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Abstract 14 

Wind action on ice-covered transmission lines causes galloping, which is a problem because it can introduce 15 

interphase short circuits and cause fatigue of the cross-arms of the power line’s towers and insulators. The 16 

galloping phenomenon is characterised by a combination of large-amplitude, low-frequency vertical, 17 

horizontal, and torsional oscillations. To better understand the dynamic responses of vertical, horizontal and 18 

torsional 3-degree-of-freedom (DoF) galloping on four-bundled conductors, time–history analyses were 19 

conducted for 2D systems of varying DoFs and frequency ratios. The fundamental characteristics of the 20 

conductor’s non-linear 1-DoF vertical response were analysed via time–history analysis, indicating that large 21 

oscillations were caused by inclusion of an angular range of relative angle of attack with a high negative lift-22 

coefficient slope. By considering the energy balance of the vertical motion over one oscillation period, we 23 

estimated the stable and unstable limit-cycle amplitudes. Then, by comparing the results of the 1-, 2-, and 3-24 

DoF systems, we clarified the effect of aerodynamic coupling on 3-DoF galloping. The oscillation types in the 25 

3-DoF systems were categorised as vertical–horizontal 2-DoF coupling oscillations, vertical–torsional 2-DoF 26 

coupling oscillations, and vertical 1-DoF oscillations according to the stationary torsional angle. Finally, we 27 

indicated the coupling effects on vertical oscillation by considering the energy balance of the vertical motion 28 

with the defined amplitudes and phase differences of the horizontal and torsional motions. The vertical 29 

amplitude of the vertical–horizontal 2-DoF coupling oscillation can become very large if the horizontal 30 

amplitude increases and the phase difference between horizontal and vertical displacements approaches 180°. 31 

Meanwhile, the range of the stationary torsional angle in which the vertical–torsional 2-DoF coupling 32 

oscillation occurs becomes wide as the phase difference between the torsional and vertical displacements 33 

approaches 90°. However, without horizontal motion, the vertical amplitude has a limited value, even if the 34 

torsional amplitude becomes large.  35 
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1. Introduction 40 

Galloping is low-frequency, high-amplitude oscillation that occurs in a power or transmission line when a 41 

steady wind of moderate velocity flows over cables covered by a layer of ice. The International Council on 42 

Large Electric Systems recognises this phenomenon as an aerodynamic instability that can cause interphase 43 

short circuits, conductor strand burn, and fatigue failure of the cross-arms of the power line’s towers and 44 

insulators (CIGRE, 2007). To prevent galloping-related failures and hazards, the location in the power line 45 

where the phenomenon is likely to occur, the mode by which it will reach the line, and the amplitude of its 46 

motion must be predicted. A solution to the galloping problem should focus not only on the occurrence 47 

conditions but also on the oscillation amplitude under various structural conditions. Furthermore, the ice-48 

accretion pattern and wind conditions vary continually with respect to atmospheric parameters. Therefore, 49 

several researchers have conducted numerical analyses of full-scale overhead transmission lines (Yu et al., 50 

1993; Desai et al., 1996; Wang and Lillien, 1998; Shimizu et al., 1998; Liu et al., 2009), along with field 51 

observations (Morishita et al., 1984; Yukino et al., 1995; Matsumiya et al., 2012; Matsumiya et al., 2019). 52 

Different cases should be analysed to understand the roles of the varying parameters related to this 53 

phenomenon, including structural characteristics, accretion shape, angles of attack, and wind speed. 54 

Accordingly, a theoretical understanding of the conditions that facilitate galloping is necessary for conducting 55 

systematic and efficient time–history analyses of the dynamic response of power lines to aerodynamic loading. 56 

In time–history analyses, aerodynamic forces acting on power lines are generally represented as quasi-57 

steady forces using steady-state aerodynamic coefficients. Kimura et al. (1999) highlighted that, during the 58 

large-amplitude motion of a four-bundled conductor, the aerodynamic forces exerted on the bundle may differ 59 

from the theoretical quasi-steady aerodynamic forces. Therefore, Matsumiya et al. (2018) validated the quasi-60 

steady aerodynamic force formulations applied to a four-bundled conductor by employing the results of large-61 
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amplitude-vibration tests. They performed tests in a wind tunnel using a technique in which a rigid-body 62 

section model of a four-bundled conductor was supported by multiple elastic cords; the resulting action of the 63 

wind (galloping) was studied. They concluded that the quasi-steady aerodynamic forces of a multi-bundled 64 

conductor should be formulated independently for each sub-conductor, even when the independent motion of 65 

each sub-conductor is not considered. 66 

Den Hartog (1956) identified the conditions under which 1-DoF vertical galloping of an ice-accreted 67 

conductor occurs according to the quasi-steady aerodynamic theory. Hence, the galloping criterion is 68 

commonly known as the “Den Hartog” criterion. Nakamura (1980) split the instability term of vertical and 69 

torsional 2-DoF systems into a 1-DoF and classical-flutter types. The 1-DoF type represents the Den Hartog 70 

instability or torsional flutter, whereas the classical-flutter type represents the aerodynamic coupling effect 71 

between the motions of each DoF. Nakamura (1980) derived equations to express the contribution of each 72 

instability type to the damping term. In contrast, Jones (1992) and Nikitas and Macdonald (2014) discussed the 73 

coupling effects of vertical and horizontal oscillations in a galloping conductor with ice-accretion. Furthermore, 74 

He and Macdonald (2016) considered a vertical, horizontal, and torsional 3-DoF system and derived an 75 

analytical solution for its galloping stability. While this analytical solution was derived assuming that the natural 76 

frequencies in the three directions are equal, Lou et al. (2020) derived an analytical galloping stability criterion 77 

for 3-DoF coupled motion using the eigenvalue perturbation method.  78 

In contrast with research on the onset conditions (i.e., the damping characteristics), studies on the 79 

oscillation amplitude characteristics should focus on solving the galloping problem. In other words, in addition 80 

to linear oscillations, research must also focus on non-linear ones. Unfortunately, few studies have focused on 81 

the oscillation mechanism and coupling effect between multi-DoF non-linear galloping. Parkinson and Smith 82 

(1964) described stable and unstable limit-cycle oscillation amplitudes for a square prism in a vertical 1-DoF 83 
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system. These are the typical characteristics of a non-linear oscillator that are caused by non-linear aerodynamic 84 

forces, which were formulated using the quasi-steady theory with the polynomial expression of aerodynamic 85 

coefficients. Novak (1969, 1972) evaluated the effect of mode shapes on the 1-DoF galloping amplitude of long 86 

prismatic structures with elastic continuous bodies rather than rigid ones. Blevins and Iwan (1974) and Desai et 87 

al. (1990) developed a method to analyse the steady-state amplitude of vertical and torsional 2-DoF coupled 88 

galloping. To clarify the conditions facilitating the galloping phenomenon, which is a vertical, horizontal, and 89 

torsional 3-DoF oscillation, the aerodynamic coupling effect among the DoF motions should be discussed 90 

considering non-linear oscillation characteristics. 91 

In this study, to clarify the essential non-linear response characteristics of a four-bundled conductor to 92 

galloping, we conducted a series of time–history analyses on 1-, 2-, and 3-DoF systems by formulating quasi-93 

steady aerodynamic forces on each sub-conductor. To focus on the fundamental effects of aerodynamic 94 

coupling and non-linearity on the oscillation amplitude, we used a 2D model instead of a 3D full-span model 95 

because the latter considers complex characteristics (i.e., distribution of the angle of ice-accretion and 96 

displacements) along the length of the conductor (Yu et al., 1993; Wang and Lillien, 1998). In addition to time–97 

history analyses, the work performed by the aerodynamic force and the energy balance of the vertical motion 98 

over one oscillation period were analysed to describe the oscillation mechanism considering aerodynamic non-99 

linearity. From these analyses, we provide a substantial description of the aerodynamic coupling effect between 100 

the motions of each DoF and the characteristics of non-linear oscillation caused by non-linear aerodynamic 101 

forces. 102 

 103 

2. Time–history analysis conditions of a 2D system  104 

2.1 Cross-section and steady aerodynamic coefficients 105 
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Time–history analyses were conducted for the ice-accreted four-bundled conductor shown in Fig. 1. The 106 

dimensions are identical to those of aluminium conductors steel-reinforced (ACSR) conductors having a 107 

nominal cross-sectional area of 410 mm2. For the cases of wet snow accretion and in-cloud ice-accretion, which 108 

are the main factors inducing galloping in Japan, accretion develops to the windward side with a sharp edge 109 

(Matsumiya et al., 2012; Matsumiya et al., 2019). As a simple imitation of the typical accretion shape, a 110 

triangular tip shape was selected for ice-accretion on the sub-conductors in this study.  111 

The steady aerodynamic coefficients of this section were measured via surface pressure-measurement 112 

tests (Matsumiya et al., 2011). The aerodynamic coefficients of each sub-conductor and the whole four-bundled 113 

conductor are shown in Fig. 2. The equations of the coefficients used in this study are as follows:  114 

𝐹𝐷𝑖 =
1

2
𝜌𝑈2𝐷𝐶𝐷𝑖 , 𝐹𝐿𝑖 =

1

2
𝜌𝑈2𝐷𝐶𝐿𝑖, 𝐹𝑀𝑖 =

1

2
𝜌𝑈2𝐷2𝐶𝑀𝑖 , (1) 115 

𝐹𝐷𝑓 =
1

2
𝜌𝑈24𝐷𝐶𝐷𝑓 , 𝐹𝐿𝑓 =

1

2
𝜌𝑈24𝐷𝐶𝐿𝑓 , 𝐹𝑀𝑓 =

1

2
𝜌𝑈24𝐷𝐵𝐶𝑀𝑓 . (2) 116 

Here, 𝐶𝐷𝑖, 𝐶𝐿𝑖 , 𝐶𝑀𝑖  (𝑖 = 1– 4) and 𝐶𝐷𝑓 , 𝐶𝐿𝑓 , 𝐶𝑀𝑓 are the aerodynamic coefficients of the respective 117 

aerodynamic forces acting on each sub-conductor and four-bundled conductor; 𝐹𝐷𝑖, 𝐹𝐿𝑖 , and 𝐹𝑀𝑖 are the 118 

mean values of the drag, lift, and aerodynamic pitching moment around the centre of sub-conductors No. 𝑖 119 

