]⎛⎝1 ±
√

1 − 4Re
[
Ĉ(2)

]
3|Re[C(1)]|2

⎞
⎠

4λRe
[
Ĉ(2)

] , (70)

the right-hand side of Eq. (68) vanishes. However, when Eq. (70) is not a positive real number,
this immediately indicates the indefinite growth of the amplitude and eventual breakdown of the
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perturbative expansion. By contrast, if Eq. (70) is a positive real number, then evolution of the axion
cloud may terminate at this amplitude.

Let us analyze the case when the saturation occurs in detail. As we shall confirm later, the
attractive nature of the self-interaction implies Re

[
C(1)

]
< 0. This means that Re

[
C(1)

]
/λ < 0

irrespectively of the signature of λ, which is assumed in the following discussion. Then, we can

assume Re
[
Ĉ(2)

]
< 0, since otherwise the right-hand side of Eq. (70) is always negative. When

Re
[
Ĉ(2)

]
� − ∣∣Re

[
C(1)

]∣∣2, the saturation occurs at

|A|2 ∼ 1

2λ

√
3
∣∣∣Re

[
Ĉ(2)

]∣∣∣
. (71)

Here, we adopt the appropriate sign in the right-hand side of Eq. (70) so as to make it positive. When

− ∣∣Re
[
C(1)

]∣∣2 � Re
[
Ĉ(2)

]
< 0, the saturation of the amplitude occurs at

|A|2 ∼ 1

6λ|Re
[
C(1)

] | . (72)

The saturation is likely to occur in the weakly non-linear regime, if there is some hierarchy in

the magnitudes of coefficients, i.e., if
∣∣∣Re

[
Ĉ(2)

]∣∣∣ � ∣∣Re
[
C(1)

]∣∣2 or
∣∣∣Re

[
Ĉ(2)

]∣∣∣ � ∣∣Re
[
C(1)

]∣∣2.

However, we should recall that we assumed Re
[
Ĉ(2)

]
< 0 at the very beginning of this discussion,

which we will find later not to be the case.

3.2.2. Dissipative scheme
Other than the minimal subtraction scheme, we can take the scheme in which the time evolution of the
amplitude is totally governed by the dissipative energy loss to infinity. Instead of putting δC(1,2) = 0,
we demand that the non-dissipative part in the right-hand side of the amplitude equation (65) is set
to 0. To do so, we must identify the dissipative part of the C(2). With the aid of the flux-balance
equation, we identify

C(2)diss
l0m0ω0

=
√

9ω2
0 − μ2

∑
l |jl3m03ω0 |2

2π(ω0 − m0�H )(r2+ + a2)
(∫

dθ |Sl0m0ω0 |2
) (73)

as the dissipative part in the C(2) (see appendix C for the detail of the derivation). We observe that
C(2)diss is real except for the imaginary part of ω0. Therefore, the imaginary part is suppressed by
ω0,I and thus we treat C(2)diss as a purely real number.

Now, the scheme which respects the dissipation is realized by taking

Re
[
δC(1)

]
= −Re

[
C(1)

]
, (74)

Re
[
δC(2)

]
= −Re

[
Ĉ(2)cons

]
− 9

2
Re
[
C(1)

]2
. (75)

Here, we defined the non-dissipative part of Ĉ(2) as

Ĉ(2)cons ≡ Ĉ(2) − C(2)diss. (76)
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Note that Re
[
C(1)

]
is also non-dissipative, and suppressed by ω0,I compared with C(1) itself. This

fact explains why we choose Re
[
δC(1)

]
so as to eliminate Re

[
C(1)

]
in Eq.(74). Because Im

[
C(1)

]
and Im

[
Ĉ(2)

]
start with O(ω−1

0,I ), we cannot eliminate these with δC(1) and δC(2), which is O(ω0
0,I ).

Therefore, since the imaginary parts do not contribute to the evolution equation of the amplitude, we
simply take

Im
[
δC(1)

]
= 0, (77)

Im
[
δC(2)

]
= 0. (78)

After adopting this scheme, amplitude equations (65) and (66) are

1

ω0,I

d|A|
dt

= |A| + 12λ2C(2)diss|A|5 , (79)

δω

ω0,I
= 6λIm

[
C(1)

]
|A|2 − 12λ2

(
Im
[
Ĉ(2)

]
+ 3Re

[
C(1)

]
Im
[
C(1)

])
|A|4 . (80)

Eq. (79) clearly shows that the saturation of the amplitude occurs when

|A|4 = − 1

12λ2C(2)diss
, (81)

which takes the same form as Eq. (71), but with Ĉ(2) replaced by the dissipative part C(2)diss. As
seen trivially from Eq.(79), this saturation occurs irrespective of the sign of λ.

However, we should be careful with whether the obtained saturation is real or not. The validity of
our approximation can be examined by checking if the non-linearity is already important or not at
the saturation amplitude. For this purpose, we can compare the two terms in the right-hand side of
Eq. (80). If the higher-order term dominates, i.e., if∣∣∣∣∣∣

Im
[
Ĉ(2)

]
+ 3Re

[
C(1)

]
Im
[
C(1)

]
√

3Im
[
C(1)

] |√C(2)diss

∣∣∣∣∣∣ � 1 , (82)

it would be a sign of the breakdown of the perturbative expansion.
The above arguments tell us the qualitative behavior of the axion cloud and show the conditions

for the saturation to occur in the minimal subtraction scheme and dissipative scheme. We will see
in the next section that both schemes fail to show the existence of saturation. We understand that
these arguments are still insufficient to conclude the absence of saturation, because there might be
some other RG schemes that realize the saturation. However, we think that the absence of saturation
in both distinctive schemes seems to be strong evidence. One might be interested in up to which
epoch our approximate treatment can be justified. To check this, we look at the size of the amplitude
λ|A|2 and the relative magnitude of the frequency shift δω/ω0,R. As long as the perturbation theory
is valid, these quantities must stay small.

