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Carnivoraforms (crown carnivorans and their closest relatives) first occupied hypercarnivorous 27 

niches near the dawn of the late Eocene, 40–37 million years ago. This followed the decline or 28 

extinction of earlier carnivorous groups, Mesonychia and Oxyaenodonta, leaving carnivoraforms 29 

and hyaenodontan meat-eaters as high trophic level consumers. The pattern of this change and 30 

the relative contributions of the taxonomic groups has hitherto been unclear. We report a new 31 

genus and species of the sabretoothed mammalian carnivore family Nimravidae, Pangurban 32 

egiae, from the Eocene Pomerado Conglomerate of southern California, with strongly derived 33 

hypercarnivorous features. While geochronologically the oldest named nimravid in North 34 

America, Pangurban egiae is recovered as phylogenetically derived, with affinities to 35 

Hoplophoneus. This provides unequivocal evidence for rapid radiation and spread of nimravid 36 

carnivores across Asia and North America and constrains the timing of early divergences within 37 

the family. Pangurban egiae narrows the gap between convergent iterations of sabretoothed 38 

mammalian carnivores and demonstrates swift diversification of the hypercarnivorous nimravids 39 

during a period of global climatic instability. Furthermore, it highlights the top-to-bottom 40 

restructuring North American ecosystems underwent during the Eocene–Oligocene transition, 41 

resulting in carnivoraforms taking positions as trophic specialists for the first time, a niche they 42 

still occupy today. 43 

 44 



Electronic supplementary material is available at http://dx.doi.org/XXXXX or via 45 

http://rsbl.royalsocietypublishing.org. 46 

 47 

1. Introduction 48 

The climatically dynamic period from the late middle Eocene to the early Oligocene (ca. 41–30 49 

Ma)  saw not only the reorganisation of biotas worldwide that is known as the Eocene–Oligocene 50 

biotic transition [1] but also the initial rise of members of crown Carnivora and their closest 51 

relatives as hypercarnivores[2,3]. The early nimravids joined the Hyaenodonta in this specialised 52 

niche, which carnivorans would later occupy alone until the present day. Due to the eventual 53 

extinction of these groups and the resulting lack of genetic data, fossils provide the only window 54 

into an important period of faunal change presaging the organisation of modern trophic structure. 55 

         However, the lack of early data from this critical period has presented a challenge to 56 

interpreting this transition. In particular, a general paucity of mammalian fossils from the 57 

Duchesnean North American Land Mammal ‘Age’ (NALMA; 41–37 Ma) has long obscured an 58 

early phase of the Eocene–Oligocene faunal transition in North America, particularly with 59 

respect to mammalian carnivores [4]. Recent taxonomic and biostratigraphic studies, however, 60 

have unveiled the late-middle-Eocene diversity of carnivores in southwestern North America 61 

sufficiently to permit its reassessment [5–9]. The turnover of mammalian carnivores during this 62 

period is noteworthy for the replacement of early meat-eating lineages by crown-clade 63 

carnivorans and their close carnivoraform relatives—an episode that broadly coincided with the 64 

global climatic fluctuations surrounding the Middle Eocene Climatic Optimum (MECO; [9]). 65 

         We report a new genus and species of nimravid, Pangurban egiae, on the basis of a 66 

partial maxilla with the upper 3rd and 4th premolars (P3–4) (Figure 1) from the likely upper 67 

middle Eocene portion of the Pomerado Conglomerate of San Diego County, California. 68 

Pangurban is one of the earliest diagnosable nimravids in the world, and preserves the earliest 69 

nimravid cheek teeth from North America, allowing its inclusion in phylogenetic analysis. 70 

Bearing similarities to the derived later nimravid Hoplophoneus, its early occurrence and 71 

hypercarnivorous adaptations demonstrate the rapid diversification of the group. 72 

2. Methods 73 

The new fossil is housed at the San Diego Natural History Museum (San Diego Society 74 

of Natural History collections, SDSNH).We scored the holotype specimen (SDSNH 60554) into 75 

the Bayesian tip-dating analysis of Barrett (2021) [10], with a uniform tip-date of 40.0–37.0 Ma 76 

based on the likely middle- to late-Duchesnean age of the specimen. The age of the holotype 77 

(and the only known specimen) of Maofelis cantonensis was updated to the late Eocene, 78 

following [11]. The Bayesian analysis utilized a fossilized birth-death process [12–14] with 79 

complex models of morphological evolution (e.g. ordered, multipath, Dollo) best supported for 80 

the nimravid character matrix of [10]. Additional details can be found in the electronic 81 

supplementary material. Markov Chain Monte Carlo runs were sampled every 1,000 generations 82 

in Beast 2 v. 2.6.3 ([15]), while trees were logged every 10,000 generations until Effective 83 