(𝑖 = 1– 4) per unit length, as shown in Fig. 1, respectively; 𝐹𝐷𝑓 , 𝐹𝐿𝑓 , and 𝐹𝑀𝑓 are the mean values of drag, 120 

lift, and aerodynamic pitching moment around the centre of the whole four-bundled conductor per unit length, 121 

29.8°
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Fig. 1 Cross-sections of ice-accreted four-bundled conductor. 
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respectively; 𝜌 is the air density; 𝑈 is the wind speed; D is the conductor diameter; and B is the spacing 122 

between the centres of the sub-conductors.  123 

Figures 2 (b) and (d) show two peaks of the lift coefficient, CLi, at certain angles of attack: one around 124 

20° and the other around 150°. The angles corresponding to the peak lift coefficients are the stalling angles. In 125 

the flow field around the sub-conductor, the time-averaged separation shear layer from the upper leading edge 126 

of the section reattaches to the conductor surface. Subsequently, a large lift force acts on the conductor when the 127 

angle of attack is less than the stalling angle. However, the time-averaged separation shear layer is not 128 

reattached to the surface, and the lift force suddenly decreases when the angle of attack is slightly larger than 129 

the stalling angle (Matsumiya et al., 2011). A few sub-conductors have lower aerodynamic coefficients than the 130 

rest. This is especially true for the drag coefficient. The coefficients exhibit significant reductions at attack 131 

  (c) Moment coefficients of sub-conductors         (d) Aerodynamic coefficients of four-bundled conductor  

Fig. 2 Aerodynamic coefficients of ice-accreted four-bundled conductor (Matsumiya et al., 2011) 

(a) Drag coefficients of sub-conductors          (b) Lift coefficients of sub-conductors 
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angles of 0, 45, 90, 135, and 180°. At these angles, the sub-conductor with reduced coefficients lies in the wake 132 

of another. Hence, the reduced aerodynamic coefficients of the sub-conductors may be attributed to these wake 133 

effects.  134 

Based on linearised quasi-steady aerodynamic theory, vertical 1-DoF galloping occurs when 135 

𝐶𝐷𝑓 +
d𝐶𝐿𝑓

d𝛼
< −

𝑚𝜁𝑦0𝜔𝑦0

𝜌𝐷𝑈
. (3) 136 

Here, 𝑚 is the mass of the iced-bundled conductor per unit length; 𝜁𝑦0 is the vertical damping ratio; and 137 

𝜔𝑦0 is the vertical circular frequency. The left-hand side of the equation corresponds to the Den Hartog 138 

summation (1956), and the right-hand side of the equation is negative and proportional to the structural 139 

damping. For galloping to occur, a necessary condition is that the summation is negative: this condition is called 140 

the Den Hartog criterion. The Den Hartog summation of the four-bundled conductor is shown in Fig. 3. The 141 

Den Hartog criterion is mainly fulfilled for angle ranges that are slightly larger than the stalling angles or are 142 

under the influence of flow interference between sub-conductors.  143 

 144 

2.2 Analysis model and conditions 145 

Time–history analysis was conducted on simple mass–spring–damper 2D systems with varying DoFs. The 146 

systems included the vertical 1-DoF, vertical–horizontal 2-DoF, vertical–torsional 2-DoF, and vertical–147 

horizontal–torsional 3-DoF. The equations of 3-DoF motion are expressed as follows: 148 

Fig. 3 Den Hartog summation of ice-accreted four-bundled conductor 
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𝑚�̈� + 2𝑚𝜁𝑦0𝜔𝑦0�̇� + 𝑚𝜔𝑦0
2 𝑦 = 𝐹𝑦,

𝑚�̈� + 2𝑚𝜁𝑧0𝜔𝑧0�̇� + 𝑚𝜔𝑧0
2 𝑧 = 𝐹𝑧,

𝐼�̈� + 2𝐼𝜁𝜃0𝜔𝜃0�̇� + 𝐼𝜔𝜃0
2 𝜃 = 𝐹𝜃 .

(4) 149 

Here, 𝑦, 𝑧, and 𝜃 are the vertical, horizontal, and torsional displacements, respectively (Fig. 1): 𝐼 is the mass 150 

moment of inertia of the ice-bundled conductor per unit length; 𝜁𝑞0(𝑞 = 𝑦, 𝑧, 𝜃) is the damping ratio for each 151 

direction; and 𝜔𝑞0(𝑞 = 𝑦, 𝑧, 𝜃) is the circular natural frequency for each direction, which is 2𝜋 times the 152 

natural frequency 𝑓𝑞0. The vertical 1-DoF system uses the first expression in Eq. (4). The vertical–horizontal 2-153 

DoF system uses the first and second expressions. The vertical–torsional 2-DoF system uses the first and third 154 

expressions. Finally, the vertical–horizontal–torsional 3-DoF system uses all three expressions. 155 

In this study, the horizontal and torsional frequency ratios, 𝑓𝑧0/𝑓𝑦0 and 𝑓𝜃0/𝑓𝑦0, were varied, 156 

whereas the vertical natural frequency, 𝑓𝑦0, remained a constant value that corresponds to the frequency of the 157 

first asymmetric mode in an actual transmission line having a span length of 300 m. The parameter values used 158 

in this study are presented in Table 1. The mass and mass moment of inertia in the analysis were identical to 159 

those of the actual conductors having wet snow accretion using a specific gravity of snow accretion of 0.6. 160 

Time–history analysis was performed at a constant wind speed of 10.0 m/s by varying the setup torsional angle, 161 

𝜃0, in each system. The setup torsional angle corresponds to the angle without wind: the stationary torsional 162 

angle with wind, 𝜃𝑠, is different from 𝜃0 in the vertical–torsional 2-DoF system and the vertical–horizontal-163 

torsional 3-DoF system. The wind direction is identical to the horizontal axis without a vertical component, as 164 

shown in Fig. 1. Because the value of the right-hand side of Eq. (3) is approximately -0.25 in this condition, 165 

vertical 1-DoF galloping occurs for almost all of the angle range for which the Den Hartog criterion is fulfilled 166 

(Fig. 3). 167 

Table 1 Analysis conditions 168 

Mass of iced-bundled conductor per 

unit length 
m 7.094 kg/m Wind speed U 10.0 m/s 

Mass moment of inertia of iced-

bundled conductor per unit length 
I 0.567 kg·m2/m Setup torsional angle 0 

0 – 180° 

(in 1° intervals) 
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Spacing of sub-conductor B 0.400 m Vertical damping ratio y0 0.5 % 

Diameter of sub-conductor D 0.0285 m Horizontal damping ratio z0 0.5 % 

Vertical natural frequency fy0 0.393 Hz Torsional damping ratio 0 0.5 % 

   Air density  1.225 kg/m3 

𝐹𝑦, 𝐹𝑧, and 𝐹𝜃 are the aerodynamic forces exerted on the four-bundled conductor in the vertical, 169 

horizontal, and torsional directions, respectively. The forces are derived by combining the quasi-steady 170 

aerodynamic forces of each sub-conductor, 𝐿𝑠𝑖, 𝐷𝑠𝑖  and 𝑀𝑠𝑖, as follows (Matsumiya et al., 2018): 171 

𝐹𝑦 =∑𝐿𝑠𝑖

4

𝑖=1

, 𝐹𝑧 =∑𝐷𝑠𝑖

4

𝑖=1

, 𝐹𝜃 =∑𝑀𝑠𝑖

4

𝑖=1

+
𝐵

√2
(𝐿𝑠1 − 𝐷𝑠2 − 𝐿𝑠3 + 𝐷𝑠4) cos (

𝜋

4
+ 𝜃)

 +
𝐵

√2
(𝐷𝑠1 + 𝐿𝑠2 − 𝐷𝑠3 − 𝐿𝑠4) sin (

𝜋

4
+ 𝜃) ,

(5) 172 

𝐿𝑠𝑖 =
1

2
𝜌𝑈𝑟𝑖

2𝐷(𝐶𝐿𝑖(𝛼𝑟𝑖) cos𝜙𝑟𝑖 + 𝐶𝐷𝑖(𝛼𝑟𝑖) sin𝜙𝑟𝑖),

𝐷𝑠𝑖 =
1

2
𝜌𝑈𝑟𝑖

2𝐷(−𝐶𝐿𝑖(𝛼𝑟𝑖) sin 𝜙𝑟𝑖 + 𝐶𝐷𝑖(𝛼𝑟𝑖) cos 𝜙𝑟𝑖)

𝑀𝑠𝑖 =
1

2
𝜌𝑈𝑟𝑖

2𝐷2𝐶𝑀𝑖(𝛼𝑟𝑖),

, (6) 173 

𝛼𝑟𝑖 = 𝜃 + 𝜙𝑟𝑖 ,  𝜙𝑟𝑖 = tan
−1 (

𝑈𝑦𝑖

𝑈𝑧𝑖
) , 𝑈𝑟𝑖 = √𝑈𝑦𝑖

2 + 𝑈𝑧𝑖
2,

𝑈𝑦1 = −�̇� −
𝐵

√2
�̇� cos (

𝜋

4
+ 𝜃) , 𝑈𝑧1 = 𝑈 − �̇� −

𝐵

√2
�̇� sin (

𝜋

4
+ 𝜃) ,

𝑈𝑦2 = −�̇� −
𝐵

√2
�̇� sin (

𝜋

4
+ 𝜃) , 𝑈𝑧2 = 𝑈 − �̇� +

𝐵

√2
�̇� cos (

𝜋

4
+ 𝜃) ,

𝑈𝑦3 = −�̇� +
𝐵

√2
�̇� cos (

𝜋

4
+ 𝜃) , 𝑈𝑧3 = 𝑈 − �̇� +

𝐵

√2
�̇� sin (

𝜋

4
+ 𝜃) ,

𝑈𝑦4 = −�̇� +
𝐵

√2
�̇� sin (

𝜋

4
+ 𝜃) , 𝑈𝑧4 = 𝑈 − �̇� −

𝐵

√2
�̇� cos (

𝜋

4
+ 𝜃) .