4. Numerical results

In this section, we present the numerical calculation of the amplitude equation. In Sect. 4.1, we
concentrate on the attractive self-interaction, and in Sect. 4.2 we comment on the repulsive interaction.
We used Mathematica for numerical calculation.
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4.1. An example of the time evolution of the amplitude equation

Here, we present the time evolution of the axion cloud with the fastest growing mode. First, we
will solve the RG equation numerically with the minimal subtraction scheme and the dissipative
scheme, then we compare the two schemes to see whether the results change. After examples of
the time evolution, we survey the (μM , a/M ) plane to examine whether there exist some parameter
region in which the instability terminates.

4.1.1. Examples of time evolution
As an example, we present the time evolution of the frequency shift δω in the case when the mass
of the axion and the spin parameter of the central black hole are μM = 0.42 and a/M = 0.99,
respectively. We consider the cloud evolved from a single mode with l0 = m0 = 1. With the lowest
overtone number n0 = 0, this parameter set gives the growth rate of the axion cloud as

MωI ∼ 1.5038 × 10−7, (83)

which is nearly the maximum and thus most interesting for realistic observations.
In Table 1, the calculated numerical coefficients that appear in the renormalization group equation is

shown. We observe that the real parts of C(1) and Ĉ(2) are both suppressed compared to its imaginary
part, as is expected from the order counting with respect to ω0,I .

In Fig. 2, the time evolution tracks of the frequency shift δω in the two schemes introduced in
Sect. 3.2 are shown. As a representative case, we adopt the set of parameters given by l0 = m0 =
1, n0 = 0,μM = 0.42 and a/M = 0.99. The horizontal axis is the normalized time

τ := ω0,I t. (84)

The frequency shift blows up in the minimal subtraction scheme. This directly indicates that the
breakdown of the perturbation theory eventually occurs. On the other hand, saturation occurs in the
dissipative scheme, as expected by construction. However, the fractional frequency shift δω/ω0,R is
already larger than unity when the saturation occurs. Therefore, although the qualitative behavior
seems different, both schemes indicate the breakdown of the perturbation.

In the small-amplitude regime, non-linearity is small and the frequency shift stays small. In this
regime, the difference between the two schemes is negligibly small. However, eventually, non-
linearity starts to affect the evolution. In the present case, non-linearity makes the cloud more

unstable, and, finally, the frequency shift gets large. This is the consequence of Re
[
Ĉ(2)

l0m0ω0

]
> 0 in

the minimal subtraction scheme and that of the condition (82) in the dissipative scheme, as noted in
the previous section.

Positivity of Re
[
Ĉ(2)

l0m0ω0

]
could be understood as follows. Note that the m = m0 mode behaves

as an “almost” bound state as we have mentioned below Eq. (48) (we write “almost” because the
boundary condition at the horizon is different from the bound state). Owing to the attractive nature
of the axion potential (see Eq. 18), the interaction energy of the axion cloud is negative and quartic in
amplitude A. This negative potential energy accelerates the increase of the amplitude, which results

in the positive sign of Re
[
Ĉ(2)

l0m0ω0

]
.

Since our calculation is based on the perturbation theory, time evolution in the large frequency
shift regime is not trustable. One might be interested in to what extent our approximate solution
can be used as the initial condition for the dynamical simulation. For this purpose, we estimate
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Fig. 2. (Left) The red solid line and blue dashed line show the time evolution of the amplitude for l0 = m0 =
1, n0 = 0, μM = 0.42 and a/M = 0.99 with the minimal subtraction scheme and the dissipative scheme,
respectively. The horizontal axis is the normalized time τ := ω0,I t. The black dotted line shows the time when
the relative difference of the frequency shift in two schemes is 10%, which we adopt for the criterion of the
validity of our solution. The black solid line shows the time when the blow-up of the frequency shift occurs in
the minimal subtraction scheme. (Right) The red and blue dashed lines show the inverse time scale of the axion
cloud evolution δ̇ω/δω normalized by ω0,I in the minimal subtraction scheme and the dissipative scheme,
respectively.

Table 1. Numerical values of C(1)
l0m0ω0

, Ĉ(2)
l0m0ω0

and C(2)diss
l0m0ω0

for the l0 = m0 = 1, n0 = 0, μM = 0.42, a/M =
0.99 case.

C(1)
l0m0ω0

Ĉ(2)
l0m0ω0

C(2)diss
l0m0ω0

−7.82 × 10−3 − 2.33 × 102i 1.54 × 10−4 + 8.10 × 10i −1.73 × 10−10

the time scale of the successive non-linear evolution beyond the weakly non-linear regime in the
minimal subtraction scheme. As shown in Fig. 2 as a dotted vertical line, the time beyond which
our renormalized solution cannot be trusted is around τ ∼ 12, where we adopt the criterion for the
breakdown of the perturbative solution that the difference in the frequency shifts in two schemes
is greater than 10%. Also, the time when the blow-up of the amplitude occurs is around τ ∼ 13.5
(the solid vertical line in Fig. 2). Therefore, the required time for the cloud to blow up after the
perturbative approximation breaks down is estimated to be O(1) in the unit of the normalized time
τ . This indicates that tracking the succeeding non-linear evolution by a numerical simulation with
the initial data provided by the current method would still be computationally expensive.