Sample Sizes were > 200, as determined in Tracer version 1.7.1 [16]. From the output of Tracer, 84 

sampling and timing (generation number) of the stability of the run was assessed. Thus, the first 85 

10% of the generations were discarded (burn-in), and topology and posterior probabilities were 86 



estimated from the remaining generations. The maximum clade credibility (MCC) tree of this 87 

analysis is presented in Figure 2a (barbourofelins and most outgroups not shown; see Fig. S2 for 88 

complete tree) and the electronic supplementary material, along with the XML run file. We 89 

reconstructed synapomorphies in TNT version 1.5, which only reports synapomorphies 90 

supported by both accelerated and delayed transformations. Body mass of the new taxon was 91 

estimated through linear regression analysis of P4 lengths and corresponding nimravid body 92 

masses (based originally on lower first molar [m1] lengths) in [10]. We estimated ancestral body 93 

masses along the branches of the MCC tree using the ‘fastANC’ function found in the ‘phytools’ 94 

[17] package for the R programming environment, v. 4.1.2 (R Development Core Team, 2021). 95 

 96 

3. Results 97 

3.1. Systematic Palaeontology 98 

 99 

Class MAMMALIA sensu Rowe [18] 100 

unranked clade CARNIVORAMORPHA sensu Bryant [19] (amended from Wyss and Flynn 101 

[20]) 102 

unranked clade CARNIVORAFORMES Flynn, Finarelli, and Spaulding [21] 103 

Family NIMRAVIDAE sensu Bryant [22] 104 

Pangurban egiae gen. et sp. nov. 105 

Fig. 1 106 

ZooBank LSID: XXXXXXXXXXX (to be added upon acceptance) 107 

 108 

Holotype. SDSNH 60554, right maxillary fragment with P3–P4; collected in 1997 by Stephen L. 109 

Walsh and Robert Gutzler, who also prepared the specimen, and housed at the San Diego Natural 110 

History Museum (San Diego, U.S.A.).  111 

Type locality and horizon. SDSNH Locality 4042 (“Spring Canyon Site 2”). Upper member of 112 

Pomerado Conglomerate, San Diego, California, U.S.A., here considered middle to late 113 

Duchesnean in age (ca. 40–37 Ma; see SI Text). 114 

Diagnosis. Anterior cutting edge of P4 expressed as sharp and distinct preparacristal blade, not 115 

reaching apex of paracone; anterior face of P4 flattened and nearly vertical giving the paracone a 116 

steep angle. Differs from: Maofelis and MA-PHQ 348 (undet. nimravid specimen housed at 117 

Museum d'Histoire Naturelle Victor Brun, Montauban, France [23]) in infraorbital foramen 118 

posterior to P3, double rooted P3, P3 width to length ratio 0.4–0.65; Maofelis, MA-PHQ 348, 119 

and “nimravines'' of [10]which includes barbourofelins, in reduced or absent P4 protocone, P4 120 

metastylar blade length to paracone length ratio of 1.0–1.3, P3 crown height 48–70% that of P4; 121 

hoplophoneins (Hoplophoneus, Eusmilus, and Nanosmilus) in absence of parastyle on P4. 122 

Etymology. The generic name is from the Old Irish, in reference to the cat in the 9th century CE 123 

poem of the same name, whose hunting is likened to academic pursuit of truth. The species name 124 

honours the contribution of palaeontologist Naoko Egi to the study of terrestrial carnivore 125 

evolution on both sides of the northern Pacific Ocean, mirroring the nimravid distribution. 126 

Remarks. SDSNH 60554 was previously identified as “cf. Hyaenodon sp.” in the collection, and 127 

was apparently the basis for the previously reported occurrence of that hyaenodontid genus in the 128 

upper Pomerado Conglomerate [24]. We re-identify this specimen as a nimravid based on the 129 



combination of: low height of P3; presence of serration on P3; elongate posterior basal cusp of 130 

P3; absence of cuspidate protocone on P4; absence of parastyle from the anterolabial base of P4 131 