(7) 174 

When the four-bundled conductor exhibits torsional velocity, each sub-conductor will gain velocity in 175 

the circumferential direction. Therefore, the relative angle of attack, 𝛼𝑟𝑖, and relative wind speed, 𝑈𝑟𝑖, for each 176 

sub-conductor (𝑖 = 1– 4) are functions of torsional velocity, �̇�. By formulating the quasi-steady aerodynamic 177 

forces in this way, the aerodynamic forces caused by the torsional velocity can be included. Additionally, the 178 

relative angle of attack, 𝛼𝑟, and relative wind speed, 𝑈𝑟 , for the whole four-bundled conductor are derived as 179 

follows: 180 

𝛼𝑟 = 𝜃 + 𝜙𝑟 ,  𝜙𝑟 = tan
−1 (

−�̇�

𝑈 − �̇�
) , 𝑈𝑟 = √(−�̇�)

2 + (𝑈 − �̇�)2. (8) 181 

When the torsional motion is not considered, the total aerodynamic forces calculated from each sub-conductor 182 
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independently, using Eq. (7) and 𝐶𝐷𝑖, 𝐶𝐿𝑖  (𝑖 = 1– 4), are the same as those calculated for the whole bundled 183 

conductor using Eq. (8) and 𝐶𝐷𝑓 , 𝐶𝐿𝑓.  184 

 185 

2.3 Numerical analysis method 186 

Time–history analysis was performed using the fourth-order Runge–Kutta method by varying the setup 187 

torsional angle, 𝜃0, DoFs, and frequency ratios at a constant wind speed. First, the stationary position and 188 

orientation of the conductor with respect to the wind, whose displacements in the vertical, horizontal, and 189 

torsional directions are 𝑦𝑠, 𝑧𝑠, and 𝜃𝑠, respectively, are calculated from the time-history analysis with large 190 

virtual damping. Then, the displacements at the first time-step of the dynamic analysis with the more realistic 191 

damping from Table 1 are set as (𝑦𝑡=0, 𝑧𝑡=0, 𝜃𝑡=0) = (𝑦𝑠 + ∆𝑦0, 𝑧𝑠 + ∆𝑧0 , 𝜃𝑠 + ∆𝜃0). An initial 192 

displacement was applied only to the vertical displacement, ∆𝑦0, which was set at a series of values from 0.0 to 193 

5.0 m in intervals of 0.05 m. In contrast, initial displacements in the horizontal and torsional direction, ∆𝑧0 and 194 

∆𝜃0, and initial velocities of every direction were zero. 195 

The response amplitudes, phase differences between the displacements, and frequencies were 196 

obtained from the time–history analyses when the amplitudes reached a steady state. The time step in this 197 

analysis was 0.02 s, and the total time taken, which varies with the stationarity of oscillations, was longer than 198 

600 s. In this study, the amplitude is defined as a value that is half of the peak-to-peak amplitude. The phase 199 

difference between the two motions was calculated from the time difference of the zero crossing-points of 200 

displacement and with positive velocity. The frequency was calculated from the time period between the zero 201 

crossing-points. In a few cases of small amplitude, the response did not reach a full steady-state oscillation. In 202 

these cases, the response characteristics were described by the ensemble average of each parameter from the 203 

last 120 s.  204 
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 205 

3. Characteristics of vertical 1-DoF non-linear oscillations 206 

In this section, the characteristics of the non-linear oscillation caused by the non-linear aerodynamic forces are 207 

described using the results of time–history analysis of the vertical 1-DoF system. The relationship between the 208 

relative angle of attack and the work done by the aerodynamic force was considered to describe the oscillation 209 

mechanism. Then, the characteristics of stable and unstable limit-cycle oscillation amplitudes were clarified by 210 

factoring in the energy balance of vertical motion over one oscillation period. 211 

 212 

3.1 Excitation mechanism of vertical 1-DoF oscillation 213 

Figure 4 illustrates the relationship between the torsional angle, 𝜃0(= 𝜃𝑠), and the vertical amplitude obtained 214 

from the vertical 1-DoF analysis, in which the initial value of the vertical displacement, ∆𝑦0, was 5 m. The 215 

absolute value of the Den Hartog summation (Fig. 3) at the torsional angle does not correlate well with the 216 

amplitude. The largest amplitude was observed when the torsional angle, 𝜃0, was 58°, which is outside the 217 

angle range required to fulfil the Den Hartog criterion. Furthermore, Fig. 4 shows the range of the relative angle 218 

of attack, 𝛼𝑟, during the oscillations and value of the lift coefficient for reference. The range of 𝛼𝑟 for 𝜃0 =219 

20– 38, 48– 58° includes the range of angles in which the lift coefficient exhibited a large negative slope (20-220 

Fig. 4 Relationship between torsional angle and vertical amplitude with range of relative angle of attack  

(results of time–history analysis for the vertical 1-DoF system with initial displacement y0 = 5 m) 
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25°). The cause of the large oscillations and the reason for the sudden changes in amplitudes in relation to the 221 

torsional angle were investigated by focusing on the work done by the aerodynamic force in the following. 222 

During vertical 1-DoF oscillation, aerodynamic force 𝐹𝑦, relative wind speed 𝑈𝑟  and relative angles 223 

of attack 𝛼𝑟 are expressed as follows: 224 

𝐹𝑦 =
1

2
𝜌𝑈𝑟

24𝐷(𝐶𝐿𝑓(𝛼𝑟) cos 𝜙𝑟 + 𝐶𝐷𝑓(𝛼𝑟) sin𝜙𝑟), 𝑈𝑟 = √𝑈
2 + �̇�2, 𝛼𝑟 = 𝜃0 + tan

−1 (
−�̇�

𝑈
) . (9) 225 

When the response displacement approximates a sine wave, the energy balance over one period, 𝑇, is obtained 226 

as follows: 227 

𝐸𝑇 = ∫ (𝐹𝑦�̇� − 2𝑚𝜁𝑦0𝜔𝑦0�̇�
2)d𝑡

𝑇
2

−
𝑇
2

≈ ∫ (�̃�𝑦�̇� − 2𝑚𝜁𝑦0𝜔𝑦0�̇�
2)d𝑡

𝑇
2

−
𝑇
2

. (10) 228 

The first term corresponds to the work done by the aerodynamic force, and the second term 229 

corresponds to that of the structural damping force. �̃�𝑦 is the dynamic component of the aerodynamic force in 230 

the vertical direction, given by 𝐹𝑦 minus its time-averaged value. At a certain time, when the power �̃�𝑦�̇� > 0, 231 

the fluctuating aerodynamic force in the vertical direction, �̃�𝑦, promotes oscillation. However, when power 232 

�̃�𝑦�̇� < 0, 𝐹�̃� suppresses oscillation.  233 

Figure 5 demonstrates the time-series of vertical velocity, �̇�, relative angles of attack, 𝛼𝑟, and the 234 

variation of the aerodynamic force in the vertical direction, �̃�𝑦, at 𝜃0 = 38 and 58°. By considering the 235 

relationship between �̇� and 𝛼𝑟, the oscillation is excited by the fluctuating aerodynamic force when �̃�𝑦 > 0 236 

in the region where the relative angle of attack, 𝛼𝑟, is smaller than the torsional angle, 𝜃0, or when �̃�𝑦 < 0 in 237 

the region where 𝛼𝑟 is larger than 𝜃0. Figure 5 also shows the time when oscillation is considerably excited 238 

by the fluctuating aerodynamic force when 𝛼𝑟 reaches the area around the stalling angle (20°) because both �̇� 239 

and �̃�𝑦 have large absolute values with the same sign. Furthermore, in the case of 𝜃0 = 58° (Fig. 5 (b)) , the 240 
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oscillation is also excited when the range of 𝛼𝑟 includes the angle range in which there is a bulge in the lift 241 

coefficient around 80°.  242 

Similarly, the large oscillation seems to be caused by the range of the relative angle of attack, 243 

including the angle range with steep negative slopes for the lift coefficient of approximately 20–25°, 70–80°, 244 

and 150–160°. The range of the relative angle of attack changes according to the oscillation amplitude. The 245 

cause of the large oscillation can be determined by analysing the relationship between the relative angle of 246 

attack and the work performed by aerodynamic forces at a given time, as mentioned previously.  247 

 248 

3.2 Characteristics of stable and unstable limit-cycle oscillation amplitudes 249 

Figure 6 compares the vertical amplitude at each torsional angle, 𝜃0(= 𝜃𝑠), obtained from the vertical 1-DoF 250 
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analysis, in which the initial value of vertical displacement, ∆𝑦0, is 0, 1, 2, 3, 4, and 5 m. For some torsional 251 

angles, galloping was observed only when the initial displacement was larger than a certain value. In other 252 

words, this system had an unstable limit cycle. Stable and unstable limit-cycle oscillations are typical 253 

characteristics of a non-linear oscillator. They are caused by non-linear aerodynamic forces in this case. These 254 

characteristics are also observed for a square prism, as described by Parkinson and Smith (1964) and Novak 255 

