
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tmsi20

SICE Journal of Control, Measurement, and System
Integration

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tmsi20

Value iteration with deep neural networks for
optimal control of input-affine nonlinear systems

Hirofumi Beppu, Ichiro Maruta & Kenji Fujimoto

To cite this article: Hirofumi Beppu, Ichiro Maruta & Kenji Fujimoto (2021) Value iteration with
deep neural networks for optimal control of input-affine nonlinear systems, SICE Journal of Control,
Measurement, and System Integration, 14:1, 140-149, DOI: 10.1080/18824889.2021.1936817

To link to this article: https://doi.org/10.1080/18824889.2021.1936817

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 14 Jul 2021.

Submit your article to this journal

Article views: 675

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tmsi20
https://www.tandfonline.com/loi/tmsi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/18824889.2021.1936817
https://doi.org/10.1080/18824889.2021.1936817
https://www.tandfonline.com/action/authorSubmission?journalCode=tmsi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tmsi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/18824889.2021.1936817
https://www.tandfonline.com/doi/mlt/10.1080/18824889.2021.1936817
http://crossmark.crossref.org/dialog/?doi=10.1080/18824889.2021.1936817&domain=pdf&date_stamp=2021-07-14
http://crossmark.crossref.org/dialog/?doi=10.1080/18824889.2021.1936817&domain=pdf&date_stamp=2021-07-14

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION
2021, VOL. 14, NO. 1, 140–149
https://doi.org/10.1080/18824889.2021.1936817

Value iteration with deep neural networks for optimal control of input-affine
nonlinear systems

Hirofumi Beppu a,b, Ichiro Maruta a and Kenji Fujimoto a

aDepartment of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto Japan; bJapan Society for the
Promotion of Science, Tokyo, Japan

ABSTRACT
This paper proposes a new algorithm with deep neural networks to solve optimal control prob-
lems for continuous-time input nonlinear systems based on a value iteration algorithm. The
proposed algorithm applies the networks to approximating the value functions and control
inputs in the iterations. Consequently, the partial differential equations of the original algorithm
reduce to the optimization problems for the parameters of the networks. Although the con-
ventional algorithm can obtain the optimal control with iterative computations, each of the
computations needs to be completed precisely, and it is hard to achieve sufficient precision in
practice. Instead, the proposedmethod provides a practicalmethod using deep neural networks
and overcomes the difficulty based on a property of the networks, under which our convergence
analysis shows that the proposed algorithm can achieve the minimum of the value function
and the corresponding optimal controller. The effectiveness of the proposed method even with
reasonable computational resources is demonstrated in two numerical simulations.

ARTICLE HISTORY
Received 30 October 2020
Accepted 12 March 2021

KEYWORDS
Value iteration; optimal
control; deep neural
networks; input-affine
nonlinear systems;
convergence analysis

1. Introduction

Optimal control problems [1–3] for nonlinear sys-
tems are generally challenging since it requires to solve
nonlinear partial differential equations called Hamil-
ton–Jacobi–Bellman (HJB) equations. While those still
remain as open problems, approximate dynamic pro-
gramming (ADP) [4,5] has been one of the successful
methods to solve such problems in many areas, e.g.
process control [6] and vehicle routing problems [7].
In this method, instead of calculating all the necessary
values in time and state spaces which causes a serious
computational complexity known as the curse of dimen-
sionality [5], appropriate approximations are searched
for the value functions and controllers. Value itera-
tion (VI) is one of the ADP-based algorithms, which
achieves optimal control by iterative computing from
a simple initial value function. The main interest of
VI algorithms has lain in discrete-time (DT) systems
[8,9] though a number of physical systems desired to
be controlled are continuous-time (CT) systems. In this
case, we cannot utilize the results ofDT systems directly
for CT systems since the relationships between them
which are especially involved in the important prop-
erties of control are not trivial. For avoiding the non-
trivial problems and extending the scope of application
of the VI algorithm, several works have made efforts
to develop new VI-based algorithms for CT systems
recently [10,11].

Even though the effectiveness of the VI algorithm
has been demonstrated in a lot of situations, the prac-
tical forms of the algorithm with theoretical guarantees
have not been established yet. This is due to the reg-
ulation where each step of the algorithm is proceeded
precisely. This requirement is not easy to meet because
the preciseness depends on the approximations or the
classes of functions for each of the step which cannot
be known in advance inherently. In [8], the approxi-
mation of value functions is proposed based on linear
basis expansion, where the designer has to prepare suit-
able handmade basis functions while meeting some
other requirements of regulations. To broaden the class
of functions for approximations, the value functions
are approximated with kernel functions in [11], where
the convergence of the proposed algorithm is guaran-
teed successfully. The kernel functions have also been
studied for data-driven optimal control problems [12]
recently. However, the computational cost with kernel
functions increases cubically depending on the num-
ber of data [13] for representing value function, so that
it is desired to use some techniques [14,15] together to
decrease the computational burden.