(cf. [25,26]); presence of prominent P4 preparacrista; and absence of deep incision associated 132 

with carnassial notch on P4 (cf. [25]). 133 

  134 

3.2. Morphology and Phylogeny 135 

 136 

The double-rooted P3 measures 11.2 mm in length and 4.6 mm in width. It is 137 

labiolingually compressed, and its concave lingual wall descends steeply to its base without 138 

forming an appreciable lingual bulge (Fig. 1; SI Fig. 2). The anterior slope of the paracone forms 139 

a shallow angle with the palate near its base, but steepens toward the tip of the cusp. The anterior 140 

ridge is finely serrated (~3 slightly dorsally-inclined incisions per mm on preserved portion) 141 

except for ~1 mm at the base of the crown. No anterior cuspule is present. The presence of a 142 

prominent and likely trenchant posterior basal cusp, separated from the main cusp by a notch, is 143 

indicated by a groove on the labial wall and the outlines of the breakages. 144 

 The largely intact P4 measures 16.8 mm in length and 12.6 mm in width, which yielded 145 

an estimated body mass of 28 kg. Its anterolingual projection lacks a distinct protocone. The 146 

parastyle, cingular or otherwise in origin (cf. [27]), is absent. The preparacrista is notably 147 

trenchant. The carnassial notch lacks a deep incision. The metastylar blade is posterolabially 148 

deflected. There is no appreciable development of a cingulum. A very light facet of attritional 149 

wear is visible in inclined light on the lingual side of the P4. It surrounds the carnassial notch and 150 

rises onto the postparacrista, generally resembling wear found in Dinictis in both extent and 151 

severity. 152 

 The posteroventral curvature of the infraorbital foramen is preserved above the anterior 153 

edge of the P4. This differs from most “nimravines” of [10] and Eusmilus, in which it is located 154 

more anteriorly. A deep embrasure pit for the occlusion of the m1 protoconid is partially 155 

preserved lingual to the metastylar blade of P4. 156 

 In the MCC tree (Fig. 2a), we recovered Pangurban egiae as the sister taxon to the node-157 

based tribe Hoplophoneini sensu Barrett  [28], with which it was united by three 158 

synapomorphies: reduced or absent P4 protocone; P4 metastylar blade 1.0–1.3 times the length 159 

of paracone; and P3 crown height 48–70% of that of P4. All of these features would appear again 160 

in Miocene barbourofelins, and are thus not unambiguous synapomorphies, but they do indicate 161 

comparably derived hypercarnivory within this clade in the late middle Eocene. 162 

The remaining topology of the MCC tree differed minimally from [10]. The 163 

hoplophoneins were recovered in largely the same arrangement, with successive divergences of 164 

Hoplophoneus (here recovered as a paraphyletic taxon), Nanosmilus, and Eusmilus. 165 

4. Discussion 166 

 167 

Published occurrences of sabretooth material have generally suggested a middle Eocene 168 

origin of nimravids within East Asia [11,29]. Subsequent dispersal(s) to North America later in 169 

the Eocene generated a cradle of diversification in disparate ecologies, from which additional 170 

immigrations into Asia and Europe seem to have occurred [10,11]. The holotype of Pangurban 171 



egiae, SDSNH 60554, is significant as one of the oldest securely-identified nimravid fossils 172 

globally (Fig. 2b; see SI Text for further discussion). Although a few likely-older (ca. 40 Ma) 173 

specimens are known from the Pondaung Formation of Myanmar [30,31] and the Clarno 174 

Formation of Oregon, USA [32,33], it is the oldest nimravid fossil that preserves enough of the 175 

upper dentition to be meaningfully incorporated into a phylogenetic analysis. While not 176 

falsifying the hypothesis of East Asian origin for nimravids, the presence of a derived member in 177 

North America at such an early time demonstrates not only swift circum-Pacific dispersal for the 178 

group (in whatever direction), but also rapid evolution of the earliest nimravids. As such, it 179 

provides key information on the early evolution and distribution of the family. 180 

 On the MCC tree, Pangurban egiae displays a zero-length branch, indicating that it is a 181 

sampled ancestor. This status relates to P. egiae preserving derived character states that support 182 

its affinity with Hoplophoneini, while not preserving distinct apomorphies in this matrix. 183 

However, ~42% of sampled posterior trees have a tip-length greater than zero for P. egiae, 184 

indicating that its status as a true sampled ancestor should be treated with some hesitancy—a 185 

status that will require additional specimens to properly assess. In view of the unique 186 

combination of traits in SDSNH 60554, we prefer to assign it to a new genus. 187 

The discovery of Pangurban egiae accentuates the Eocene–Oligocene taxic turnover 188 

across all trophic levels and highlights the late-middle-Eocene rise of hypercarnivorous 189 

mammals in southwestern North America. Taking pronounced reduction of the carnassial 190 

metaconid(s)—which is associated with a predominantly anteroposterior orientation of the 191 

prevallid—and its correlates as taxon-independent proxies for hypercarnivory [4,34,35], 192 

hypercarnivores are greatly outnumbered (both in species richness and abundance) by hypo- and 193 

mesocarnivores in the late Uintan of southern California and western Texas combined (age 194 

groups 1 & 2 in Fig. 2c; Table S1). The beginning of the Duchesnean NALMA is marked by the 195 

immigration from Asia of the hypercarnivorous/durophagous Hyaenodon ([36–38]; age group 3 196 

in Fig. 2c); interestingly, the earliest Duchesnean deposits of southern California have yielded 197 

abundant fossils of Hyaenodon, whereas remains of carnivoraforms (none of whom are 198 

hypercarnivores) are rare [6,36,39]. Middle to late Duchesnean assemblages from southwestern 199 