(1969, 1972). Next, all stable limit-cycle-oscillation amplitudes were selected from steady-state solutions 256 

obtained through time-history analysis with all initial displacements of ∆𝑦0= 0.0– 5.0 m (intervals of 0.05 m). 257 

Meanwhile, the unstable limit-cycle-oscillation amplitude is defined as the minimum initial displacement, ∆𝑦0, 258 

that is necessary to obtain the corresponding stable limit-cycle oscillation. The description of the characteristics 259 

of stable and unstable limit-cycle-oscillation amplitudes and the relevant estimation method are as follows.  260 

If the vertical displacement is assumed to be 𝑦 = �̅� + 𝐴𝑦 sin𝜔𝐺𝑡, where 𝜔𝐺  is the circular 261 

frequency of the galloping oscillations, the steady-state solutions (𝐴𝑦 and 𝜔𝐺) can be obtained from two 262 

equations: the time integral of the multiplication of 𝑦 on both sides of the equation of motion (the first part of 263 

Eq. (4)) and the time integral of the multiplication of �̇� by the same. The former equation is shown as follows: 264 

        𝑓𝑦𝑠 = ∫ (𝐹𝑦 ⋅ 𝐴𝑦 sin𝜔𝐺𝑡) d𝑡

𝑇
2

−
𝑇
2

−𝑚(𝜔𝑦0
2 − 𝜔𝐺

2)
𝐴𝑦
2

𝜔𝐺
𝜋 = 0. (11) 265 

When the vertical displacement is 𝑦 = �̅� + 𝐴𝑦 sin𝜔𝐺𝑡, and the vertical velocity is �̇� = 𝐴𝑦𝜔𝐺 cos𝜔𝐺𝑡. 266 

Based on Eq. (9), the aerodynamic force is an even function of 𝑡. That is, 𝐹𝑦(−𝑡) = 𝐹𝑦(𝑡). From this, the 267 

integral term in Eq. (11) is zero, and the oscillation frequency 𝜔𝐺 = 𝜔𝑦0. 268 

Meanwhile, the latter equation corresponds to 𝐸𝑇 from Eq. (10),which equals zero. Therefore, the 269 

steady-state vertical amplitude, 𝐴𝑦, for both stable and unstable solutions can be estimated with 𝐸𝑇 = 0 and 270 

𝜔𝐺 = 𝜔𝑦0. In other words, when the oscillation reaches a steady state, the energy input from work done by the 271 
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aerodynamic force is balanced by the energy output of the structural damping force over each period, and 272 

𝐸𝑇 = 0. When 𝐸𝑇 > 0, the oscillation amplitude becomes larger than the assigned vertical amplitude, 𝐴𝑦, 273 

whereas 𝐸𝑇 < 0 indicates that the oscillation amplitude becomes smaller than the assigned value. 274 

Figure 7 compares the stable and unstable amplitudes obtained from the time–history analysis and the 275 

results of the energy-balance analysis. For energy-balance analysis, at each torsional angle, the range of 276 

amplitude, 𝐴𝑦, for which 𝐸𝑇 ≥ 0, is calculated. The maximum value of 𝐴𝑦 in the range of 𝐸𝑇 ≥ 0, where 277 

𝐸𝑇 = 0, at each torsional angle indicates the stable limit-cycle amplitude. It corresponds to the steady-state 278 

amplitude and closely agrees with the amplitude value obtained by the time–history analysis. Meanwhile, the 279 

minimum value of 𝐴𝑦 is in the range of 𝐸𝑇 ≥ 0, where 𝐸𝑇 = 0 at each torsional angle indicates the unstable 280 

limit-cycle amplitude. This amplitude corresponds to the minimum initial displacement that must be applied for 281 

the oscillation to occur and is in agreement with the amplitude obtained by time–history analysis. 282 

The torsional angle ranges in which galloping occurs with zero unstable limit-cycle amplitude 283 

correspond to the angle ranges where the Den Hartog summation (Fig. 3) is less than a certain negative value 284 

proportional to the structural damping (−𝑚𝜁𝑦0𝜔𝑦0/𝜌𝐷𝑈 ≈ −0.25), as shown in Eq. (3). Furthermore, for the 285 

torsional angle ranges in which there is no value of 𝐴𝑦 with 𝐸𝑇 ≥ 0, steady-state oscillations do not occur 286 

Fig. 7 Comparison of stable and unstable limit-cycle amplitudes between time-history analysis and energy-balance 

analysis for the vertical 1-DoF system 

<Energy balance analysis> 

𝐸𝑇 ≥ 0 

<Time history analysis> 

Stable-1    Unstable-1 

Stable-2    Unstable-2 

Stable-3    Unstable-3 
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regardless of the large initial displacement. By considering the relationship between the relative angle of attack 287 

and the work done by the aerodynamic force, the unstable limit-cycle oscillation amplitude is determined by 288 

identifying whether the relative angle of attack attaches with the angle in which the aerodynamic force provided 289 

significant positive work to the oscillation. Thus, the angle ranges with steep negative slopes for the lift 290 

coefficient of approximately 20–25°, 70–80°, and 150–160° are shown in Fig. 4.  291 

 292 

3.3 Non-dimensional energy-balance formulation in vertical 1-DoF system 293 

By substituting Eq. (7) and �̇� = 𝐴𝑦𝜔𝑦0 cos𝜔𝑦0𝑡 into Eq. (10), the conditional expression of the energy 294 

balance, 𝐸𝑇 ≥ 0, can be rearranged into a non-dimensional form as follows: 295 

𝐸𝑇
∗ = 𝐸𝑎

∗ −
𝑆𝑐
𝑈∗
≥ 0,

𝐸𝑎
∗ =

𝑈∗

𝐴𝑦
∗
∫ {(𝐶𝐿𝑓(𝛼𝑟) − 𝐶𝐷𝑓(𝛼𝑟) ⋅

𝐴𝑦
∗

𝑈∗
cos𝜓)√1 + (

𝐴𝑦
∗

𝑈∗
)
2

cos2𝜓} cos𝜓  d𝜓
𝜋

−𝜋

,

𝛼𝑟 = 𝜃0 − tan
−1 (

𝐴𝑦
∗

𝑈∗
cos𝜓) , 𝐴𝑦

∗ =
𝐴𝑦

𝐴𝑙
,   𝑈∗ =

𝑈

𝐴𝑙𝜔𝑦0
,   𝑆𝑐 =

4𝜋𝑚𝜁𝑦0

𝜌𝐴𝑙
2 ,   𝐴𝑙 = 4𝐷.

(12) 296 

As shown in these equations, the non-dimensional amplitude, 𝐴𝑦
∗ , with 𝐸𝑇 ≥ 0 is defined as a 297 

function of non-dimensional wind speed, 𝑈∗, and the Scruton number, 𝑆𝑐. Furthermore, Eq. (12) indicates 298 

that, when 𝑆𝑐/𝑈
∗ is relatively small, the limit-cycle-oscillation amplitudes are proportional to the wind speed 299 

and are inversely proportional to the natural frequency. This state is fulfilled when the non-dimensional wind 300 

speed is high or when the damping is small. This relationship is the same as the one described by Parkinson and 301 

Smith (1964), who approximated the aerodynamic force as a polynomial expression. 302 

Figure 8 shows the relationship between the non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ (= 𝐴𝑦𝜔𝑦0 𝑈⁄ ), 303 

and the non-dimensional aerodynamic work, 𝐸𝑎
∗. The area of 𝐸𝑎

∗ ≥ 𝑆𝑐/𝑈
∗ corresponds to the area of 𝐸𝑇 ≥ 0 304 

in Fig. 7. The non-dimensional aerodynamic work, 𝐸𝑎
∗, which presents the aerodynamic characteristics of the 305 
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section, can be calculated in advance, depending on the torsional angle. Therefore, by calculating 𝑆𝑐/𝑈
∗, the 306 

stable and unstable limit-cycle oscillation amplitudes for the vertical 1-DoF system can be easily estimated 307 

from Eq. (12) for various wind speeds and structural conditions. Furthermore, the amount of damping required 308 

to suppress the amplitude can be easily estimated. However, in the range of large non-dimensional aerodynamic 309 

work, it is hard to control galloping.  310 

 311 

4. Aerodynamic coupling effect of 3-DoF galloping 312 

To clarify the aerodynamic coupling effect of galloping of a four-bundled conductor, another series of time–313 

history analyses was conducted for 2- and 3-DoF systems in addition to the vertical 1-DoF system. In this 314 

section, to discuss the tuning/de-tuning effect, which is the effect of the frequency ratio on the vertical 315 

amplitude, we first compared the results of the time–history analyses for vertical–horizontal–torsional 3-DoF 316 

systems with varying frequency ratios. Then, in the case with the largest amplitude of 3-DoF systems, the 317 

coupling characteristics and their mechanisms were investigated by comparing the results of the analysis for 318 

vertical–horizontal 2-DoF and vertical–torsional 2-DoF systems. Finally, the potential for the enlargement of 319 

the vertical amplitude by the horizontal and torsional motions was investigated by conducting a non-320 

dimensional energy-balance analysis on the vertical motion, for which the horizontal and torsional amplitudes 321 

Fig. 8 Relationship between non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ , and non-dimensional aerodynamic work, 𝐸𝑎

∗, 

for the vertical 1-DoF system 

𝐸𝑎
∗ 
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and their phase differences were assumed. 322 

 323 

4.1 Effects of frequency ratio on stable limit-cycle-oscillation in 3-DoF systems 324 

Figure 9 shows the dependency of the vertical amplitude on the torsional frequency ratio for the vertical–325 

horizontal–torsional 3-DoF system. The vertical amplitude obtained from the analysis, in which only the 326 

frequency ratio between torsional and vertical motion was varied, was given as 𝑓𝜃0/𝑓𝑦0 =327 