Deep neural networks (DNNs) [16] are expected to
solve both the above problems of approximations and
computational costs, which have attracted attention in
many fields including reinforcement learning [17] in
recent years because of the higher level of the generality

CONTACT Hirofumi Beppu beppu.hirofumi.36a@st.kyoto-u.ac.jp; hirofumi.beppy@gmail.com Department of Aeronautics and Astronautics,
Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/18824889.2021.1936817&domain=pdf&date_stamp=2021-07-12
http://orcid.org/0000-0002-4368-3863
http://orcid.org/0000-0002-2246-3570
http://orcid.org/0000-0001-6345-4884
mailto:beppu.hirofumi.36a@st.kyoto-u.ac.jp
mailto:hirofumi.beppy@gmail.com
http://creativecommons.org/licenses/by/4.0/

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 141

and fitting ability. In neural networks (NNs), the per-
formances of activation functions have been researched
a lot as well [18–20]. According to the results, design-
ers can pick up activation functions from commonly
used ones depending on the requirements, so that they
do not have to make any basis functions satisfying
constraints carefully. This benefit relieves us from bur-
densome tasks which directly connect to the quality of
results. In addition, the update of the parameters for the
networks demands the computational cost whose size is
at most around the number of data. The recent research
also verifies that under a rational assumption standard
stochastic gradient descent (SGD)methods can find the
global minima of loss functions for DNNs [21]. This
result is fundamental to guarantee the convergence of
our algorithm based on DNNs.

In this paper, we proposeDeepValue Iteration (DVI)
algorithm for CT input-affine nonlinear systems for
solving the optimal control problems. The proposed
method applies DNNs tomodelling the value functions
and control inputs of each iteration. By doing so, the
procedures of the original VI algorithm reduce to the
computations of the parameter optimization to mini-
mize a loss functionwhich are set to be the square errors
between the values of data points and of the outputs
of DNNs. Its convergence to the optimal cost function
and optimal control input is proved under the assump-
tion to gain the globalminima of loss functionswith the
universal approximation theorem [22].

This paper is organized as follows. In Section 2, the
optimal control problem for nonlinear systems is for-
mulated and the relevant results are shown. The VI
algorithm is also introduced. In Section 3, we provide
the proposed algorithm followed by its convergence
analysis. In Section 4, the effectiveness of the DVI is
demonstrated practically using a nonlinear scalar sys-
tem and an inverted pendulum. In Section 5, we con-
clude this paper.

The notations used in this paper are defined as
follows.

• S
n++: the set of n× n positive-definite matrices.

• diag(a): the n× n diagonal matrix whose diagonal
components are the components of a ∈ Rn.

2. Preliminaries

2.1. Optimal control problem for CT input-affine
nonlinear systems

Consider a CT nonlinear input-affine system as follows.

ẋ(t) = f (x(t))+ g(x(t))u(t), (1)

where x(t) ∈ Rn is a state, u(t) ∈ Rm is a control
input, and f : Rn→ Rn and g : Rn→ Rn×m are func-
tions which characterize the dynamics. We assume that
x = 0 is an equilibrium which satisfies f (x) = 0. It is

also supposed that the system (1) is stabilizable on a
compact set X ⊂ Rn. For t ≥ 0, we define the solution
to the equation (1) with an initial state x0 := x(0) and
an input u as

ϕ(t; x0, u) := x0 +
∫ t

0
f (x(τ))+ g(x(τ))u(τ) dτ . (2)

If the argument is obvious, the notation in (2) is abbre-
viated as ϕ(t) occasionally. Then suppose that there
exist control inputs u such that for all x0 ∈ X ,

lim
t→∞ϕ(t; x0, u) = 0

holds. Our goal is to acquire a controller thatminimizes
the following cost function.

J(x0, u) =
∫ ∞
0

q(ϕ(t; x0, u))+ u(t)TRu(t) dt

=:
∫ ∞
0

L (ϕ(t), u(t)) dt, ∀ x0 ∈ X (3)

where q : Rn→ R is a positive-definite function and
R ∈ S

m++. The controller u is supposed to stabilize the
system (1), to be continuous with u = 0 at x = 0, and
to guarantee the boundedness of value function in (3).
We define this class of controllers as an admissible
controller. The value function in (3) is assumed to be
continuously differentiable. According to dynamic pro-
gramming [3], the minimum of (3) with respect to u
satisfies

V∗(x0) = min
u

(∫ �t

0
L (ϕ(t), u(t)) dt

+ V∗(ϕ(�t; x0, u))
)
, (4)

which is called the HJB equation. Here V∗ is time-
invariant and �t > 0 is an arbitrary constant. When
�t→ 0, the optimal feedback controller

u∗(x) = −1
2
R−1g(x)T

∂V∗(x)
∂x

T
(5)

is obtained. Substituting (5) into (4) as �t→ 0, the
HJB equation (4) is rewritten as a nonlinear partial
differential equation expressed as

∂V∗

∂x
f − 1

4
∂V∗

∂x
gR−1gT

∂V∗

∂x

T
+ q(x) = 0. (6)

For linear systems, the equation in (6) can be solved
efficiently with well-established algorithms. In general
cases of nonlinear systems, however, it is difficult to
solve (6) analytically.

