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ABSTRACT
To create an artificial structure to remarkably surpass the sensitivity, selectivity and speed of the olfaction
system of animals is still a daunting challenge. Herein, we propose a core-sheath pillar (CSP) architecture
with a perfect synergistic interface that effectively integrates the advantages of metal–organic frameworks
and metal oxides to tackle the above-mentioned challenge.The sheath material, NH2-MIL-125, can
concentrate target analyte, nitro-explosives, by 1012 times from its vapour.The perfect band-matched
synergistic interface enables the TiO2 core to effectively harvest and utilize visible light. At room
temperature and under visible light, CSP (TiO2, NH2-MIL-125) shows an unexpected self-promoting
analyte-sensing behaviour. Its experimentally reached limit of detection (∼0.8 ppq, hexogeon) is 103 times
lower than the lowest one achieved by a sniffer dog or all sensing techniques without analyte
pre-concentration. Moreover, the sensor exhibits excellent selectivity against commonly existing
interferences, with a short response time of 0.14 min.

Keywords:MOFs, metal oxides, electrical devices, thin films, gas sensors

INTRODUCTION
Olfaction is a sense of gaseous matter (smell
or odours) associated with signs of attraction,
safety, danger, etc. Olfaction occurs when odorant
molecules chemically bind to specific sites on re-
ceptors located in the nasal cavity, integrating with
other organs to form the sense of odour [1]. At
present, the detection limit (LOD) of well-trained
sniffer dogs is at around the hundreds of parts
per trillion (ppt) range [2,3]. To mimic the olfac-
tion of animals, non-contact and real-time detec-
tion techniquesbasedonchemical interaction are re-
quired and related sensing materials have been in-
tensively studied. Although significant progress has
been achieved, the sensitivity of the best chemi-
cal gas-sensing technique is similar to those of an-
imals and at the ppt level [4–7]. The question is
still open on whether it is possible to create an ar-
tificial system to remarkably surpass the sensitiv-
ity, selectivity and speed of the olfaction system of
animals.

Metal oxides (MOs) nanostructure-based
chemiresistive gas-sensing techniques are among
the most promising candidates to positively answer
the above question [8,9]. However, due to the low
specific area and broad-spectrum responses, metal-
oxide sensing materials still cannot surpass the
olfaction system of animals [10–14]. To overcome
these problems, we designed a combined material
containing target-selective and reactive materials
for the detection of a part-per-quadrillion (ppq,
= 10–3 ppt)-level molecule, with a corn-dog-like
core-sheath pillar (CSP) architecture (Fig. 1a).
Accordingly, an emerging class of crystalline mi-
croporous materials, metal–organic frameworks
(MOFs) or porous coordination polymers (PCPs)
[15–24], designed with a high affinity to analytes,
are coated on the MO to adsorb selectively and
locally concentrate target molecules [25,26], while
the MO provides the active sites for the sensing
reaction and conducts the electrical sensing signal.
The essential question of CSP (MO, MOF) is
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Figure 1. Design of the CSP architecture and the specific interaction. (a) Design
of visible-light-activated CSP (TiO2, NH2-MIL-125) chemiresistive material for nitro-
explosive detection at RT. (b) Schematic of the structure of NH2-MIL-125 and the spe-
cific interaction of its organic ligand with nitro-explosives (golden ball: the cavity of
NH2-MIL-125).

how to create a perfect energy-band-matched
MOF/MO interface that can effectively generate
and separate light-excited charge carriers to produce
active oxygen species. MOFs can couple with
MOs to achieve the desired visible-light-active and
analyte-accessible MOF/MO interface [27].