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 with the constant 𝑓𝑦0, 𝑓𝑧0 (= 0.393 Hz). In these figures, the horizontal axis 328 

represents the stationary torsional angle, 𝜃𝑠, with wind, which was calculated from pre-time-history analysis 329 

with large virtual damping, and 𝜃𝑠 is different from the setup torsional angle, 𝜃0, in the case considering 330 

torsional motion. All different stable limit-cycle oscillation amplitudes were selected from the steady-state 331 

solutions obtained from the time-history analysis with all initial displacements, ∆𝑦0 = 0.0– 5.0 m (intervals 332 

of 0.05 m), ∆𝑧0 = 0 m, and ∆𝜃0= 0°. Furthermore, these figures show the results of time-history analysis for 333 

a special case with an initial displacement of ∆𝑦0 = 0 m. In the 3-DoF system, stable limit-cycle oscillations 334 

occurred in a wider range of stationary torsional angles than torsional angles, 𝜃0(= 𝜃𝑠), of the vertical 1-DoF 335 

analysis, as shown in Fig. 6. The torsional frequency ratio, 𝑓𝜃0/𝑓𝑦0, affects the conditions under which 336 

galloping occurs, as well as its amplitude. Larger galloping occurs in a wider range of stationary angles when 337 

the torsional natural frequency is smaller than the vertical natural frequency. 338 

Figure 10 compares the vertical amplitudes between different torsional frequency ratios, 𝑓𝜃0/𝑓𝑦0 =339 

0.7, 0.8, 0.9, 1.0(𝑓𝑧0 = 𝑓𝑦0 = 0.393 Hz). In the range in which the stationary angle is approximately 40–90°, 340 

the vertical amplitude is affected by the torsional frequency ratio. The largest amplitude is observed at 341 

𝑓𝜃0/𝑓𝑦0 = 0.9 with some initial displacement, as shown in Fig. 10 (a). From Fig. 10 (b), in the case of  342 
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  343 

(f) 𝑓𝜃0/𝑓𝑦0 = 1.3                         (g)  𝑓𝜃0/𝑓𝑦0 = 0.7 

Fig. 9 Dependency of vertical amplitude on torsional frequency ratio for the 3-DoF system 

(a) 𝑓𝜃0/𝑓𝑦0 = 1.0  

(b) 𝑓𝜃0/𝑓𝑦0 = 1.1                         (c)  𝑓𝜃0/𝑓𝑦0 = 0.9 

(d) 𝑓𝜃0/𝑓𝑦0 = 1.2                         (e)  𝑓𝜃0/𝑓𝑦0 = 0.8 
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𝑓𝜃0/𝑓𝑦0 = 0.9, large galloping is observed in the wider range of stationary torsional angles than for the other 344 

frequency ratio, even without initial displacement, ∆𝑦0= 0 m. On the contrary, in the range of the other 345 

stationary torsional angle, where 𝜃𝑠 = 0– 40 and 90– 180°, the influence of torsional frequency ratio on the 346 

vertical amplitude is small: galloping occurs at 𝜃𝑠 = 20–40 and 150– 180°, where galloping is also 347 

observed in the 1-DoF vertical systems. 348 

Similarly, Fig. 11 compares the vertical amplitudes between different horizontal frequency ratios in 349 

the 3-DoF system, 𝑓𝑧0/𝑓𝑦0 = 0.8, 0.9, 1.0,1.1,1.2 (𝑓𝜃0 = 𝑓𝑦0 = 0.393 Hz). In the range in which the 350 

stationary angle is approximately 20–60°, the vertical amplitude is affected by the horizontal frequency ratio. In 351 

the case of 𝑓𝑧0/𝑓𝑦0 = 1.0, the amplitude is larger than those of the other frequency ratios. The stationary 352 

torsional range in which galloping occurs is narrower when the horizontal natural frequency ratio is larger than 353 

(a) All stable solutions larger than zero     (b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 

Fig. 10 Comparison of vertical amplitudes between different torsional frequency ratios for the 3-DoF system 

(a) All stable solutions larger than zero     (b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 

Fig. 11 Comparison of vertical amplitudes between different horizontal frequency ratios for the 3-DoF system 
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the vertical natural frequency than when 𝑓𝑧0/𝑓𝑦0 = 1.0. When the horizontal natural frequency ratio is smaller 354 

than the vertical natural frequency, the stationary torsional range in which galloping occurs is almost the same 355 

as that when 𝑓𝑧0/𝑓𝑦0 = 1.0. By contrast, in the stationary torsional angle range of 𝜃𝑠 = 150– 180°, where 356 

the 1-DoF vertical systems experience galloping, the effect of the horizontal frequency ratio on the vertical 357 

amplitude is small. 358 

Finally, Fig. 12 shows differences in vertical amplitude of the 3-DoF system observed when both the 359 

horizontal–vertical and torsional–vertical frequency ratios were varied with a constant 𝑓𝑦0(= 0.393 Hz). 360 

From the results of the frequency-ratio variation in the 3-DoF system, as shown in Figs. 10, 11, and 12, the 361 

largest vertical amplitudes in the wide stational torsional angle range are observed in the case having 362 

𝑓𝑧0/𝑓𝑦0 = 1.0 and 𝑓𝜃0/𝑓𝑦0 = 0.9.  363 

 364 

4.2 Oscillation characteristics of 3-DoF galloping with 𝑓𝑧0/𝑓𝑦0 = 1.0, 𝑓𝜃0/𝑓𝑦0 = 0.9 365 

Figure 13 illustrates the oscillation characteristics for the case having vertical amplitude, horizontal amplitude, 366 

torsional amplitude, amplitude of relative angle of attack, frequency of oscillation, phase difference between 367 

horizontal and vertical displacement, phase difference between torsional and vertical displacement, and phase  368 

(a) All stable solutions larger than zero     (b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 

Fig. 12 Comparison of vertical amplitudes between different horizontal and torsional frequency ratios for the 3-

DoF system 
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  369 

(d) Amplitude of relative angle of attack      (h) Phase difference of relative angle of attack   

Fig. 13 Oscillation characteristics of 3-DoF galloping (fz0 / fy0 = 1.0, f0 / fy0 = 0.9) 

(c) Torsional amplitude                     (g) Torsional phase difference 

(b) Horizontal amplitude                    (f) Horizontal phase difference 

(a) Vertical amplitude                       (e) Frequency of oscillation 
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difference between the relative angle of attack, and the vertical displacement. Up to three different stable 370 

solutions were obtained from the time–history analysis for each torsional angle. The stable solutions are 371 

numbered in descending order of vertical amplitude for each torsional angle. In these figures, only those stable 372 

solutions having vertical amplitudes greater than 0.05 m are indicated. The relative angle of attack is not a 373 

sinusoidal wave, even if the vertical, horizontal, and torsional motions are substantially regarded as such. 374 

However, in this study, amplitude and phase difference of the relative angle of attack were defined the same as 375 

those of the displacements. That is, the amplitude of the relative angle of attack is defined as half of the peak-to-376 

peak amplitude. Furthermore, the phase difference of the relative angle of attack is calculated by the time 377 

difference of the zero crossing-points of the relative angle of attack and the vertical displacement with positive 378 

velocity, respectively. 379 

The frequency of oscillation is almost the same as the vertical natural frequency, except for a few 380 

cases. The largest vertical amplitude is approximately 4 m, whereas the largest horizontal amplitude is less than 381 

1 m, and the largest torsional amplitude is approximately 15°. The horizontal and vertical displacements have 382 

almost opposite phases when the horizontal oscillation is relatively large (i.e., in the range 𝜃𝑠 = 20– 70°, 383 

where the horizontal amplitude is more than 0.4 m). Meanwhile, the torsional displacement is approximately 384 

45–90° behind the vertical displacement when the torsional oscillation is relatively large (i.e., in the range 𝜃𝑠 =385 

30– 90° where the torsional amplitude is more than 5°). 386 

The amplitude of the relative angle of attack increases as the vertical amplitude increases. The phase 387 

of the relative angle of attack is approximately 90° behind the vertical displacement. In other words, the relative 388 

angle of attack is mainly determined by the effect of the vertical velocity. Based on these characteristics, the 389 

vertical oscillation is dominant, even in the 3-DoF galloping. Thus, the cause of large oscillations and coupling 390 

effects can be investigated by analysing the relationship between the relative angle of attack and the work done 391 
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by the aerodynamic force in the vertical direction, as was done with the vertical 1-DoF system in Section 3.1. 392 

The oscillation mechanism and the effect of coupling on the 3-DoF galloping are described in the next section. 393 

 394 

4.3 Fundamental characteristics of aerodynamic coupling in a 3-DoF system 395 

Figure 14 compares the vertical amplitudes of all different stable solutions obtained from the time-history 396 

analyses for various DoF systems and frequency ratios with 𝑓𝑦0 = 0.393 Hz: vertical–horizontal–torsional 3-397 

DoF system with 𝑓𝑧0/𝑓𝑦0 = 1.0, 𝑓𝜃0/𝑓𝑦0 = 0.9; vertical–horizontal 2-DoF system with 𝑓𝑧0/𝑓𝑦0 = 1.0; 398 

vertical–torsional 2-DoF system with 𝑓𝜃0/𝑓𝑦0 = 0.9; and vertical 1-DoF system. The aerodynamic coupling 399 

(b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 

Fig. 14 Comparison of vertical amplitudes under various DoF systems and frequency ratios 

(Time–history analysis, y0 = 0–5 m) 

(a) All stable solutions larger than zero (𝛥𝑦0 = 0– 5 m) 

Region 1 Region 2 Region 3 

Region 1 Region 2 Region 3 
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effect between the motions can be clarified by accounting for the effect of each frequency ratio, as mentioned in 400 