2.2. Value iteration algorithm

Before we give a new algorithm, the Value iteration (VI)
algorithm for CT nonlinear systems proposed in [11]

142 H. BEPPU ET AL.

Algorithm 1 Value Iteration
1: Initialize with V0(x) := 0,∀ x ∈ X
2: Given an arbitrary �t and set i = 0
3: repeat

4:

ui← argmin
u

(∫ �t

0
L (ϕ(t), u(t)) dt

+ Vi(ϕ(�t; x0, u))
)

5: Vi+1 : x0
→
∫ �t
0 L

(
ϕ(t), ui(t)

)
dt +

Vi(ϕ(�t; x0, ui))
6: i← i+ 1
7: until convergence

to solve (6) is described in this section. The recursive
computation is based on (4), where finding the best
controller for the value function and updating the cur-
rent value function based on the controller are repeated.
This algorithm is shown in Algorithm 1. Although
this algorithm assumes that the value function can be
expressed analytically, it is not realistic to expect that
every Vi+1 in Algorithm 1 can be obtained perfectly
since solving nonlinear partial equations is required to
get the value function. It is noted that the VI algorithm
is a conceptual algorithm based on which [11] also pro-
posed the practical algorithm using kernel functions
whose computational cost increases cubically depend-
ing on the number of data points due to the calculations
of inverse matrices. This motivates us to develop the
improved method to approximate the function Vi+1 in
Section 3.

Note that the superscript of control inputs or value
functions denotes the iteration number. The size of �t
can be chosen from 0 < �t <∞ arbitrarily, but as �t
is approaching to infinity, the task to find the argument
of minimum for ui is getting as difficult as that to find
the solution of (4) directly, so �t should be smaller
preferably. In particular, since in the limit as �t goes
to 0,

argmin
u

(∫ �t

0
L (ϕ(t), u(t)) dt + Vi(ϕ(�t; x0, u))

)

= −1
2
R−1g(x)T

∂Vi

∂x

T

, (7)

it is practical to use (7) approximately by setting �t as
small as possible. Under the assumption that �t can
be small arbitrarily, the convergence of Algorithm 1 is
proved in [11]. In the following discussion, �t is small
enough to satisfy (7).

3. Main results

3.1. Deep value iteration algorithm

In this section, we will show our proposed algorithm.
The function Vi is modelled as fully connected DNNs,

Algorithm 2 Deep Value Iteration
1: Initialize with w0 := 0
2: Given an arbitrary �t and set i = 0
3: repeat

4: uwi(x)←− 1
2R
−1g(x)T ∂Vwi (x)

∂x
T

5: wi+1← wi

6: repeat
7: Update wi+1 by descending the stochastic

gradient of
L(wi,wi+1) in (8).

8: until convergence
9: i← i+ 1
10: until convergence

which is expressed as Vwi(x) := V(x;wi) in the follow-
ing. Here wi is a parameter of the function Vwi for each
iteration and Vwi is assumed to be over-parametrized,
which means that the number of hidden nodes can be
sufficiently large comparedwith the input dimension or
the number of training data [23]. The loss function is
defined as follows.

L(wi,wi+1) := l
(
ε(x0,wi,wi+1)

)
, (8)

where l : R→ R is a positive-definite function and
ε(x0,wi,wi+1) is defined as

ε(x0,wi,wi+1) := Vwi+1(x0)−
∫ �t

0
L

(
ϕ(t), uwi(t)

)
dt

− Vwi(ϕ(�t; x0, uwi)), (9)

and uwi(x) := u(x;wi) is defined as

uwi(x) = −1
2
R−1g(x)T

∂Vwi(x)
∂x

T
. (10)

The proposed algorithm, Deep Value Iteration (DVI),
is described in Algorithm 2. In the updating steps 6–8,
which learn the parameters wi+1 of DNNs, training
data are collected by picking states from X and com-
puting the values ε(x0,wi,wi+1) on each of the states
to calculate the values of (8). Note that the initial set-
ting of parameter is w0 = 0, so that Vw0 ≡ 0. It is also
noted that the computational cost of the DVI algorithm
mainly depends on the SGD1. Although the cost also
depends on which variants of the SGD one uses, the
general cost for one iteration of optimization isO(1), i.e.
constant. This means that the cost does not depend on
the size of training data sets. This is very effective espe-
cially when big sizes of data sets are required. For this
reason, the proposed algorithm is expected to achieve
the lower computational cost compared with the kernel
function-based algorithm of [11].

3.2. Convergence analysis for DVI algorithm

The recent study showed that the standard stochastic
optimization methods such as SGD can find the global

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 143

minima of the loss function with polynomial time [21].
Based on this fact, we give the following assumption to
Algorithm 2.

Assumption 3.1: For all i ≥ 0, let Vwi be over-
parametrized by DNNs. Then Vwi and Vwi+1 can
achieve zero for the loss function L(wi,wi+1) in (8)
with certain parameters. Furthermore, it is possible to
obtain such parameters for the global minima of the
loss function, i.e. zero with standard stochastic gradient
methods, e.g. SGD.

Note that in terms of the application, this assump-
tion does not completely hold since the numerical error
is unavoidable in general situations. Still, if a network
with a large enough structure is prepared, the errors
will be negligible. In such situations, the validity of the
assumption will be ensured approximately.

The next lemma, called the universal approxima-
tion theorem, guarantees thatNNs can approximate any
continuous functions with arbitrary accuracy.

Lemma 3.2 (Universal approximation theorem [22]):
For any continuous functions C(x) defined on a com-
pact setX , there exists a single hidden layer feed-forward
NN, that approximates C(x) and its gradient with an
arbitrarily small error.

In the following, we derive a theorem which guaran-
tees the convergence of Algorithm 1 by using Assump-
tion 3.1 and Lemma 3.2 while showing some lemmas
necessary to prove the theorem.