On the other hand, the time scale of the evolution ˙δω/δω/ω0,I is still O(ω−1
0,I ) during the above

intermediately non-linear regime (see the right-hand panel of Fig. 2). This is still much larger than
the dynamical time scale ω−1

0,R. Hence, the adiabatic approximation is still valid at this epoch.
We changed the axion mass μM and the spin parameter a/M to see if the breakdown of the renor-

malized perturbation before the saturation of amplification is a universal feature of the relativistic
cloud. Figure 3 shows the evolution of the frequency shift for l0 = m0 = 1, 2 modes adopting the
minimal subtraction scheme and the dissipative scheme. Table 2 shows the frequency and the growth

rate of these modes as well as Re
[
C(1)

]
, Re

[
Ĉ(2)

]
and C(2)diss. We confirm that the perturbative

expansion also breaks down as the frequency shift gets large in these cases.
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Fig. 3. Left- and right-hand panels show the evolution of the frequency shift with the minimal subtraction
scheme and the dissipative scheme, respectively. The top two panels show l0 = m0 = 1 modes and the
bottom two panels show l0 = m0 = 2 modes. Each line corresponds to the different (a/M ,μM , l0, m0, n0)

modes. The red solid line, red dotted line, black dashed line, pink dotted, blue solid line, green dotted line, and
black purple line correspond to (0.99, 0.42, 1, 1, 0), (0.99, 0.42, 1, 1, 1), (0.99, 0.3, 1, 1, 0), (0.9, 0.2, 1, 1, 0),
(0.99, 0.88, 2, 2, 0), (0.99, 0.42, 2, 2, 0), and (0.9, 0.57, 2, 2, 0) modes, respectively.

Table 2. Growth rate of the mode we have calculated. We also present Re
[
C(1)

l0m0ω0

]
, Re

[
Ĉ(2)

l0m0ω0

]
and C(2)diss

l0m0ω0
.

(a/M ,μM , l0, m0, n0) MωR MωI Re
[
C(1)

l0m0ω0

]
Re
[
Ĉ(2)

l0m0ω0

]
C(2)diss

l0m0ω0

(0.99,0.42,1,1,0) 0.4088 1.5038 × 10−7 −7.82 × 10−3 1.54 × 10−4 −1.73 × 10−10

(0.99,0.42,1,1,1) 0.4151 5.3621 × 10−8 −1.99 × 10−3 5.38 × 10−6 −1.23 × 10−11

(0.99,0.3,1,1,0) 0.2963 2.6806 × 10−8 −2.95 × 10−3 1.99 × 10−5 −2.20 × 10−11

(0.9,0.2,1,1,0) 0.1990 1.5562 × 10−9 −1.17 × 10−3 3.34 × 10−6 −2.18 × 10−13

(0.99,0.88,2,2,0) 0.8508 2.7628 × 10−8 −1.11 × 10−2 2.63 × 10−4 −2.12 × 10−9

(0.99,0.42,2,2,0) 0.4156 6.3702 × 10−11 −1.53 × 10−3 4.99 × 10−6 −3.38 × 10−14

(0.9,0.57,2,2,0) 0.5585 1.0303 × 10−9 −3.14 × 10−3 1.02 × 10−7 −6.75 × 10−14

4.1.2. Survey of the parameter space
From the results of the previous section, we find that the growth of relativistic axion clouds does
not seem to saturate at least without entering the strongly non-linear regime, which is beyond the
scope of our current approximation. In this section, we investigate whether this is really a generic
feature of the self-interacting axion cloud around a rotating black hole or not. We present our results,
focusing on the (l0, m0) = (1, 1) modes here.
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We see that the termination of the growth by saturation in the weakly non-linear regime is possible

only when (1) Re
[
Ĉ(2)

]
is negative in the minimal subtraction scheme, or (2) the size of the left-

hand side of Eq.(82) is smaller than unity in the dissipative scheme. The second condition can be
achieved when |C(2)diss| is sufficiently large. In other words, in both cases the dissipative effect must
overwhelm the acceleration of the growth of cloud due to the attractive self-interaction. Thus, we

explore the behavior of Re
[
Ĉ(2)

]
, the left-hand side of Eq. (82), and |C(2)diss| on the (a/M ,μM )

plane.
In Fig. 4, we show Re

[
Ĉ(2)

]
and the left-hand side of Eq. (82) on the (a/M ,μM ) plane. We see

that Re
[
Ĉ(2)

]
is always positive and the left-hand side of Eq.(82) is much larger than unity. Also,

we show the behavior of |C(2)diss| and |C(2)diss|/Re
[
Ĉ(2)

]
on the (a/M ,μM ) plane (see Fig. 5).

We observe that |C(2)diss| gets smaller for the smaller a/M or μM , and hence C(2)diss � Re
[
Ĉ(2)

]
holds for any parameter set. We conclude that the dissipation effect is relatively small. As a result,
the inequality Eq.(82) holds.