In this work, nitro-explosives that possess ultra-
low saturated vapour pressures at RT, e.g. 0.97 ppb
of 2,4,6-trinitrophenol (TNP), 9.1 ppb of 2,4,6-
trinitrotoluene (TNT) and 4.9 ppt (Robert G. Ew-
ing et al. recently reported 30± 10 ppt) of hexogen
(RDX) were selected as the analytes to reveal the
potential of CSP (MO,MOF) [25,28–30]. A highly
stableMOF,NH2-MIL-125,was selected as a sheath
material based on the following considerations
(Fig. 1b): (i) it not only possesses local concentra-
tion ability but can also form a visible-light-active in-
terface with TiO2, which can be used to enhance the
sensitivity towards nitro-explosives; (ii) its amino
groups interact stronglywith nitro-explosives, which
is favourable for the selectivity towards the latter.
As a proof of concept, a layer of 15-nm-thick NH2-
MIL-125 thinfilmwas epitaxially grownonTiO2 pil-
lars to form a CSP (TiO2, NH2-MIL-125) visible-
light-chemiresistive sensing material for RT nitro-
explosive detection. Consequently, CSP (TiO2,
NH2-MIL-125) showed an experimentally detected
concentration as low as 0.8 ppq of RDX vapour
[30]. Notably, this value is 103 times lower than the
lowest experimental LOD for all gaseous molecules

achieved by all sensing techniques without analyte
pre-concentration [2,4]. CSP (TiO2, NH2-MIL-
125) achieved non-contact and real-time detection
ofRDXwith an amount as low as 5mg and adistance
as long as 8m,which is also comparablewith the gold
standard [2–4]. Moreover, it also showed excellent
selectivity in discriminating various nitro-explosives,
such as RDX, TNT andTNP, among 25 structurally
similar or commonly existing interferences.

RESULTS AND DISCUSSION
In the crystal structure of NH2-MIL-125, a large
number of amino groups are attached to the skeleton
of NH2-MIL-125 (Fig. 2a), which are not coordi-
natedwithother inorganic components, andare thus
selectively interacting with nitro-explosives through
the windows in the cages in our designed product
[31,32]. The reported specific surface area of NH2-
MIL-125 reaches 1300m2 g−1, which is sufficient to
locally concentrate nitro-explosives [33]. Although
various composite materials of TiO2 and NH2-
MIL-125 have been reported previously [34,35],
it is the very first time a unique CSP architecture
of TiO2@NH2-MIL-125 (CSP (TiO2, NH2-MIL-
125)) has been introduced, where the MOF sheath,
constructed from intergrown ultra-thin nanosheets,
was quasi-oriented and uniformly coated on TiO2.
A two-step seed-assisted solvothermal method was
developed to fabricate this type of CSP architecture
(see ‘Methods’ section for details). To be more spe-
cific, the vertically oriented TiO2 pillars were first
grown on an Al2O3 substrate (inset in Fig. 2d).
The TiO2 posts were then immersed in solutions
of BDC-NH2 (2-aminobenzenedicarboxylate) lig-
and and heated. After washing, the TiO2 pillars
were immersed in titanium n-butoxide solution
and heated to grow NH2-MIL-125 seeds (inset in
Fig. 2e).TheNH2-MIL-125 seed-modifiedTiO2 pil-
lars were then placed in a Teflon-lined autoclave
containing a solution of BDC-NH2 and titanium
n-butoxide. After being maintained at 150◦C for
3 days, CSP (TiO2, NH2-MIL-125) was obtained
(inset in Fig. 2f).

Powder X-ray diffraction (PXRD) measure-
ments revealed peaks at 2θ < 25◦ belonging to
NH2-MIL-125 (Fig. 2b) [31,33]. UV–vis diffuse
reflectance spectroscopy (UV–vis DRS) of TiO2
and CSP (TiO2, NH2-MIL-125) clearly showed
that the NH2-MIL-125 sheath is a good visible-light
sensitizer, as it significantly increases the absorp-
tion cross section of TiO2 from 410 to 530 nm,
which improves its light-harvesting efficiency
(Fig. 2c). Scanning electronmicroscopy (SEM) and

Page 2 of 8

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/9/10/nw

ac143/6648716 by Kyoto D
aigaku Bungakubu Toshokan user on 13 O

ctober 2022



Natl Sci Rev, 2022, Vol. 9, nwac143

c

ab
-NH2 Nitro-explosives

Int
en

sit
y (

a.u
.)