Section 4.1, the amplitude of motion in each direction, as mentioned in Section 4.2, and the oscillation 401 

characteristics in 2-DoF systems, as shown in Fig. 14. Focusing on the largest amplitude of each stationary 402 

torsional angle, the stationary torsional angle can be partitioned into three regions based on the coupling effects 403 

as follows:  404 

Region 1: The stationary torsional angle was approximately 20–60°. The results of the vertical–horizontal 405 

2-DoF analysis (𝑓𝑧0/𝑓𝑦0 = 1.0) approaches those of the 3-DoF analysis (𝑓𝑧0/𝑓𝑦0 = 1.0) having larger 406 

amplitudes than the others for each stationary torsional angle. In this region, the vertical–horizontal 2-DoF 407 

coupling oscillation is dominant when both frequencies are equal. 408 

Region 2: The stationary torsional angle was approximately 60–80°. The results of the vertical–torsional 409 

2-DoF analysis (𝑓𝜃0/𝑓𝑦0 = 0.9) approach those of the 3-DoF analysis (𝑓𝜃0/𝑓𝑦0 = 0.9) with larger 410 

amplitudes than the others for each stationary torsional angle. In this region, the vertical–torsional 2-DoF 411 

coupling oscillation is dominant when the torsional frequency is slightly lower than the vertical frequency. 412 

Region 3: The stationary torsional angle was approximately 150–180°. The results of all analyses are 413 

approximately equal. The vertical 1-DoF oscillation is dominant in this region. 414 

The oscillation mechanism in Region 3 is simply described by the results of the vertical 1-DoF 415 

analysis, as mentioned in Section 3.1. Thus, the oscillation mechanism of Regions 1 and 2 is discussed using 416 

the results of the vertical–horizontal or vertical–torsional 2-DoF analysis, as follows. 417 

In Region 1, the horizontal motion is coupled with the vertical motion and enlarges the vertical 418 

amplitude. Figure 15 shows the time series of each variable at a torsional angle of 𝜃0 = 𝜃s = 56° in the 419 

vertical–horizontal 2-DoF analysis (𝑓𝑧0/𝑓𝑦0 = 1.0). To clarify the influence of the horizontal motion, the 420 

relative angles of attack, 𝛼𝑟, relative wind speed, 𝑈𝑟 , and the fluctuating aerodynamic force, 𝐹�̃�, are compared 421 



28 

 

with those with a horizontal velocity of �̇� = 0 in Fig. 15. As shown in Fig. 15 (c), (d), the influence of the 422 

horizontal velocity is predominant in the relative wind speed. Because the phase difference between the vertical 423 

and horizontal motions is approximately 180°, the relative wind speed increases because of the horizontal 424 

velocity when the relative angle of attack is small. In contrast, the relative wind speed decreases when the 425 

relative angle of attack is large. As a result, from Fig. 15 (e), the fluctuating aerodynamic force increases at a 426 

time when the relative angle of attack is approximately 20°, and it exerts a larger exciting force than that where 427 

�̇� = 0. This is the why the horizontal motion enlarges the vertical amplitude in Region 1.   428 

(a) Time series of vertical and horizontal displacements 
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In Region 2, the torsional motion is coupled with the vertical motion and enlarges the vertical 429 

amplitude. Figure 16 shows the time series of each variable at the setup torsional angle of 𝜃0 = 65° in the 430 

vertical–torsional 2-DoF analysis (𝑓𝜃0/𝑓𝑦0 = 0.9). In the case where 𝜃0 = 65°, the stationary torsional angle, 431 

𝜃s, is 67.3°. To clarify the influence of torsional motion, the relative angles of attack, 𝛼𝑟, and relative wind 432 

speed, 𝑈𝑟 , are compared with those with a torsional displacement of 𝜃 = 𝜃s (constant) in Fig. 16. As shown 433 

in Fig. 16 (d), because the phase difference between the vertical and torsional motions is 45–90°, the range of 434 

the relative angle of attack increases because of torsional oscillation. Thus, the range of the relative angle of 435 

attack can include the angle region around 20°, in which the aerodynamic force has a large positive effect on 436 

the oscillation, although the range does not attach the angle region around 20° with 𝜃 = 𝜃s. This is the why the 437 

torsional motion enlarges the vertical amplitude in Region 2.  438 

The essential oscillation types of stable solutions in 3-DoF systems have been categorised according 439 

to the stationary torsional angle, and the coupling effects on the vertical oscillation have been discussed by 440 
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analysing their influence on the relative angle of attack and relative wind speed. Even when focusing on the 441 

occurrence conditions under which galloping occurs from the stationary position (Fig 14 (b)), which 442 

corresponds to the range of stationary angles having a negative damping effect in the linear analysis, the 443 

coupling effects on the occurrence conditions are similar to those on non-linear oscillation amplitudes. When 444 

𝜃𝑠 = 20–40°, the range in which galloping occurs for the 3-DoF system with 𝑓𝑧0/𝑓𝑦0 = 1.0 is almost the 445 

same as that in which galloping occurs for the vertical–horizontal 2-DoF system. For 𝜃𝑠 = 50– 70°, the range 446 

of galloping occurrence of the 3-DoF system with 𝑓𝜃0/𝑓𝑦0 = 0.9 is almost the same as that of the vertical–447 

torsional 2-DoF system, except that the amplitudes are different because there are multiple stable solutions. In 448 

𝜃𝑠 = 150–180°, the range in which galloping occurs in the 1-DoF system is the same or slightly wider than 449 

the range in which galloping occurs in the other systems. The coupling effect is also pronounced in the unstable 450 

limit-cycle oscillation amplitudes, which are the initial displacements necessary to induce the corresponding 451 

larger-amplitude stable solutions. Although the initial displacement in the time–history analysis was set only in 452 

the vertical direction, an unstable solution should be defined as a function of the displacement and velocity of 453 

every motion (i.e., a combination of their amplitudes and phases). The identification of unstable solutions in 454 

multiple DoF systems, which is a characteristic of non-linear vibrations, requires further investigation using the 455 

results of time–history analysis with various combinations of initial conditions or other theoretical non-linear 456 

dynamics approaches. 457 

 458 

4.4. Enlargement of vertical amplitude with assumed horizonal and torsional oscillations 459 

In Sections 4.1–4.3, the coupling effects of the 3-DoF galloping were investigated in a specific case, whose 460 

conditions are shown in Table 1. Under other structural and wind conditions, the horizontal and torsional 461 

oscillations might vary even for the same ice-accretion shape. To indicate more general characteristics for 462 
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enlargement of the vertical amplitude by other motions, the maximum vertical amplitude in the presence of 463 

assumed horizontal and torsional oscillations was investigated using the non-dimensional energy-balance 464 

formulation for vertical vibrations. Hence, the conditions of horizontal and torsional oscillations under which 465 

the vertical vibrations were enlarged for the 3-DoF system were clarified. Even for a multi-DoF system, the 466 

relationship of energy balance over one period of time in the vertical direction, 𝐸𝑇, with the aerodynamic force 467 

in the vertical direction, 𝐹𝑦, is the same as that for a 1-DoF system, as shown in Eq. (10). However, the 468 

aerodynamic force, 𝐹𝑦, should be calculated using Eqs. (5), (6), and (7). Regarding the sinusoidal coupling 469 

motions in which the oscillation frequency is the same as the vertical natural frequency, the vertical, horizontal, 470 

and torsional displacements can be defined as 𝑦 = �̅� + 𝐴𝑦 sin𝜔𝑦0𝑡 , 𝑧 = 𝑧̅ + 𝐴𝑧 sin(𝜔𝑦0𝑡 − 𝛷𝑧) , 𝜃 = �̅� +471 

𝐴𝜃 sin(𝜔𝑦0𝑡 − 𝛷𝜃), respectively. The amplitudes and phase differences are defined in a steady state in which 472 

the energy balance of each DoF of the multi-DoF system is established separately, and thus the steady-state 473 

oscillations shown in Fig 13 occur. Nevertheless, considering the energy balance only for the vertical motion 474 

and assuming the motions of the other DoFs (defined as four parameters: 𝐴𝑧 , 𝛷𝑧 , 𝐴𝜃 , 𝛷𝜃), the largest vertical 475 

amplitude, 𝐴𝑦, that can occur for each mean torsional angle, �̅�, can be estimated from 𝐸𝑇 = 0. Furthermore, 476 

the non-dimensional aerodynamic work for vertical oscillation coupling with horizontal and torsional 477 

oscillations, 𝐸𝑎𝑐
∗ , can be expressed as follows:  478 

𝐸𝑎𝑐
∗ =

𝑈∗

𝐴𝑦
∗
∫ {(𝐶𝐿𝑓(𝛼𝑟) (1 −

𝐴𝑦
∗

𝑈∗
𝐴𝑧
𝐴𝑦
cos(𝜓 − 𝛷𝑧)) − 𝐶𝐷𝑓(𝛼𝑟)

𝐴𝑦
∗

𝑈∗
cos𝜓)

𝜋

−𝜋

                  

                           × √(1 −
𝐴𝑦
∗

𝑈∗
𝐴𝑧
𝐴𝑦
cos(𝜓 − 𝛷𝑧))

2

+ (
𝐴𝑦
∗

𝑈∗
)
2

cos2𝜓} cos𝜓  d𝜓,

𝛼𝑟 = �̅� + 𝐴𝜃 sin(𝜓 − 𝛷𝜃) − tan
−1

(

 

𝐴𝑦
∗

𝑈∗
cos𝜓

1 −
𝐴𝑦
∗

𝑈∗
𝐴𝑧
𝐴𝑦
cos(𝜓 − 𝛷𝑧))

 .