In the non-relativistic region (μM � 1), although the cloud extends to a large radius, the dissipation
due to the radiation to infinity gets less efficient. One may think that the multipole moments that
become the source of radiation become large, and hence the radiative dissipation should be efficient.
However, the wavelength of the outgoing wave λout = 1/(3ω0) ∼ 1/(3μ) is much smaller than the
size of the cloud rc ∼ M/(μM )2, especially in the non-relativistic regime. Therefore, because of
the phase cancellation, only the part of the cloud close to the horizon contributes to the flux integral
jl3m03ω0 , which makes the dissipation to infinity inefficient. For this reason, C(2)diss gets small in the
non-relativistic regime. These results suggest that the growth of the cloud to a strongly non-linear
regime is a generic feature of self-interacting axion clouds.

4.2. Repulsive self-interaction

Finally, we will briefly discuss the case of repulsive self-interaction. For negativeλ, the time evolution
tracks of δω in the two schemes are shown in Fig. 6.Also in this case, the late-time behaviors in the two
schemes are different, which suggests the breakdown of the perturbative approach. In principle, there
is a possibility that only the dissipative scheme maintains the validity of perturbative expansion. Even
if we assume so, the significance of the non-linearity at the saturation amplitude can be investigated
by examining the magnitude of δω/ω0,R or the left-hand side of (82). As seen in the previous
subsection, the inequality (82) is always satisfied (see Fig. 5). This signifies that the breakdown of
the perturbative expansion before the saturation occurs even in the repulsive self-interaction.

5. Comment on the multiple superradiant mode

Recently, Ref. [15] claimed that the interaction between multiple superradiant modes induced by self-
interaction will terminate the growth of the cloud. Their calculation is based on the non-relativistic
approximation (μMBH � 1) and cannot tell whether this termination occurs in the relativistic regime
(μMBH � 1). Since our formulation is applicable even in the relativistic regime, we can investigate
this saturation also in this regime, although the discussion in this paper is restricted to the case with
only a single superradiant mode. In this section, we briefly review the interaction between the multiple
modes and then we combine the results in Ref. [15] and ours to estimate whether the saturation due
to co-existence of multiple superradiant modes may affect our analysis in the relativistic regime.
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Fig. 4. Top and bottom panels show the behavior of the Re
[
Ĉ(2)

]
and log10 (LHS of Eq. 82) on the (a/M ,μM )

plane, respectively. The boundary of the region is given by the superradiance condition μM < m�H .

If we consider the axion cloud with multiple superradiant modes, self-interaction will induce
stimulated emission of non-superradiant mode [15] (see Fig. 7). Since the non-superradiant mode
falls into the black hole, this process shrinks the axion cloud. Therefore, the stimulated emission will
eventually balance with the superradiant growth, and the cloud becomes a quasi-equilibrium state.
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Fig. 5. Top and bottom panels shows the behavior of the left-hand side of log10 |C(2)diss| and

log10(|C(2)diss|/Re
[
Ĉ(2)

]
) on the (a/M ,μM ) plane, respectively. The boundary of the region is given by

the superradiance condition μM < m�H .

In Ref. [15], the detailed analysis of this effect has been developed in the non-relativistic regime and
they concluded that this quasi-equilibrium state will be realized in the weakly non-linear regime.

However, in our opinion, it would be too early to conclude that the growth of clouds always
terminate. First, their analysis is restricted to the non-relativistic regime and treats the interaction
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Fig. 6. The red solid line and blue dashed line show the time evolution of the amplitude for l0 = m0 =
1, n0 = 0, μM = 0.42, a/M = 0.99, and λ < 0 with minimal subtraction scheme and dissipative scheme,
respectively. The horizontal axis is the normalized time τ := ω0,I t.

perturbatively. In addition, their calculations do not seem to consider the effect of acceleration of
cloud instability due to the attractive self-interactions revealed in our study. Thus, we need a further
investigation to understand the impact of the multiple modes on the evolution of the cloud.

As a first step of this investigation, we estimate whether the saturation of a relativistic cloud with
multiple modes occurs within the weakly nonlinear regime or not. Recall that our calculation can tell
the breakdown of the perturbative treatment by examining the relative difference of two schemes (see
Sec. 4.1.1). For the concreteness, we fix the parameter set of the cloud to (a/MBH ,μMBH , l, m) =
(0.99, 0.42, 1, 1). Then, our calculation tells that when

Mcl

MBH
∼ 5.6 × 10−6

(
Fa

1016GeV

)2

, (85)

the breakdown of perturbation theory occurs. We approximated the mass of the axion cloud by

Mcl ∼ μ|A|2r3
cl , rcl ∼ l

Gμ2MBH
. (86)

Here, rcl is the size of the axion cloud.
By solving the evolution equations given in Ref. [15] (see Eqs. 34 and 35 in their paper, neglecting

the effect of the scalar and the gravitational wave emission), we can tell how the mass of the axion
cloud evolves under the presence of the second superradiant mode. In Fig. 8, we show an example
of the evolution with a few different initial conditions. The initial stage of evolution follows an
exponential growth obtained by linear analysis. When the cloud grows to some extent, the interaction
shown in Fig. 7 becomes dominant, and the growth of the cloud terminates. However, we observe that
the perturbative treatment of the self-interaction breaks down before the saturation. Consequently, a
more sophisticated approach to deal with clouds in highly nonlinear regions is needed to determine
whether their growth is saturated by the effect of the coexistence of multiple modes.We also confirmed
that this is true for the mildly relativistic case, (a/MBH ,μMBH , l, m) = (0.9, 0.2, 1, 1) (see Fig. 9).