CSP
(TiO2, NH2-MIL-125)

NH2-MIL-125

TiO2

2θ (degree)
10 20 30 40

F 
(R

)

TiO2

CSP (TiO2, NH2-MIL-125)
NH2-MIL-125

400
Wavelength (nm)

480 560 640

100 nm

200 nm

5 nm 100 nm 100 nm

200 nm 200 nm

O Ti

N

20 nm

MOF

TiO2

0.33 nm
110

0.30 nm
001

20 nm

MOF

TiO2

~ 
0.9

 nm

~ 0.9 nm
[010]

50 nm

(k)

(a)

(d) (e) (f)

(g)

(j)

(h) (i)

(b) (c)

a
c

Figure 2. Structural characterizations of the CSP architecture. (a) Perspective view
of NH2-MIL-125; the gray balls indicate the centres of the octahedral and tetrahedral
vacancies in NH2-MIL-125. (b) PXRD patterns of TiO2, NH2-MIL-125 and CSP (TiO2, NH2-
MIL-125); (c) DRS spectra of TiO2, NH2-MIL-125 and CSP (TiO2, NH2-MIL-125). SEM and
TEM images of (d and g) vertically aligned TiO2 pillars, (e and h) TiO2 pillars after two-
step seeding, and (f, i–k) CSP (TiO2, NH2-MIL-125) (insets in (d–f) are schematics of the
growth of CSP; insets in (i) are N, O and Ti EDX mapping images of the side view of a
CSP).

transmission electron microscopy (TEM) images
of TiO2 pillars and CSP (TiO2, NH2-MIL-125) on
Al2O3 substrates are shown in Fig. 2d–i. TiO2 pil-
lars are vertically aligned with well-defined surfaces
(Fig. 2d and g). The average diameter and length
of the TiO2 pillars are ∼150 nm and ∼1.5 μm,
respectively. After seeding, crystalline nuclei of the
MOF material were formed (Fig. 2e and h). CSP
(TiO2, NH2-MIL-125) (Fig. 2f and i) has a core-
sheath structure, where a uniform MOF thin film
sheath is constructed from intergrown ultra-thin
nanosheets, which is confirmed by the uniformly
distributed N, O and Ti on the MOF sheath shown
in energy-dispersive X-ray spectroscopy (EDX)
maps (insets in Fig. 2i). The thickness of the MOF
layer is∼15 nm.The homogeneous coating ofNH2-
MIL-125 on the TiO2 pillar is further confirmed

by high-magnification TEM images of its side face
(Fig. 2j) and tip face (Fig. 2k), fromwhich the lattice
spacing of both TiO2 and NH2-MIL-125, as well as
their clean interfaces, can be observed. Interestingly,
the observed similar lattice spacing of ∼0.9 nm of
the MOF sheath also indicates their quasi-oriented
growth along one direction on both the side and top
surfaces of theTiO2 pillar, whichmight be beneficial
for charge transfer between them. Considering the
stacking differences of inorganic Ti–O nodes along
the [010] and [001] directions (insets of Fig. 2k),
the oriented plane could be indexed as (002). The
lattice fringes (inset in Fig. 2j) and the aligned dots
in the selected-area electron diffraction pattern
(Supplementary Fig. S1) confirm that the TiO2
pillars have a single crystal rutile phase and grow
along the [001] direction.

The real-time detection of RDX by CSP (TiO2,
NH2-MIL-125) was conducted under simulated
static-state and dynamic-state conditions in a home-
made characterization system reported in our previ-
ous work (see Supplementary information and Sup-
plementary Fig. S2 for details) [36]. Silver paste
was coated on both ends of the film of CSP (TiO2,
NH2-MIL-125) as electrodes and then these were
placed inside a sealed quartz chamber with dry air
as the cleaning and carrier gas. Without light irra-
diation, CSP (TiO2, NH2-MIL-125) showed nearly
no sensing response to RDX vapour (Supplemen-
tary Fig. S3). Conversely, under visible-light (420–
790 nm) irradiation, CSP (TiO2, NH2-MIL-125)
showed adistinct response toRDX inboth static and
dynamic tests (Fig. 3a and Supplementary Fig. S4).