(13) 479 

Similarly, as in Fig. 8 using Eq. (12), the maximum value of 𝐴𝑦
∗ /𝑈∗ in the range of 𝐸𝑎𝑐

∗ − 𝑆𝑐/𝑈
∗ ≥ 0 at 480 

each mean torsional angle, �̅�, corresponds to the largest non-dimensional vertical amplitude with assumed 481 
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horizontal and torsional oscillations. As shown in Eq. (13), the non-dimensional amplitude, 𝐴𝑦
∗ /𝑈∗, depends 482 

on the horizontal amplitude ratio, 𝐴𝑧/𝐴𝑦; horizontal phase difference, 𝛷𝑧; torsional amplitude, 𝐴𝜃; and 483 

torsional phase difference, 𝛷𝜃; in addition to 𝑆𝑐/𝑈
∗ at each mean torsional angle, �̅�. In the following, the 484 

effects of horizontal or torsional oscillations on the maximum vertical amplitudes are explained using the non-485 

dimensional energy-balance formulation with assumed 𝐴𝑧/𝐴𝑦 and 𝛷𝑧 or 𝐴𝜃 and 𝛷𝜃 , focusing on the 486 

vertical–horizontal 2-DoF system or the vertical–torsional 2-DoF system, respectively.  487 

Figure 17 shows examples of the relationship between the non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ (=488 

𝐴𝑦𝜔𝑦0 𝑈⁄ ), and the non-dimensional aerodynamic work, 𝐸𝑎𝑐
∗ , for the vertical–horizontal 2-DoF systems with 489 

𝐴𝑧/𝐴𝑦 = 0.4, 𝛷𝑧 = 180
∘ and for the vertical–torsional 2-DoF system with 𝐴𝜃 = 15

∘, 𝛷𝜃 = 60
∘, 490 

respectively . The horizontal or torsional oscillation is assumed, referring to the galloping observed in Fig. 13. 491 

For conditions used in the time–history analyses, 𝑆𝑐/𝑈
∗ = 0.79 and the largest non-dimensional vertical 492 

amplitude with assumed coupling oscillation can be estimated by the maximum value of 𝐴𝑦
∗ /𝑈∗ in the range 493 

of 𝐸𝑎𝑐
∗ ≥ 0.79. Compared with Fig. 8, which shows 𝐸𝑎

∗ in the vertical 1-DoF system, the boundaries for 494 

obtaining the stable solutions (upper boundary in the range of 𝐸𝑎𝑐
∗ − 𝑆𝑐/𝑈

∗ ≥ 0) are affected by horizontal or 495 

torsional oscillation. When the structural damping is small or the non-dimensional wind speed is high, 𝑆𝑐/𝑈
∗ 496 

(a)Vertical–horizontal 2-DoF system 

 (𝐴𝑧/𝐴𝑦 = 0.4, 𝛷𝑧 = 180
∘, 𝐴𝜃 = 0

∘) 

 

𝐸𝑎
∗ 𝐸𝑎

∗ 

Fig. 17 Relationship between non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ (= 𝐴𝑦𝜔𝑦0/𝑈), and non-dimensional 

aerodynamic work, 𝐸𝑎
∗, for the vertical system 

(b)Vertical–torsional 2-DoF system 

 (𝐴𝜃 = 15
∘, 𝛷𝜃 = 60

∘, 𝐴𝑧/𝐴𝑦 = 0) 
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becomes relatively small, and the potential largest vertical amplitude under assumed coupling oscillation can be 497 

estimated from the maximum value of 𝐴𝑦
∗ /𝑈∗ in the range of 𝐸𝑎𝑐

∗ ≥ 0. Because the non-dimensional 498 

potential amplitude, 𝐴𝑦
∗ /𝑈∗, is calculated by using non-dimensional energy balance formulation, the potential 499 

largest vertical amplitude, 𝐴𝑦, can be easily estimated under various wind speeds and natural frequencies 500 

unless the effect of damping (𝑆𝑐/𝑈
∗) is relatively large.  501 

Figure 18 shows the effect of horizontal oscillation on the non-dimensional vertical amplitude for the 502 

vertical–horizontal 2-DoF system. These figures illustrate the largest stable limit-cycle oscillation amplitudes 503 

for each torsional angle obtained from the non-dimensional energy-balance analysis where 𝐸𝑎𝑐
∗ ≥ 0. Referring 504 

to the actual oscillation characteristic in multi-DoF galloping, as shown in Fig. 13, the non-dimensional vertical 505 

amplitudes with 𝐴𝑧/𝐴𝑦 = 0.4 (varying 𝛷𝑧) or 𝛷𝑧 = 180° (varying 𝐴𝑧/𝐴𝑦) are shown in these figures. As 506 

shown in Fig. 18 (a), the positive and negative horizontal phase differences have the same effect on the vertical 507 
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Fig. 18 Effect of horizontal oscillation for the vertical–horizontal 2-DoF system (largest stable solutions of non-

dimensional vertical amplitudes for each torsional angle, upper side of 𝐸𝑎𝑐
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amplitude; only the absolute value of phase difference affects the vertical amplitude. For Region 1 (�̅� =508 

20– 60°), where the dominant vertical–horizontal 2-DoF coupling oscillation is shown in time–history analysis, 509 

the vertical amplitude increases when the phase difference is greater than 90°; and a horizontal phase difference 510 

of 180° has the highest potential to enlarge the vertical amplitude. This is because the relative wind speed 511 

increases because of the horizontal velocity when the relative angle of attack is small, as mentioned in Section 512 

4.3. As shown in Fig. 18 (b), under the condition of 𝛷𝑧 = 180°, the vertical amplitude could increase with the 513 

horizontal amplitude ratio, especially for that in Region 1 (�̅� = 20– 60°). 514 

 Figure 19 illustrates the effect of torsional oscillation on the non-dimensional vertical amplitude for 515 

each mean torsional angle for the vertical–torsional 2-DoF system. The largest stable limit-cycle oscillation 516 

amplitudes for the vertical–torsional 2-DoF system are obtained from the non-dimensional energy-balance 517 

analysis wherein 𝐸𝑎𝑐
∗ ≥ 0, assuming the torsional amplitude, 𝐴𝜃, and phase difference, 𝛷𝜃, are independent 518 
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Fig. 19 Effect of torsional oscillation for the vertical–torsional 2-DoF system (largest stable solutions of non-
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of vertical motion. Referring to the actual oscillation characteristic in multi-DoF galloping, as shown in Fig. 13, 519 

the non-dimensional vertical amplitudes with 𝐴𝜃 = 15
∘ (varying 𝛷𝜃) or 𝛷𝜃 = 90° (varying 𝐴𝜃) are shown 520 

in these figures. From Fig. 19 (a), the torsional phase differences of 𝛷𝜃 = 90° ± φ are shown to have the 521 

same effect as the other on the vertical amplitude. For Region 2 (�̅� = 60– 80°), where the dominant vertical–522 

torsional 2-DoF coupling oscillation occurs in the time–history analysis, the range of the mean torsional angle 523 

in which the oscillations occur is widened as the phase difference approaches 90°. This is because the range of 524 

the relative angle of attack increases because of the torsional oscillation and reaches the angle range where the 525 

aerodynamic force has a large positive effect on the oscillation, as mentioned in Section 4.3. As shown in Fig. 526 

19 (b), under the condition of 𝛷𝜃 = 90°, the range of the mean torsional angles, in which the oscillations 527 

occur, changes as the torsional amplitude increases. However, the vertical amplitude does not increase with an 528 

increasing torsional amplitude; it has a limited set of values, even if the torsional amplitude becomes large. 529 

In summary, the vertical amplitude of multi-DoF galloping becomes larger with increasing horizontal 530 

amplitude (ratio) when the phase difference between the horizontal and vertical displacements is around 180°. 531 

In contrast, torsional oscillations can lead to multi-DoF galloping with the largest vertical amplitudes when the 532 

phase difference between the torsional and vertical displacements is around 90°. However, the maximum 533 

vertical amplitude is not significantly increased, even if the torsional amplitude becomes large. Note that the 534 

assumed amplitude (ratio) and phase difference for horizontal or torsional oscillations in Figs. 18 and 19 seem 535 

to include conditions that cannot be observed in the galloping of the ice-accreted four-bundled conductor. 536 

However, the conditions of amplitudes and phase differences of horizontal and torsional oscillation at which the 537 

vertical amplitude tends to increase are clarified from these figures. By identifying the structural conditions that 538 

induce a coupling effect which have those amplitudes and phase differences, it is possible to predict the 539 

conditions under which large galloping occurs. 540 
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 541 

5. Conclusions 542 

To clarify the dynamic response characteristics of a four-bundled conductor to galloping, a series of time–543 

history analyses were conducted for vertical 1-DoF, vertical–horizontal 2-DoF, vertical–torsional 2-DoF, and 544 

vertical–horizontal–torsional 3-DoF systems by formulating the quasi-steady aerodynamic forces for each sub-545 

conductor. Then, the reasons for the large oscillations were deduced by analysing the relationship between the 546 

relative angle of attack and the work done by the aerodynamic force. 547 

In the vertical 1-DoF system, the absolute value of the Den Hartog criterion at a given torsional angle 548 

did not correlate well with the oscillation amplitude. Large oscillations occurred because of the range of the 549 

relative angle of attack over the vibration cycle, including an angle range with a large negative slope of the lift 550 

coefficient. By considering the energy balance over one oscillation period, the stable and unstable limit-cycle 551 

amplitudes were identified and interpreted. By considering the relationship between the relative angle of attack 552 

and the work done by the aerodynamic force, the unstable limit-cycle oscillation amplitude was determined by 553 

identifying whether the relative angle of attack reattaches the angle at which the aerodynamic force had a 554 

positive effect on oscillation. Furthermore, the energy balance of the vertical motion over one oscillation period 555 

was evaluated using a function of the non-dimensional amplitude, non-dimensional wind speed, and the 556 

Scruton number. Using this non-dimensional formulation, the non-dimensional aerodynamic work, which 557 

presented the aerodynamic characteristics of the section, was calculated in advance for a given torsional angle. 558 