Lemma 3.3: Let Assumption 3.1 hold. Suppose that for
all i ≥ 0, Vwi is over-parametrized with DNNs and is
updated by Algorithm 2, where uwi is defined in (10).
Then,

Vwi+1(x0) = min
u

(∫ �t

0
L (ϕ(t), u(t)) dt

+ Vwi(ϕ(�t; x0, u))
)
, ∀ x0 ∈ X (11)

holds for i = 0, 1,

Proof: Since �t satisfies (7), for any i ≥ 0,

uwi(x) = −1
2
R−1g(x)T

∂Vwi(x)
∂x

T

= argmin
u

(∫ �t

0
L (ϕ(t), u(t)) dt

+ Vwi(ϕ(�t; x0, u))
)
. (12)

It also follows fromAssumption 3.1 and Lemma3.2 that
L(wi,wi+1) = 0, that is, by the steps 6–8 of Algorithm 2

we can find wi+1 satisfying

Vwi+1(x0) =
∫ �t

0
L

(
ϕ(t), uwi(t)

)
dt

+ Vwi(ϕ(�t; x0, uwi)), ∀ x0 ∈ X . (13)

Thus, it is shown that (11) holds by (12) and (13). �

Lemma 3.4: Suppose that for all i ≥ 0, Vwi is over-
parametrized with DNNs and is updated by Algorithm 2,
where uwi is defined in (10). Let Assumption 3.1 hold and
arbitrary controllers be a0, a1, DefineVwi

a
as the same

DNNs as Vwi . Then, according to Assumption 3.1 and
Lemma 3.3, there exists a parameter wi+1

a which defines

Vwi+1
a

(x0) :=
∫ �t

0
L

(
ϕ(t), ai(t)

)
dt

+ Vwi
a
(ϕ(�t; x0, ai)), ∀ x0 ∈ X . (14)

If w0 = w0
a = 0, then Vwi(x0) ≤ Vwi

a
(x0) holds for all

i ≥ 0.

Proof: Becausew0 = w0
a = 0, it follows thatVw0(x0) =

Vw0
a
(x0) = 0.
Next, let us deal with the cases of i ≥ 1.When i = 1,

it follows from (13) that

Vw1(x0) =
∫ �t

0
L

(
ϕ(t), uw0(t)

)
dt

+ Vw0(ϕ(�t; x0, uw0))

=
∫ �t

0
L

(
ϕ(t), uw0(t)

)
dt. (15)

Since by Lemma 3.3, the right-hand side of (15) is
minimized with respect to the control input, it follows
that

Vw1(x0) ≤
∫ �t

0
L

(
ϕ(t), uw0

a
(t)

)
= Vw1

a
(x0).

Now we assume that Vwi(x0) ≤ Vwi
a
(x0),∀ x0 ∈ X

holds for i ≥ 1. Then it follows from this assumption
and Lemma 3.3 that

Vwi+1(x0) =
∫ �t

0
L

(
ϕ(t), uwi(t)

)
dt

+ Vwi(ϕ(�t; x0, uwi))

≤
∫ �t

0
L

(
ϕ(t), ai(t)

)
dt

+ Vwi(ϕ(�t; x0, ai))

≤
∫ �t

0
L

(
ϕ(t), ai(t)

)
dt

+ Vwi
a
(ϕ(�t; x0, ai))

= Vwi+1
a

(x0),

where the second and third inequalities follow from
Lemma3.3 and the assumptionVwi(x0) ≤ Vwi

a
(x0),∀ x0

144 H. BEPPU ET AL.

∈ X , respectively. Therefore by mathematical induc-
tion, it is proved that Vwi(x0) ≤ Vwi

a
(x0),∀ x0 ∈ X

holds for all i ≥ 0. �

Lemma 3.5: Let Assumption 3.1 hold. Suppose that for
all i ≥ 0, Vwi is over-parametrized with DNNs and is
updated by Algorithm 2, where uwi is defined in (10). If
w0 = 0 and the system in (1) is controllable, then there
exists an upper bound U such that for all i ≥ 0 and
x0 ∈ X , Vwi(x0) ≤ U(x0) holds. In addition, if the HJB
equation in (6) has a unique solution V∗, it is the lower
bound of U, i.e., V∗(x0) ≤ U(x0) for all x0 ∈ X and it
also satisfies Vwi(x0) ≤ V∗(x0) ≤ U(x0) for all i ≥ 0.

Proof: Let s be any admissible controller and suppose
that Vwi

s
is parametrized by DNNs in the same way as

Vwi . Then because of Assumption 3.1 and Lemma 3.3,
there exists a parameter wi+1

s which defines

Vwi+1
s

(x0) :=
∫ �t

0
L (ϕ(t), s(t)) dt + Vwi

s
(ϕ(�t; x0, s)),

∀ x0 ∈ X , (16)

where we suppose that w0
s = 0 and Vw0

s
= 0. Subtract-

ing Vwi
s
from Vwi+1

s
for i ≤ 0, it follows from (16) that

Vwi+1
s

(x0)− Vwi
s
(x0)

= Vwi
s
(ϕ(�t; x0, s))− Vwi−1

s
(ϕ(�t; x0, s))

= Vwi−1
s

(ϕ(2�t; x0, s))− Vwi−2
s

(ϕ(2�t; x0, s))

...

= Vw1
s
(ϕ(i�t; x0, s))− Vw0

s
(ϕ((i− 1)�t; x0, s))

= Vw1
s
(ϕ(i�t; x0, s)),

which is a recurrence relation. From this relation, it
follows that

Vwi+1
s

(x0)− Vwi
s
(x0) = Vw1

s
(ϕ(i�t; x0, s))

Vwi
s
(x0)− Vwi−1

s
(x0) = Vw1

s
(ϕ((i− 1)�t; x0, s))

...