Although the static test is unsuitable for prac-
tical application in real-time detection, its result
represents the thermodynamic maximum at RT
(Supplementary Fig. S4). This response gives a
value reaching 82%, which is ∼164% higher than
the highest value reported for chemiresistive sensors
(Fig. 3f) [11–14,28,37,38]. Concentration and
mass-dependent dynamic tests can mimic the
vapour-diffusion-induced concentration gradient or
dynamic explosive residues in practical applications.
CSP (TiO2, NH2-MIL-125) shows a dynamic
response and recovery to the RDX vapour with
concentrations ranging from 4.9 ppt to 15.7 ppm
at high signal-to-noise ratios (Fig. 3a). Its response
increases with the increment of concentration of
RDX vapour and its high sensitivity results in a re-
sponse of ca. 730% when detecting 15.7 ppm RDX.
Good repeatability of the response to 4.9 ppt and
15.7 ppm RDX with a coefficient of variation as low
as 0.8% and 7.3%, respectively, for five successive
cycles was also observed (Supplementary Fig. S5).
Real-time response–recovery curves of three
different CSP (TiO2, NH2-MIL-125) sensors
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Figure 3. Sensing properties of CSP (TiO2, NH2-MIL-125) toward RDX under visible light and at RT. (a) Dynamic response–recovery curve for RDX at
different expected concentrations under visible light (the distance between RDX and the sensor: 20 cm); (b) static and dynamic response–recovery
curves for different distances from 1.4 g of RDX (vapour pre-concentrated at RT); (c) normalized response–recovery curve to 15.7 ppm of RDX vapour
(expected concentration); (d) dynamic response–recovery curve with different masses (vapour pre-concentrated at 150oC); (e) log–log plots of response–
concentration with experimental LOD values (the inset is the response toward 0.8 ppq RDX vapour pre-concentrated at 253K); (f) response comparisons
of different gas-sensing materials toward saturated RDX vapours at RT [11–14,28,37,38]; (g) response comparisons among nitro-explosives and inter-
ference vapours.

fabricated indifferent batches uponexposure toward
15.7 ppmRDXunder visible light showed responses
of 730%, 742% and 726%, respectively. The CV
(coefficient of variation) is only 1.1%, which showed
good reproducibility (Supplementary Fig. S6).

The response to 4.9 ppt RDX was calculated as
75%,which is close to the value obtained in the static
test and 258% higher than those of TiO2 (Supple-
mentary Figs S4 and S19b, and Fig. 3g). CSP (TiO2,
NH2-MIL-125) also showed a mass-dependent re-
sponse to RDX powder (Fig. 3d), where a response
of 20% to 5mgRDX and 610% to 1.4 g RDXwas ob-
served.The lowest detectable concentration of RDX
vapour was obtained by controlling the evaporation
temperature of RDX at 253 K (Fig. 3e, Supplemen-
tary Fig. S7 and Supplementary Table S1) [29,30].
A noticeable response to 0.8 ppq was observed (in-

sets in Fig. 2e). Moreover, the response curve pos-
sesses a high signal-to-noise level, which is robust ev-
idence to demonstrate that the LOD to RDX can be
<0.8 ppq in theory. The LOD of CSP (TiO2, NH2-
MIL-125) toward TNT and TNP vapour was also
deduced to be as low as 0.696 and 1.92 ppt, respec-
tively, by setting the response as 10% in the log–log
plots of response vs concentration (Supplementary
Figs S8 and S9, and Supplementary Tables S2 and
S3).The response and recovery timewere estimated
to be 0.14 and 7.7 min (Fig. 3c), respectively.This is
a very fast response and is sufficient for real-time de-
tection.These results allow the real-timedetectionof
trace nitro-explosive vapours.