6. Summary and discussion

Axion clouds around spinning black holes will induce interesting phenomena and allow us to test
the existence of new particles via gravitational waves or other astrophysical probes. For further
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Fig. 7. The diagram of the interaction between the bound state. The quantities φSR and φnon−SR denote the
superradiant mode and non-superradiant mode of the axion, respectively. In this figure, we show the case for
the lowest angular momentum modes. This interaction is possible since 2ωR(l = m = 1)−ωR(l = m = 2) > 0,
as shown in Table 2.

Fig. 8. The red solid line and the blue dashed lines correspond to the evolution of the cloud mass, starting
with a few different initial amplitudes, (ε1(0), ε2(0)) = (10−7, 10−7), (10−10, 10−10), (10−13, 10−13). Here,
εi(i = 1, 2) are the cloud mass normalized by the black hole mass. The subscript i discriminates the two
superradiant modes. In this case, i = 1 and i = 2 correspond to the l = m = 1 and l = m = 2 modes,
respectively. The horizontal black dashed line corresponds to the threshold value of the cloud mass for the
reliable perturbative expansion (see Eq. 85).

Fig. 9. The same plot as Fig. 8, but with (a/MBH ,μMBH , l, m) = (0.9, 0.2, 1, 1).

investigation of this possibility, understanding the precise dynamics of the axion cloud is important.
In this paper, we examined the impact of the axion self-interaction on the dynamics of an axion cloud
composed of a single superradiant mode by applying the dynamical renormalization group method. In
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particular, we focused on the possibility that the energy loss through the scalar field emission balances
with the energy input due to the superradiance to realize a saturated quasi-stationary configuration.
If the saturation occurs, explosive phenomena such as bosenova, which might be relevant for the
direct observation, would not occur.

There are two types of effects caused by the self-interaction. One is the radiation of the axion field
which dissipates the energy of the axion cloud. This effect is often ignored in the literature and it
was one of our aims to clarify whether this effect saturates the growth of an axion cloud or not. Our
calculation indicates that this dissipation does not work efficiently in any case, especially since the
dissipation effect gets less important in the non-relativistic regime, μM → 0 and a/M → 0. The
other type of effect is that the attractive self-interaction lowers the energy of the cloud to accelerate
the instability.

Our results suggest that the saturation of the growth does not occur in the weakly non-linear regime,
as long as we consider the φ4 type self-interaction. More precisely, the perturbative expansion breaks
down before the dissipation starts to affect the cloud evolution. Inefficient dissipation due to the axion
radiation to infinity is the main reason for this conclusion.

However, our analysis does not indicate that the explosive phenomena like a bosenova, and hence
bursts of gravitational waves, always occur. Several aspects, which have not been taken into account
in our current analysis, may terminate the instability. First of all, we cannot say anything about the
evolution after the perturbative approach breaks down. In this paper, we truncated the cosine-type
potential at the φ4 term. When the cloud gets denser, higher-order terms in the potential come into
play. The non-linear effects induced by the higher-order terms in the cosine type potential may
change the evolution.

Another possibility is the contamination of non-superradiant modes (such as m = −1 modes),
which can dissipate energy efficiently by falling into the black hole. Within our current setup, there
is no room for such modes to appear because the frequencies of the possibly excited modes are
restricted to mω0, which all satisfy the condition for the superradiance. This situation is likely when
we consider an adiabatic growth of the cloud from the fastest-growing mode. However, once an
explosive phenomenon occurs, the state with plural superradiant modes excited will be realized. In
such a situation, the self-interaction can induce non-superradiant excitations.

Then, the cloud may develop into a quasi-stationary state, in which superradiant modes extract the
mass and angular momentum of the black hole, while non-superradiant modes give them back to the
black hole. If such a quasi-stationary state is realized with a relatively small amplitude, i.e., much
smaller than the case without self-interaction, in which the gravitational wave radiation balances with
the superradiant energy extraction, the spin parameter of the central black hole will change much
more slowly. Then, the constraint from the population of black holes on the Regge plane [19–21],
will be modified from the one without the self-interaction [22].

The impact of simultaneous excitation of plural superradiant modes on the evolution of an axion
cloud has already been pointed out in Ref. [15,23] and they claim that the instability is saturated
by the interaction between the modes. We have estimated whether this saturation occurs in weakly
non-linear regime or not by using our evolution equation, and found that it is not the case. Of course,
our formulation presented in this paper applies only to the case with a single superradiant mode, and
thus our estimation might be altered by considering the interaction between multiple modes. To do
so, we can simply extend our formulation to the case with multiple superradiant modes. Then, one
can calculate the evolution of a cloud correctly capturing the existence of the multiple superradiant
modes in a wide parameter region. We leave this extension to the future work.
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To tell whether bosenovae happen or not in the models with an axion field of appropriate mass, we
need an alternative numerical analysis method that can track the adiabatic evolution of the cloud in
the strongly non-linear regime without the truncation of the potential. A full numerical simulation
would be one option to treat such a problem [10,11,24–26], although the computational cost of this is
high. Our method will give better initial data than just assuming a configuration in an ad hoc manner,
when we consider starting the simulation with a mildly large amplitude to reduce the computational
cost.
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Appendix A. Renormalization group method for differential equation

The RG method is a resummation technique to eliminate a secular term in a perturbative solution [14,
27,28]. Here, we give two examples that may help in understanding the application of RG method
to the axion cloud.