Vw1
s
(x0)− Vw0

s
(x0) = Vw1

s
(x0). (17)

Using the fact that Vw0
s
(x0) = 0,∀ x0 ∈ X and adding

all the both sides of (17), it follows that

Vwi+1
s

(x0) =
i∑

ni=1
Vw1

s
(ϕ(ni�t; x0, s))

≤
∞∑

ni=0
Vw1

s
(ϕ(ni�t; x0, s))

=
∫ ∞
0

L (ϕ(t), s(t)) dt. (18)

Here s is an admissible controller, so that the right-hand
side of (18) is bounded. Defining this upper bound as

U(x0),

Vwi+1
s

(x0) ≤
∫ ∞
0

L (ϕ(t), s(t)) dt =: U(x0) (19)

holds. Since Vw0
s
(x0) = 0, Vwi

s
(x0) ≤ U(x0),∀ x0 ∈ X

holds for all i ≥ 0. Setting ai = s,∀ i ≥ 0 leads to that
Vwi(x0) ≤ Vwi

a
= Vwi

s
≤ U(x0),∀ x0 ∈ X for all i ≥ 0.

Now u∗ is a stabilizing and admissible controller
which minimizes (3), from which it follows that

V∗(x0) =
∫ ∞
0

L
(
ϕ(t), u∗(t)

)
dt

≤
∫ ∞
0

L (ϕ(t), s(t)) dt = U(x0). (20)

From (20), V∗(x0) is clearly a lower bound of U(x0).
Setting s = u∗, it follows that

Vwi(x0) ≤ Vwi
s
(x0) = V∗(x0) ≤ U(x0).

Thus it is shown that for all i ≥ 0, Vwi(x0) ≤ V∗(x0) ≤
U(x0),∀ x0 ∈ X holds. �

Now we can show the convergence of Algorithm 2
by all the lemmas proven above.

Theorem 3.6: Let Assumption 3.1 hold. Suppose that
for all i ≥ 0, Vwi is over-parametrized with DNNs and is
updated by Algorithm 2, where uwi is defined in (10). If
w0 = 0, Vwi(x0) ≤ Vwi+1(x0) holds for all i ≥ 0. More-
over, limi→∞ Vwi = V∗ and limi→∞ uwi = u∗ hold,
where V∗ is the solution to (6) and u∗ is the optimal
controller.

Proof: Let ai andVwi+1
a

be defined in the sameway as in
Lemma 3.4. Ifw0 = w0

a = 0, it follows from Lemma 3.4
that Vwi(x0) ≤ Vwi

a
(x0),∀ x0 ∈ X for all i ≥ 0. Then

choosing the arbitrary controller as ai = uwi+1 , there
exists a parameter wi+1

a such that satisfies

Vwi+1
a

(x0) =
∫ �t

0
L

(
ϕ(t), uwi+1(t)

)
dt

+ Vwi
a
(ϕ(�t; x0, uwi+1)), ∀ x0 ∈ X .

Since Vw0(x0) = Vw0
a
(x0) = 0, subtracting Vw0

a
(x0)

from Vw1(x0),

Vw1(x0)− Vw0
a
(x0) =

∫ �t

0
L

(
ϕ(t), uw0(t)

)
dt ≥ 0

holds.Nowwe assume thatVwi−1
a

(x0) ≤ Vwi(x0),∀ x0 ∈
X holds for all i ≥ 1. Then,

Vwi+1 − Vwi
a
= Vwi(ϕ(�t; x0, uwi))

− Vwi−1
a

(ϕ(�t; x0, uwi)) ≥ 0,

so thatVwi
a
(x0) ≤ Vwi+1(x0)holds aswell. Therefore, by

induction, it is shown thatVwi
a
(x0) ≤ Vwi+1(x0),∀ x0 ∈

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 145

X holds for all i ≥ 0. Recalling the fact that Vwi(x0) ≤
Vwi

a
(x0),∀ x0 ∈ X , it is proved that Vwi(x0) ≤ Vwi+1

(x0),∀ x0 ∈ X .
Next, we investigate the property ofVw∞ . In i→∞,

it follows from (13) that

Vw∞(ϕ(�t; x0, uw∞))− Vw∞(x0)

= −
∫ �t

0
L (ϕ(t), uw∞(t)) dt ≤ 0.

Using Lemma3.5,we can see thatVw∞(x0) ≤ V∗(x0) ≤
U(x0),∀ x0 ∈ X and Vw∞(x0) is bounded for all
x0 ∈ X . Thus, it is verified that uw∞ is a stabiliz-
ing admissible controller and Vw∞ is a candidate of
a Lyapunov function and of a solution to the HJB
equation (6). Furthermore, based on the fact that
Vwi(x0) ≤ Vw∞(x0),∀ x0 ∈ X for all i ≥ 0, Vw∞ is the
upper bound in Lemma 3.5, that is, V∗(x0) ≤ U(x0) =
Vw∞(x0),∀ x0 ∈ X . From these reasons, it follows
that V∗(x0) ≤ Vw∞(x0) ≤ V∗(x0),∀ x0 ∈ X . Finally, it
is proven that limi→∞ Vwi = V∗ and limi→∞ uwi =
u∗. �

4. Numerical example

In this section, the proposed method is applied to two
optimal control problems of a scalar nonlinear polyno-
mial system and an inverted pendulum system by using
practical computational resources. For the optimization
tool, PyTorch [24] is used in the examples. In the fol-
lowing examples, the loss function, called the Huber
loss [25],

l
(
ε(x0,wi,wi+1)

)

:=

⎧⎪⎪⎨
⎪⎪⎩

Ex0∈X
[
1
2
ε(x0,wi,wi+1)2

]
, for |ε| ≤ 1,

Ex0∈X
[
|ε(x0,wi,wi+1)| − 1

2

]
, otherwise,

is used since the error values in our problem settings
can bewide and theHuber loss can deal with such situa-
tions by using the square errors for smaller errors while
utilizing the absolute errors for bigger errors.