The influence of the light source on the response
was also investigated. CSP (TiO2, NH2-MIL-125)
has an optimized performance at a power density
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of 320 mW cm–2 and a wavelength of 475 nm
(Supplementary Figs S10–S12 and Supplementary
Table S4). Moreover, CSP (TiO2, NH2-MIL-125)
shows good long-termbaseline stability under ambi-
ent or high humidity circumstances (100% RH) for
>5 months (Supplementary Fig. S13).

The high sensitivity of CSP (TiO2, NH2-MIL-
125) allows it to detect nitro-explosives without
physical contact with solid samples. As an example
to mimic real-world sensing, the saturated vapour
generated from 1.4 g RDX powder was allowed to
freely diffuse in a quartz chamber without carrier gas
to form a concentration gradient (static detection).
The responses of CSP (TiO2, NH2-MIL-125) at dif-
ferent distances from RDX powder were recorded
and are shown in Fig. 3b.The results clearly revealed
the ability of CSP (TiO2, NH2-MIL-125) to dis-
criminate gram levels of RDX from distances reach-
ing 50 cm. In a more practical condition with a flow-
ing air of 60 sccm (dynamic detection), CSP (TiO2,
NH2-MIL-125) showed remarkably extended de-
tectable distance and a response value at 8 m is sim-
ilar to that at 20 cm. Since more RDX can produce
the sameconcentrationof vapourover a larger range,
CSP (TiO2, NH2-MIL-125) is expected to detect
kilogram levels of RDX at much longer distances.

Compared with TiO2, CSP (TiO2, NH2-MIL-
125) possesses significantly enhanced selectivity
(Fig. 3g). It shows a good response to typical nitro-
explosives, such as TNP, TNT and RDX (Fig. 3
and Supplementary Fig. S14), while it shows a poor
response to 25 other interfering gas molecules in-
cluding phenol (PhOH), hydroquinol (HQ), o-
nitrophenol (ONP), benzene, toluene, CO2, ace-
tone,methanol,H2S, etc. (Fig. 3 and Supplementary
Figs S15–S21). This unique selectivity permits the
discrimination of these nitro-explosives from struc-
turally similar or commonly existing interfering gas
molecules.H2O is one of themost common interfer-
ence vapours. However, this problem can be solved
well by simply filtering the analyte vapour with three
layers of the hydrophobic cloth obtained from dis-
posable medical masks. As shown in Supplementary
Fig. S22a, the hydrophobic mask clothes would sup-
press the response of humidity. As a result, >90%
of the original value (730%, dry air as carrier gas)
toward the 15.7 ppm of RDX vapour is maintained
even under 95% RH (660%, 95% RH air as carrier
gas) (Supplementary Fig. S22b).

Compared with TiO2 and NH2-MIL-125, CSP
(TiO2, NH2-MIL-125) showed much higher sen-
sitivity in detecting nitro-explosives, which may be
ascribed to the following three reasons: (i) NH2-
MIL-125 possesses a high specific surface area to
locally concentrate nitro-explosives; (ii) NH2-MIL-
125 significantly increases the absorption cross sec-

tionofTiO2 from410 to 530nm to improve its light-
harvesting efficiency, thus enhancing its photocur-
rent (Fig. 4a); (iii) with the MOF sheath, our den-
sity functional theory (DFT) calculations (Fig. 4c
and d, and Supplementary Fig. S23) reveal thermo-
dynamically favoured charge-carrier separation and
transfer at the staggered-gap (type II) heterojunc-
tion of the MOF–TiO2 interface. Thus, the MOF–
TiO2 heterojunction can act as a ‘pump’ to extract
the photo-excited electrons generated at both the
MOF sheath and MOF–TiO2 interface to enable
TiO2 to produce active oxygen species (O2

–) for
the sensing reaction [27]. In this case, RDX will un-
dergo charge-transfer reactions with the O2