Appendix A.1. Rayleigh–Schrödinger perturbation

Here, we solve a perturbation problem of the Schrödinger equation with the RG method. We consider
the equation (

i
∂

∂t
− H0

)
ψ(t, x) = εV (x)ψ(t, x), (A.1)

with ε � 1. We assume that H0 is solved explicitly and has eigenvalue En with eigenfunction un.
Let us solve this equation perturbatively in ε. If we write ψ = ψ0 + εψ1 + . . . , then we obtain(

i
∂

∂t
− H0

)
ψ0(t, x) = 0, (A.2)

(
i
∂

∂t
− H0

)
ψ1(t, x) = Vψ0. (A.3)

We take the zeroth-order solution as

ψ0,m(t, x) = A(t0)e
−iEmtum(x). (A.4)

Here, A(t0) is the amplitude of the wave function at t = t0. We can solve the first-order equation (A.3)
by using the Green’s function of Eq. (A.2), which can be written by using mode function un as

G(t, x; t′, x′) =
∑

n

∫
dω

2π

un(x)u∗
n(x

′)
ω − En

e−iω(t−t′). (A.5)

Then, the solution of Eq. (A.3) is

ψ1 = A(t0)
∑
n=m

un(x)

(∫
dx′u∗

n(x
′)Vum(x

′)
)

e−iEnt ei(En−Em)t − ei(En−Em)t0

En − Em

+ (t − t0)A(t0)e
−iEmtum(x)

∫
dx′ u∗

m(x
′)Vum(x

′)+ (initial value). (A.6)
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We will choose an initial condition for ψ1 to vanish at t = t0. After choosing an appropriate initial
condition, the solution of Eq. (A.1) up to the first order in ε is given by

ψ = A(t0)e
−iEmtum(x)

+ ε

⎡
⎣A(t0)

∑
n=m

un(x)

(∫
dx′u∗

n(x
′)Vum(x

′)
)

e−iEnt ei(En−Em)t

En − Em

−i(t − t0)A(t0)e
−iEmtum(x)

∫
dx′ u∗

m(x
′)Vum(x

′)
]

. (A.7)

Now, we can impose the RG equation

∂ψ

∂t0
= 0, (A.8)

to the expression (A.7) to obtain

∂A

∂t0
+ iεA(t0)

∫
dx′ u∗

m(x
′)Vum(x

′) = 0. (A.9)

Solving this equation gives

A(t0) = A0e−iεδEmt , (A.10)

with

δEm =
∫

dx′ u∗
m(x

′)Vum(x
′). (A.11)

Substituting Eqs. (A.10) and (A.11) into Eq. (A.7), and setting the arbitrary reference time t0 to t,
we obtain the renormalized solution

ψ = A0e−i(Em+δEm)tum(x)

+ εA0

⎡
⎣∑

n=m

un(x)

(∫
dx′u∗

n(x
′)Vum(x

′)
)

e−iEnt ei(En−Em)t

En − Em

⎤
⎦ . (A.12)

This reproduces a well-known result for the time-independent perturbation theory of the Schrödinger
equation. The essential point is that we have eliminated the secularly growing term in Eq. (A.7) by
imposing the RG equation (A.8). We apply exactly the same thing to the perturbative analysis of
an axion cloud, but the identification of the term to be renormalized is slightly different. The next
example may clarify this point.

Appendix A.2. Non-linear unstable oscillator

Next, we will consider the unstable oscillator(
d2

dt2 − 2a
d

dt
+ 1

)
x = −εx2 dx

dt
, (A.13)

with 0 < a < 1 and ε � 1. Note that this oscillator has a similar behavior to the superradiant
instability of the axion cloud. The term −2a(dx/dt) in the left-hand side represents anti-dissipation,
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which makes the oscillator unstable. On the other hand, the right-hand side represents the dissipative
effect, which corresponds to the radiative energy loss of the axion cloud.

We will solve Eq. (A.13) using perturbation theory. We expand the solution x(t) as x = x0 + εx1 +
· · · . Substituting this expression to Eq. (A.13), we get(

d2

dt2 − 2a
d

dt
+ 1

)
x0 = 0, (A.14)

as the zeroth-order equation. The solution to this equation is

x0 = eat (C(t0)e−iωt + C(t0)
∗eiωt) , (A.15)

with ω = √
1 − a2. We leave the integration constant C(t0) arbitrary in order to apply the RG

method.
The first-order equation is(

d2

dt2 − 2a
d

dt
+ 1

)
x1 = − (C3(a − iω)e−3iωt + |C|2C(3a − iω)e−iωt

+|C|2C∗(3a + iω)eiωt + C∗3(a + iω)e3iωt) , (A.16)

which has the following solution:

x1 = 1

2iω

(
C

2
e2ate−2iωt + 3a − iω

2a
C|C|2e2at + C∗|C|2 3a + iω

2(a + iω)
e2at22iωt

+C∗3 a + iω

2(a + 2iω)
e3ate4iωt

)
eate−iωt + c.c.