North America contain more hypercarnivorous taxa (including P. egiae) than hypo- to 200 

mesocarnivorous taxa (age group 4 in Fig. 2c). 201 

The shifting balance within the carnivore guild cannot be readily explained as a 202 

taphonomic artefact, and it seems likely to reflect ecological restructuring of the carnivore guild 203 

across the climatically unstable earlier Duchesnean. Notably, the same time period saw a marked 204 

decline in primate diversity in the region ([40]; Fig. 2c) and, in southern California, a ~40% loss 205 

of primarily woody angiosperm taxa [41]. Substantial disassembly and reassembly of a regional 206 

carnivore community concomitant with a major loss of primate diversity also characterises the 207 

late Bridgerian–early Uintan (ca. 48–44 Ma) faunal succession in the central Rocky Mountain 208 

region [42]. These events may reveal common faunal dynamics over evolutionary time in 209 

response to reduced forest canopies and spatial redistribution of biomass, within the context of 210 

the middle-to-late Eocene trend of declining precipitation in North America [43]. Perhaps the 211 

rise of carnivoraform hypercarnivores relates to the development of seasonally open canopies or 212 

mosaic forested landscapes. Following the loss of sabretooth machaeroidines prior to the Middle 213 

Eocene Climatic Optimum [44], a contingent opportunity may have occurred for circum-Pacific 214 

immigration of nimravids into North America. Concerted declines in relatively small, arboreal 215 

vertebrate prey such as primates (resulting in an upward shift in the body size distribution of 216 

vertebrate prey) and other food resources that are abundant in tropical/subtropical forests (e.g., 217 



fruits and insects) may have prompted evolution of, or invasion by, larger carnivoraforms with 218 

more specialised adaptations for carnivory, as dictated by feeding energetics (cf.[45,46]). In view 219 

of the relative stability of the morphological composition of terrestrial mammals [47] and 220 

carnivores in particular [48] across the Eocene–Oligocene boundary in North America, 221 

Pangurban egiae points to the late-middle to early-late Eocene as a dynamic period of key 222 

importance in the Eocene–Oligocene biotic transition and the origin of phylogenetically-modern 223 

terrestrial carnivore guilds. 224 
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FIGURE CAPTIONS 236 

 237 

Fig 1. Holotype SDSNH 60554 of Pangurban egiae gen. et sp. nov. 238 

Right maxillary fragment with P3–P4 in lateral (a) and ventral (b) views. Approximate position 239 

on cranium marked on (c). 240 

 241 

Fig. 2. Phylogenetic, geographic, and faunal context of Pangurban egiae.  242 

(a) Tip-dated Bayesian MCC tree of nimravids. Node values indicate posterior probabilities of 243 

clades. Nimravid basal node marked by open circle (median age) and bar (95-percent credible 244 

interval). (b) Geographic distribution of Eocene nimravids (in part after [11,29]). Coloured (by 245 

land mammal ‘ages’ as in (a)) portions of icons indicate known dental elements. Taxonomically-246 

questionable occurrences marked as “?”; nimravid material from Gongkang Formation 247 

apparently has never been described (cf. [49]). (c) Late-middle-Eocene carnivore (tooth icons) 248 

and primate (silhouettes) diversity in southern California and western Texas, divided into four 249 

age groups (data in Table S1; tooth icons modelled after Lycophocyon hutchisoni and 250 

Diegoaelurus vanvalkenburghae) and based primarily on [5,6,8,36,39,40,44,50–53]). Time 251 

scales for magnetochrons and NALMAs follow [33,54], and that for Asian Land Mammal 252 

‘Ages’ (ALMAs) after [55]. NALMA/ALMA abbreviations: Ch, Chadronian; Du, Duchesnean; 253 

Er, Ergilian; Ir, Irdinmanhan; Sh, Sharamurunian; Ui, Uintan; Ul, Ulangochuian. Timings of 254 

middle Eocene global climatic anomalies and angiosperm diversity loss in southern California 255 

from [56] and [41]. 256 
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