4.1. Scalar nonlinear system

Consider the nonlinear polynomial system as fol-
lows [26].

ẋ = 0.01x2 + u.

We set

J(x0, u) =
∫ ∞
0

(
0.01ϕ(t; x0, u)4

+ 0.01ϕ(t; x0, u)2 + u(t)2
)
dt

as a cost function. It is known that the exact optimal cost
of this problem setting is given as V∗(x) = (x3/150)+
((101x2 + 100)3/2/15150)− 20/303 [26].

For the setting of the DVI algorithm, �t = 0.5 (s).
In order to carry out the steps 6–8 of Algorithm 2,
we get the training data set from 201 equally spaced
points on a region [−2.5, 2.5] by computing the values
ε(x0,wi,wi+1) in (9) on each of the points. For updating
each wi, Adam algorithm [27], one of SGD algorithms,
is employed. Each iteration of the update is set as 1001
times which are empirically expected to let the gradient
descent converge in this case. The DNNs are equipped
with an input layer, an output layer, and three hidden
layers, each of which has 50 nodes. The number of the
weight parameters between the input layer and the first
hidden layer is same as the number of the edges between
them, so the number is 2× 50 = 100. Considering the
structure of the DNNs, the total number of the weight
parameters is 5150. On the other hand, the number of
bias parameters between the input layer and the first
hidden layer is 50 since each of the bias parameters is
added to each of the nodes of the first hidden layer. This
means that the total number of bias parameters of the
DNNs is 151. Thus, the total number of parameters,
i.e. the dimension of each wi is 5301. Note that there
is no general design policy for the DNNs currently, so
the relatively bigger size of the network which may not
be optimal is adopted here for higher abilities to express
the value function in iterations. For the activation func-
tion, we choose a hyperbolic tangent function, which
can satisfy the requirements of the differentiability of
value function.

The DVI algorithm converged after 29 iterations.
The comparison between the value function Vw29

obtained in DVI algorithm and the true optimal cost
function is shown in Figure 1, where the value Vw29(0)
is subtracted to offset the numerical error at the ori-
gin. It is obvious that the proposedmethod achieves the
significantly close solution to the true one.

4.2. Inverted pendulum

Consider the CT pendulum system illustrated in
Figure 2 with x = [θ , θ̇]T as

ẋ = f (x)+ g(x)u

=
⎛
⎝ θ̇

mgrl
ml2

sin θ

⎞
⎠+

⎛
⎝ 0

1
ml2

⎞
⎠ u, (21)

where θ (rad) and θ̇ (rad/s) are angle and angular
velocity of the pendulum, respectively, and m = 1 (kg)
is the mass of pendulum, gr = 9.8 (m/s2) is the grav-
itational acceleration, and l = 1 (m) is the length of
pendulum. The goal is to swing up the pendulum and
balance it in the inverted position at [θ , θ̇]T = 0with an
arbitrary initial state. We choose

146 H. BEPPU ET AL.

Figure 1. Comparison of the value functions.

Figure 2. Pendulum.

J(x0, u) =
∫ ∞
0

ϕ(t; x0, u)TQϕ(t; x0, u)

+ u(t)TRu(t) dt,

as a cost function, where Q = diag([1, 0.01]T) and
R = 1.

We set �t as 0.1 (s) for the DVI algorithm. The data
set is picked from 201× 201 uniform grids on a region
of [−2π , 2π]× [−10, 10], on each of which the val-
ues ε(x0,wi,wi+1) in (9) are computed for the steps
6–8 of Algorithm 2. For each wi, the update by the
same algorithm as in the first example is repeated 1001
times as well based on the same reason of the first case.
The DNNs are equipped with the same number of lay-
ers, where each of hidden layers has 100 nodes. The
dimension of each wi is then 20601. For the activation
function, we choose a hyperbolic tangent function here
too.

Figure 3. Value function Vw60 by the DVI algorithm.

Table 1. Ratio of the cost of DVI to that of LQR in (22).

Average Minimum Maximum

Ratio 0.302 0.031 0.994

The iteration is stopped after 60 iterations, and
the value function Vw60 obtained by the proposed
algorithm is shown in Figure 3. We give the results
of numerical simulation with ten initial states and a
terminal state shown as the white squares and circle,
respectively, in Figure 5, where the solid lines are the
trajectories of the system (21) and the dashed lines are
the contours of the value function. For the purpose
of comparison, We also show the results of a linear
quadratic regulator, LQR, which obtains suboptimal
control policies by linearizing the system (21), with the
same initial states and terminal state. In Figure 5, we
compare the input histories of the proposed method
and LQR for each of initial states. Both of the meth-
ods succeed to stabilize the pendulum at the position
[0, 0]T, but it is seen that the inputs obtained by theDVI
algorithm are suppressed overall, whereas the inputs of
LQR from some initial states are much bigger. In order
to investigate the efficiencies of the proposedmethod in
terms of the cost, we set another cost for 6 (s)