+ C1(t0)e
ate−iωt + C∗

1 (t0)e
ateiωt . (A.17)

The terms with C1(t0) represent the freedom of adding homogeneous solutions to the particular
perturbative solution. We observe that some terms behave as O(a−1) in the small a limit, and thus
breaks the validity of the perturbation.

The term diverging in a → 0 limit in Eq. (A.17) becomes a secular term, which is proportional to
t − t0, after subtraction of an appropriate counterterm as

3a − iω

4iωa
C|C|2(e2at − e2at0)eate−iωt → 3a − iω

2iω
C|C|2(t − t0)e

ate−iωt , (A.18)

which corresponds to choosing C1 as

C1(t0) = −3a − iω

4iωa
e2at0C|C|2. (A.19)

As in the case of the previous example, the problematic term can be renormalized.
Now, we apply the RG equation

∂x

∂t0
= 0, (A.20)

to the perturbative solution x = x0 + εx1 + . . . . After some calculations, we can derive an amplitude
equation

dC

dt0
= ε

3a − iω

2iω
e2at0 |C|2C, (A.21)
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Fig.A.1. The red and blue dotted lines show the numerical solution and the renormalized solution of Eq. (A.13),
respectively. We used the parameters a = 0.1 and ε = 10−3.

or

d|C|
dt0

= −1

2
εe2at0 |C|3,

d�

dt0
= − 3a

2ω
εe2at|C|2, (A.22)

if we write C = |C|ei�. Solutions to the amplitude equations (A.22) are

|C(t)|2 = C2
0

1 + ε
2aC2

0 (e
2at − 1)

, (A.23)

�(t) = −3a2

2ω
log
(

1 + ε

2a
C2

0 (e
2at − 1)

)
+�0. (A.24)

Here, C0,�0 are the amplitude and the phase determined by the initial conditions of x, respectively.
After substituting Eqs. (A.23) and (A.24) to Eqs. (A.15) and (A.17), we obtain the renormalized
first-order solution to Eq. (A.13) as

x = 2|C|eat cos(ωt −�)

+ ε

2(a2 + 4ω2)
|C|3e3at (−a cos(3(ωt −�))+ 2ω sin(3(ωt −�)))

+ ε

2w
|C|3e3at (−2aω cos(ωt −�)+ (2a2 + 1) sin(ωt −�)

)
. (A.25)

To see how good our RG methods are, we compared the numerical solution of Eq. (A.13) and
our renormalized solution Eq. (A.25). Figure A.1 shows that the renormalized solution gives a good
approximation. From this example, we believe that when the equation has a solution with a stable
final state for which the perturbative correction remains small, we can obtain such a solution by the
RG method, even though the zeroth-order solution is unstable.

Let us summarize the recipes of the RG method to solve a differential equation. First, obtain a
naive perturbative solution, leaving the integration constants of the zeroth-order solution arbitrary.
The problematic terms, which have a secular growth or are parametrically enhanced to violate the
perturbative expansion, will be absorbed by an appropriate choice of the integration constants. Then,
choose initial conditions for higher-order solutions to correctly cancel the problematic terms in
the perturbative solution at some chosen time t0. Now, demand that the naive perturbative solution
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satisfies the RG equation. We can put t0 = t because thebsolution no longer depends on t0, due to
the RG equation. After all these steps, we obtain the solution without divergence.

Appendix B. Scheme-dependence of the amplitude equation

In this appendix, we show that the ambiguity of the amplitude equation (65) is related to the ambiguity
in the definition of the cloud amplitude.

In general, the amplitude equation takes following form:

dA(τ )

dτ
= c0A(τ )+ c1λA(τ )|A(τ )|2 + c2λ

2A(τ )|A(τ )|4 + . . . . (B.1)

Here, constants ci (i = 0, 1, 2, . . . ) are determined from the renormalization. We can derive the
amplitude equation for the different amplitude Ã(τ ) as

dÃ(τ )

dτ
= c̃0Ã(τ )+ c̃1λÃ(τ )|Ã(τ )|2 + c̃2λ

2Ã(τ )|Ã(τ )|4 + . . . . (B.2)

Now, assume that these two amplitudes are related by the following equation:

Ã(τ ) = A(τ )+ a1λA(τ )|A(τ )|2 + a2λ
2A(τ )|A(τ )|4 + . . . . (B.3)

Substituting Eq. (B.3) into Eq. (B.2) and using Eq. (B.1), we obtain

c̃0 = c0, (B.4)

c̃1 = c1 + a1(c0 + c∗
0), (B.5)

c̃2 = c2 + (2a2
1 − |a1|2 + 2a2)(c0 + c∗

0)+ a1c∗
1 − c1a∗

1 . (B.6)

This shows that the ambiguity in the choice of the homogeneous solution in the RG method, which is
a shift in ci, is related to the definition of the amplitude. This result is general for any flow equation,
such as renomalization group flow in the QFT. In this case, amplitude corresponds to the coupling
constant.

Now we concentrate on the axion cloud case. In this case, we know that c0 = c̃0 = ω0,I (see Eq. 65).
Therefore, as long as the relation between two amplitudes (B.3) does not contain O(ω−n

0,I ), n =
1, 2, . . . quantities, the difference in c1 and c̃1 is suppressed byω0,I . We can then identify a1 = δC(1).
This shows that the ambiguity in the counterterm is the ambiguity in the definition of the amplitude.