Subsequently, the stable and unstable limit-cycle oscillation amplitudes of the vertical 1-DoF system were 559 

easily estimated for various wind speeds and structural conditions, including damping and natural frequency. 560 

The coupling effects of the horizontal and torsional motions on vertical oscillation amplitudes were 561 

observed for the 2- and 3-DoF systems, respectively. The essential oscillation types in the 3-DoF systems were 562 



37 

 

categorised as vertical–horizontal 2-DoF coupled oscillations, vertical–torsional 2-DoF coupled oscillations, 563 

and vertical 1-DoF oscillations for different stationary torsional angles. The mechanisms of the coupling effects 564 

on the vertical oscillations, which enlarged the amplitude, were discussed by analysing their influence on the 565 

relative angle of attack and the relative wind speed. Finally, the coupling effects on the vertical oscillation were 566 

clarified by considering the non-dimensional energy balance of vertical motion with the prescribed amplitudes 567 

and phase differences of horizontal and torsional oscillations. The non-dimensional vertical amplitude for multi-568 

DoF motion depends on the horizontal amplitude ratio and phase difference to the vertical oscillations and the 569 

torsional amplitude and torsional phase difference to the vertical oscillations, in addition to the non-dimensional 570 

wind speed and the Scruton number at each mean torsional angle. Thus, we conclude that the vertical amplitude 571 

of multi-DoF galloping can become large, apparently without limits, if the horizontal amplitude increases when 572 

the phase difference between the horizontal and vertical displacements is around 180°. In contrast, torsional 573 

oscillations can induce multi-DoF galloping with significant vertical amplitudes over a wider mean torsional 574 

angle range, when the phase difference between the torsional and vertical displacements approaches 90°; 575 

however, without horizontal motion, the vertical amplitude is limited, even if the torsional amplitude becomes 576 

large. 577 

Although the fundamental effects of aerodynamic coupling and non-linearity on the oscillation 578 

amplitude of the conductor galloping are presented in this work, the time–history analyses were performed on a 579 

specific structural model and under a certain wind speed. Because the results of non-dimensional energy-580 

balance analysis have also been presented, stable and unstable limit-cycle amplitudes of the vertical 1-DoF 581 

system can be obtained for various wind speeds and structural conditions. Furthermore, the mechanisms for 582 

enlarging the vertical amplitude for both the vertical 1-DoF and multi-DoF systems, which are explained by the 583 

influence of the relative angle of attack and relative wind speed, are applicable for various conditions. However, 584 



38 

 

although the vertical amplitude for a multi-DoF system can be estimated when the amplitudes and phase 585 

differences of horizontal and torsional oscillation are assumed, the amplitudes and phase differences of these 586 

motions are defined in a steady state in which the energy balance for each motion is established separately, 587 

which has not been addressed in this paper. Therefore, it is necessary to perform further time–history analyses 588 

and discussions similar to those in this study by changing various parameters, including wind speed, structural 589 

conditions, and ice-accretion shape. Furthermore, we plan to develop another analytical evaluation method to 590 

obtain complete steady-state solutions, which includes the amplitude and phase differences of all motions, for 591 

non-linear coupled oscillation without using time–history analysis. Using the other evaluation method, we can 592 

obtain not only stable solutions but also unstable solutions in the multi-DoF system. In addition, the 593 

investigation should be expanded to a full-scale 3D model considering the distribution of responses. Eventually, 594 

after the verification of analytical results and theoretical description using experimental results for the 2D model 595 

and observation results for the 3D model, we plan to develop an evaluation method of steady-state galloping 596 

amplitudes for a multi-DoF 3D full-scale model of overhead transmission lines.   597 
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Figure Captions 653 

Fig. 1 Cross-sections of ice-accreted four-bundled conductor. 654 

Fig. 2 Aerodynamic coefficients of ice-accreted four-bundled conductor (Matsumiya et al., 2011) 655 

(a) Drag coefficients of sub-conductors 656 

(b) Lift coefficients of sub-conductors 657 

(c) Moment coefficients of sub-conductors 658 

(d) Aerodynamic coefficients of four-bundled conductor  659 

Fig. 3 Den Hartog summation of ice-accreted four-bundled conductor 660 

Fig. 4 Relationship between torsional angle and vertical amplitude with range of relative angle of attack  661 

(results of time–history analysis for the vertical 1-DoF system with initial displacement y0 = 5 m) 662 

Fig. 5 Time series of each parameter (vertical 1-DoF system) 663 

(a) 𝜃0 = 38° 664 

(b) 𝜃0 = 58° 665 

Fig. 6 Dependency of initial displacement on the vertical amplitude for the vertical 1-DoF system (results of time–666 

history analysis with initial displacement y0 = 0, 1, 2, 3, 4, 5 m) 667 

Fig. 7 Comparison of stable and unstable limit-cycle amplitudes between time–history analysis and energy-balance 668 

analysis for the vertical 1-DoF system 669 

Fig. 8 Relationship between non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ , and non-dimensional aerodynamic work, 𝐸𝑎

∗, for 670 

the vertical 1-DoF system 671 

Fig. 9 Dependency of vertical amplitude on torsional frequency ratio for the 3-DoF system 672 

(a) 𝑓𝜃0/𝑓𝑦0 = 1.0  673 

(b) 𝑓𝜃0/𝑓𝑦0 = 1.1 674 

(c) 𝑓𝜃0/𝑓𝑦0 = 0.9 675 

(d) 𝑓𝜃0/𝑓𝑦0 = 1.2 676 

(e) 𝑓𝜃0/𝑓𝑦0 = 0.8 677 

(f) 𝑓𝜃0/𝑓𝑦0 = 1.3 678 

(g) 𝑓𝜃0/𝑓𝑦0 = 0.7 679 

Fig. 10 Comparison of vertical amplitudes between different torsional frequency ratios for the 3-DoF system 680 

(a) All stable solutions larger than zero      681 

(b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 682 

Fig. 11 Comparison of vertical amplitudes between different horizontal frequency ratios for the 3-DoF system 683 

(a) All stable solutions larger than zero      684 

(b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 685 

Fig. 12 Comparison of vertical amplitudes between different horizontal and torsional frequency ratios for the 3-686 

DoF system 687 

(a) All stable solutions larger than zero      688 

(b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 689 

Fig. 13 Oscillation characteristics of 3-DoF galloping (fz0 / fy0 = 1.0, f0 / fy0 = 0.9) 690 

(a) Vertical amplitude 691 

(b) Horizontal amplitude  692 
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(c) Torsional amplitude  693 

(d) Amplitude of relative angle of attack 694 

(e) Frequency of oscillation 695 

(f) Horizontal phase difference 696 

(g) Torsional phase difference 697 

(h) Phase difference of relative angle of attack  698 

Fig. 14 Comparison of vertical amplitudes under various DoF systems and frequency ratios 699 

(Time–history analysis, y0 = 0–5 m) 700 

(a) All stable solutions larger than zero (𝛥𝑦0 = 0– 5 m) 701 

(b) Stable solutions in the case with 𝛥𝑦0 = 0.0 m 702 

Fig. 15 Time series of each variable compared to those without horizontal velocity  703 

at torsional angle 𝜃0 = 𝜃s = 56
∘ (vertical–horizontal 2-DoF system, 𝑓𝑧0/𝑓𝑦0 = 1.0) 704 

(a) Time series of vertical and horizontal displacements 705 

(b) Time series of vertical and horizontal velocities 706 

(c) Time series of relative wind speed 𝑈𝑟  707 

(d) Time series of relative angle of attack 𝛼𝑟 708 

(e) Time series of 𝛼𝑟, �̇�, 𝐹�̃� and 𝐹�̃�(�̇� = 0) 709 

Fig. 16 Time series of each variable compared to those without torsional displacement at setup torsional angle 710 

𝜃0 = 65
∘ (vertical–torsional 2-DoF system, 𝑓𝜃0/𝑓𝑦0 = 0.9, stationary torsional angle 𝜃s = 67.3

∘) 711 

(a) Time series of vertical and torsional displacements 712 

(b) Time series of vertical and torsional velocities 713 

(c) Time series of relative wind speed 714 

(d) Time series of relative angle of attack 715 

Fig. 17 Relationship between non-dimensional amplitude, 𝐴𝑦
∗ 𝑈∗⁄ (= 𝐴𝑦𝜔𝑦0/𝑈), and non-dimensional 716 

aerodynamic work, 𝐸𝑎
∗, for the vertical system 717 

(a)Vertical-horizontal 2-DoF system (𝐴𝑧/𝐴𝑦 = 0.4, 𝛷𝑧 = 180
∘, 𝐴𝜃 = 0

∘) 718 

(b)Vertical-torsional 2-DoF system (𝐴𝜃 = 15
∘, 𝛷𝜃 = 60

∘, 𝐴𝑧/𝐴𝑦 = 0) 719 

Fig. 18 Effect of horizontal oscillation for the vertical–horizontal 2-DoF system (largest stable solutions of non-720 

dimensional vertical amplitudes for each torsional angle, upper side of 𝐸𝑎𝑐
∗ ≥ 0) 721 

(a) Effect of horizontal phase difference 𝛷𝑧 (𝐴𝑧/𝐴𝑦 = 0.4) 722 

(b) Effect of amplitude ratio between horizontal and vertical oscillations 𝐴𝑧/𝐴𝑦 (𝛷𝑧 = 180
∘) 723 

Fig. 19 Effect of torsional oscillation for the vertical–torsional 2-DoF system (largest stable solutions of non-724 

dimensional vertical amplitudes for each mean torsional angle, upper side of 𝐸𝑎𝑐
∗ ≥ 0) 725 

(a) Effect of torsional phase difference 𝛷𝜃 (𝐴𝜃 = 15
∘) 726 

(b) Effect of torsional amplitude 𝐴𝜃 (𝛷𝜃 = 90
∘) 727 

 728 