J(x0, u) =
∫ 6

0
ϕ(t; x0, u)TQϕ(t; x0, u)+ u(t)TRu(t) dt,

(22)
and we compute the ratios of the costs in (22) for the
DVI algorithm to those for the LQR in Table 1. This
table shows the DVI algorithm could cut the cost by
about 70% on average. Theminimum andmaximum of
the ratios are of the initial states [−6, 5]T and [−2, 8]T,
respectively. From this result and Figure 4, we can
see that the DVI algorithm is relatively more effective
around the areas where the trajectories of the proposed
method far from those of the LQR. This also implies
that the proposed method could enlarge the cost-
wise efficient region compared with the linearization
strategy.

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 147

Figure 4. Trajectories of the system (21) from ten different ini-
tial states on the contour maps of value functions, (a) DVI
algorithm (proposed), (b) LQR.

Figure 5. Comparison of the control inputs.

The results are also compared with the kernel
function-based algorithm of [11] in terms of the
performance and computation time for the same

example. It is reported that the DVI algorithm achieved
55.2 for the cost in (22) with the initial state [π , 0]T,
which is about 94.6% of the cost of the algorithm of
[11]. The DVI algorithm took 6.97 (s) for one itera-
tion of the algorithm, which is measured by taking
the average of ten iterations and is about 19.3% of the
computation time of the algorithm of [11]. The total
number of iterations in theDVI algorithm is also 60%of
the algorithm of [11]. Note that the types of parameters
of [11] are different from those of the proposedmethod,
so that it is difficult to compare the algorithms fairly.
For example, the number of basis functions in [11] is
automatically determined by the number of training
data, whereas the number of activation functions of the
proposed method does not necessarily match with the
number of training data. Moreover, their accuracy also
depends on what kind of activation functions or kernel
functions we choose. Even considering the unfairness,
however, the proposed method could achieve better
performance with a shorter computation time in this
example.

5. Conclusion

In this paper, we have proposed a new value iteration
algorithm to obtain optimal control for CT nonlin-
ear input-affine systems with DNNs. Instead of solving
the partial differential equations, the DVI algorithm
provides us optimization problems for parameters of
DNNs. The convergence analysis shows that the pro-
posed algorithm can achieve the optimality using the
property of DNNs. We have verified the effectiveness
of the algorithm by two numerical simulations of the
scalar nonlinear system and the inverted pendulum sys-
tem under the situations where only reasonable com-
putational resources are provided. It is also confirmed
that the DVI algorithm has the potential to achieve
the equivalent or a better level of performance with
smaller computational costs compared with the kernel
function-based algorithm of [11] in the example of the
inverted pendulum.

Note

1. For the stochastic gradient, the estimate gradient G is
used practically, where it satisfies E[G] = (∂L/∂wi+1)
(wi,wi+1). Then, the update rule is wi+1 := wi+1 − αG,
where α is some constant.

Disclosure statement

Nopotential conflict of interest was reported by the author(s).

Funding

This work was supported by JSPS KAKENHI [grant number
JP19J23306].

148 H. BEPPU ET AL.

Notes on contributors

Hirofumi Beppu received his B.S. and
M.S. degrees in Engineering from Kyoto
University, Japan, in 2017 and 2019,
respectively. He is currently a Ph.D. stu-
dent of the Graduate School of Engi-
neering, Kyoto University, Japan. Since
2019, he has been a fellow of the
Research Fellowship for Young Scien-

tists (DC1) of the Japan Society for the Promotion of Science.

Ichiro Maruta received the Bachelor
of Engineering, Master of Informatics,
and Doctor of Informatics degrees from
Kyoto University, Kyoto, Japan, in 2006,
2008, and 2011, respectively. He was a
research fellow of the Japan Society for
the Promotion of Science from 2008 to
2011. From 2012 to 2017, he was an

Assistant Professor at the Graduate School of Informatics,
Kyoto University. In 2017, he joined the Graduate School of
Engineering, Kyoto University, as a Lecturer of the Depart-
ment of Aeronautics and Astronautics, and since 2019, he has
been an Associate Professor.

Kenji Fujimoto received his B.Sc. and
M.Sc. degrees in Engineering and Ph.D.
degree in Informatics from Kyoto Uni-
versity, Japan, in 1994, 1996, and 2001,
respectively. He is currently a profes-
sor of Graduate School of Engineering,
Kyoto University, Japan. From 1997 to
2004, he was a research associate of

Graduate School of Engineering and Graduate School of
Informatics, Kyoto University, Japan. From 2004 to 2012, he
was an associate professor of Graduate School of Engineer-
ing, Nagoya University, Japan. From 1999 to 2000, he was
a re-search fellow of Department of Electrical Engineering,
Delft University of Technology, TheNetherlands. He has held
visiting research positions at the Australian National Uni-
versity, Australia and Delft University of Technology, The
Netherlands in 1999 and 2002, respectively. His research
interests include nonlinear control and stochastic systems
theory.

ORCID

Hirofumi Beppu http://orcid.org/0000-0002-4368-3863
Ichiro Maruta http://orcid.org/0000-0002-2246-3570
Kenji Fujimoto http://orcid.org/0000-0001-6345-4884

References

[1] Bellman R. On the theory of dynamic programming.
Proc Natl Acad Sci USA. 1952;38(8):716.