Now we look at the second-order equation. Eq. (B.6) shows that the difference in the real part of
c2 is always suppressed by ω0,I . Therefore, adjusting the amplitude by the first order in λ will not
eliminate the divergence in the second-order solution.

Appendix C. Derivation of the dissipative effect C (2)diss
l0m0ω0

In this appendix, we derive Eq. (73). We start with the evolution equation of the particle number and
convert this to that of the amplitude, then identify the coefficient which correspond to the C(2) in the
RG equation.

The number density current Jμ for the mode � = Ae−i(ωt−mϕ)RlmωSlmω is given by

Jμ = −i
(
�∗∂μ� −�∂μ�

∗) (C.1)

and obeys the conservation equation

∇μJμ = 0. (C.2)
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Following the derivation of Eq. (15), we obtain

dN

dt
= −F , (C.3)

N =
∫
�

drdθdφ
√−gJ t , (C.4)

F = −
∫
∂�

dθ
∫

dφ
√−gJ r , (C.5)

J r = −i



ρ2

(
R∗

lmω∂rRlmω − Rlmω∂rR∗
lmω

) |Slmω|2|A|2. (C.6)

Here, � is the hypersurface defined by t = constant and ∂� is the boundary of �, which is r = r+
and r = ∞. Therefore, N is the particle number on the constant t surface and F is the flux through
the boundary.

When we take the superradiant mode (l0, m0,ω0) for � and neglect the self-interaction, then the
right-hand side of Eq. (C.3) is given by

F = 2π i

(∫
dθ |Sl0m0ω0 |2

)


(

R∗
l0m0ω0

∂rRl0m0ω0 − Rl0m0ω0∂rR∗
l0m0ω0

)
|r=r+|A|2. (C.7)

There is no contribution from infinity due to the decaying boundary condition. Using the boundary
condition (29a), we obtain



(

R∗
l0m0ω0

∂rRl0m0ω0 − Rl0m0ω0∂rR∗
l0m0ω0

)
|r=r+ = 2i(ω − m�H )(r

2+ + a2). (C.8)

Thus, F is given by

F = 4π(ω − m�H )(r
2+ + a2)

(∫
dθ |Slmω|2

)
|A|2. (C.9)

On the other hand, the left-hand side of Eq. (C.3) is given by

dN

dt
= 2ωI N , (C.10)

because the frequency ω is complex. Substituting Eqs. (C.9) and (C.10) into Eq. (C.3), we obtain
the relation between the particle number and the amplitude as

N = −2πω−1
I (ω − m�H )(r

2+ + a2)

(∫
dθ |Slmω|2

)
|A|2. (C.11)

Now we include the effect of the self-interaction by evaluating the flux (C.5) of the first-order
solution (48). The first-order solution has two contributions to the flux. One is dissipation into
infinity through (l, 3m0, 3ω0)modes and the other is accumulation via superradiant scattering by the
rotating black hole. Because superradiant scattering is suppressed by tunneling through the angular
momentum barrier, we only consider the dissipation into infinity. The dissipative part in the first-order
solution is given by

φ(1)(x) ⊃ e−3i(ω0t−m0ϕ)
∑

l

Sl3m03ω0(θ)

∫
dr′d cos θ ′ (r′2 + a2 cos2 θ ′)

× Sl3m03ω0(θ
′)G3ω0

l3m0
(r, r′)Sl0m0ω0(θ

′)3Rl0m0ω0(r
′)3. (C.12)
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Using the boundary condition Eq. (29b), the behavior around infinity is

φ(1) → A3e−3i(ω0t−m0ϕ)
∑

l

1

Wl3m0(3ω0)
Sl3m03ω0(θ)

e+i
√

9ω2
0−μ2r∗

r

×
∫

dr′d cos θ ′ (r′2 + a2 cos2 θ ′)Sl3m03ω0(θ
′)Rr+

l3m03ω0
(r′)Sl0m0ω0(θ

′)3Rl0m0ω0(r
′)3

≡ A3e−3i(ω0t−m0ϕ)
∑

l

jl3m03ω0Sl3m03ω0(θ)
e+i

√
9ω2

0−μ2r∗

r
. (C.13)

Substituting this into Eq. (C.5), we obtain the flux of the first-order solution F(1) as

F(1) = 2
√

9ω2
0 − μ2|jl3m03ω0 |2|A|6. (C.14)

From Eqs. (C.3), (C.10) and (C.14), the time development of the particle number is given by

dN

dt
= 2ω0,I N − 2

√
9ω2

0 − μ2|jl3m03ω0 |2|A|6. (C.15)

Using Eq. (C.11), this is converted to the time evolution of the amplitude:

1

ω0,I

d|A|
dt

= |A| +
√

9ω2
0 − μ2

∑
l |jl3m03ω0 |2

2π(ω0 − m0�H )(r2+ + a2)
(∫

dθ |Sl0m0ω0 |2
) |A|5. (C.16)

The coefficient of the |A|5 term represent the dissipative effect due to the self-interaction on the
evolution of the amplitude. Therefore, we define

C(2)diss =
√

9ω2
0 − μ2

∑
l |jl3m03ω0 |2

2π(ω0 − m0�H )(r2+ + a2)
(∫

dθ |Sl0m0ω0 |2
) . (C.17)

C(2)diss is the leading dissipative part of the Re
[
C(2)

]
, because any excited modes other than

(l, 3m0, 3ω0) dissipate energy (see the discussion below Eq. 53).
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