[2] Bellman R. The theory of dynamic programming. Bull
Amer Math Soc. 1954;60(6):503–515.

[3] Bellman R. Dynamic programming. Science. 1966;153
(3731):34–37.

[4] Sutton RS, Barto AG. Reinforcement learning: an intro-
duction. Cambridge, MA: MIT Press; 1998.

[5] Powell WB. Approximate dynamic programming: solv-
ing the curses of dimensionality. Vol. 703, Hoboken:
John Wiley & Sons; 2007.

[6] Lewis FL, Liu D. Reinforcement learning and approxi-
mate dynamic programming for feedback control. Vol.
17. Hoboken: John Wiley & Sons; 2013.

[7] Novoa C, Storer R. An approximate dynamic pro-
gramming approach for the vehicle routing problem
with stochastic demands. Eur J Oper Res. 2009;196(2):
509–515.

[8] Al-Tamimi A, Lewis FL, Abu-Khalaf M. Discrete-time
nonlinear HJB solution using approximate dynamic
programming: convergence proof. IEEE Trans SystMan
Cyber Part B (Cyber). 2008;38(4):943–949.

[9] Wei Q, Liu D, Lin H. Value iteration adaptive dynamic
programming for optimal control of discrete-time non-
linear systems. IEEETransCybern. 2016;46(3):840–853.

[10] Wu HN, Luo B. Heuristic dynamic programming
algorithm for optimal control design of linear contin-
uous-time hyperbolic pde systems. Ind Eng Chem Res.
2012;51(27):9310–9319.

[11] Beppu H, Maruta I, Fujimoto K. Approximate dynamic
programming with gaussian processes for optimal
control of continuous-time nonlinear systems. IFAC-
PapersOnLine, 2020. 21st IFAC World Congress, to
appear.

[12] Ito Y, Fujimoto K, Tadokoro Y. Kernel-based Hamil-
ton–Jacobi equations for data-driven optimal and h-
infinity control. IEEE Access. 2020;8:131047–131062.

[13] Rasmussen CE, Williams CKI. Gaussian processes for
machine learning (adaptive computation and machine
learning). Cambridge, MA: The MIT Press; 2005.

[14] Snelson E, Ghahramani Z. Sparse Gaussian processes
using pseudo-inputs. In: Advances in neural informa-
tion processing systems. Cambridge, MA: MIT Press;
2006; p. 1257–1264.

[15] Seeger M, Williams C, Lawrence N. Fast forward selec-
tion to speed up sparse Gaussian process regression;
2003.

[16] Goodfellow I, Bengio Y, Courville A. Deep learning.
Cambridge, MA: MIT press; 2016.

[17] Mnih V, Kavukcuoglu K, Silver D, et al., Human-level
control through deep reinforcement learning. Nature.
2015;518(7540):529–533.

[18] Hornik K, StinchcombeM,White H. Universal approx-
imation of an unknown mapping and its deriva-
tives using multilayer feedforward networks. Net-
works¡/DIFdel¿Neural Netw. 1990;3(5):551–560.

[19] Leshno M, Lin VY, Pinkus A, et al., Multilayer feed-
forward networks with a nonpolynomial activation
function can approximate any function. Neural Netw.
1993;6(6):861–867.

[20] Ramachandran P, ZophB, LeQ. Searching for activation
functions; 2018.

[21] Allen-Zhu Z, Li Y, Song Z. A convergence theory for
deep learning via over-parameterization. In: Proceed-
ings of the 36th International Conference on Machine
Learning, Vol. 97. Proceedings of Machine Learning
Research; 2019; p. 242–252.

[22] Hornik K, StinchcombeM,White H. Universal approx-
imation of an unknown mapping and its derivatives
using multilayer feedforward networks. Neural Netw.
1990;3(5):551–560.

[23] Du S, Lee J. On the power of over-parametrization in
neural networks with quadratic activation. In: Proceed-
ings of the 35th International Conference on Machine
Learning, Vol. 80. Proceedings of Machine Learning
Research; 2018; p. 1329–1338.

[24] Paszke A, Gross S, Massa F, et al., Pytorch: An impera-
tive style, high-performance deep learning library. In:
Advances in neural information processing systems.
Vol. 32. Red Hook: Curran Associates, Inc; 2019; p.
8024–8035.

http://orcid.org/0000-0002-4368-3863
http://orcid.org/0000-0002-2246-3570
http://orcid.org/0000-0001-6345-4884

SICE JOURNAL OF CONTROL, MEASUREMENT, AND SYSTEM INTEGRATION 149

[25] Huber PJ. Robust estimation of a location parameter.
Ann Math Statist. 1964 03;35(1):73–101.

[26] Jiang Y, Jiang Z. Global adaptive dynamic programming
for continuous-time nonlinear systems. IEEE Trans
Automat Contr. 2015;60(11):2917–2929.

[27] Kingma DP, Ba J. Amethod for stochastic optimization.
preprint arXiv:14126980; 2014.

http://arXiv:14126980

	1. Introduction
	2. Preliminaries
	2.1. Optimal control problem for CT input-affine nonlinear systems
	2.2. Value iteration algorithm

	3. Main results
	3.1. Deep value iteration algorithm
	3.2. Convergence analysis for DVI algorithm

	4. Numerical example
	4.1. Scalar nonlinear system
	4.2. Inverted pendulum

	5. Conclusion
	Note
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