– ions
(Supplementary Equations S1 and S2), thus NO2

–

ions andperhaps other ions (explosive negative ions,
NO2, NH3, CO2, etc.) are formed. More inter-
estingly, at the MOF–TiO2 interface, when nitro-
explosives (TNP, TNT, RDX, o-DNB) bind to the
ligand, a new band structure is formed, which results
in an unexpected self-promoting analyte-sensing be-
haviour (Fig. 4 and Supplementary Figs S23–S26)
[39,40]. Theoretical calculation revealed that this
new band structure of nitro-explosives@BDC-NH2
would: (i) result in a much smaller energy gap than
that of ligand and common interferences@ligand
(calculated common interferences: PhOH, acetone,
toluene, benzene, Supplementary Table S5), and
would extend the light-absorption range (Fig. 4b);
(ii) more importantly, induce the photo-excited
electrons transfer from the highest occupied molec-
ular orbital (HOMO) mainly located on the lig-
and part to the lowest unoccupied molecular orbital
(LUMO) mainly located on the nitro-explosives
part, which promotes the separation and transfer of
the photo-excited charge carriers from the MOF to
the interface (Supplementary Table S6).

After being absorbed by the MOF sheath, TNT
showed a smaller HOMO–LUMO gap (Supple-
mentary Table S5 and Supplementary Fig. S25) and
higher calculated intermolecular electronic cou-
pling (Jeff) (Supplementary Table S6) than RDX.
Meanwhile, TNT has three orders of magnitude
higher saturated vapour pressure than RDX at room
temperature. Thus, CSP (TiO2, NH2-MIL-125)
should have a much higher response difference
between TNT and RDX than the current results.
This abnormal phenomenon can be attributed to
the pre-concentration effects of MOF sheath on
nitro-explosive vapours, which showed the superior
pre-concentration efficiency of RDX over TNT, as
experimentally confirmed by the mass-transduced
adsorption results of a commercial microcantilever
(Supplementary Figs S27–S29). Specifically, NH2-
MIL-125 was astonishingly found to concentrate
the vapour of solid nitro-explosive, TNT and RDX,
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Figure 4. Sensing mechanisms of CSP (TiO2, NH2-MIL-125) toward RDX under visible light and at RT. (a) Photocurrent of
CSP (TiO2, NH2-MIL-125), NH2-MIL-125 and TiO2 under visible light; (b) absorption of NH2-MIL-125 after exposure to RDX
vapour; (c) structures of TiO2, NH2-MIL-125 and their interface exposed to RDX vapour (the orange molecules) and (d) energy-
level diagram of ligand, metal node and RDX@ligand relative to TiO2, and frontier molecular orbitals of ligand, metal node
and RDX@ligand showing thermodynamically favoured charge-carrier separations and transfer, as well as self-promoting
analyte-sensing behaviour.

by 109 and 1012 times, respectively. The estimated
density ofTNTandRDX inNH2-MIL-125was very
high, reaching 3.56 × 10–2 and 3.15 × 10–2 g cm–3,
respectively, which are close to those of solid TNT
(1.6 g cm–3) and RDX (1.9 g cm–3). It significantly
reduces the concentration differences of RDX and
TNT at the interface of MOF and TiO2, thereby
resulting in response values with less difference.

Moreover, it is well known that apart from acid–
base pairing interactions, electron-rich -NH2 groups
form strong charge-transfer complexing interactions
with electron-deficient nitro-explosives [40]. This
interaction was confirmed by the colour of the
NH2-MIL-125 changing fromyellow tobrownupon
exposure to the RDX or TNT vapour (Fig. 4b).
The calculated charge density difference plots con-
firmed the above experimental results and showed
the charge depletion of the -NH2 group of the lig-
and and the obvious charge increase of the -NO2
groups of nitro-explosives on their interacted sur-
faces (Supplementary Fig. S26). The formation of
the charge-transfer complexes between NH2-MIL-
125 and nitro-explosives may result in the high se-
lectivity of CSP (TiO2, NH2-MIL-125) to nitro-
explosives.

CONCLUSION
Aiming to create an artificial olfaction system that
surpasses the sensitivity, selectivity and sensing

speed of the olfaction system of a sniffer dog, we, for
the very first time, introduced a CSP (TiO2, NH2–
MIL–125) chemiresistive sensing material to fulfil
the urgent but unsatisfied requirements with respect
to the non-contact and real-time detection of nitro-
explosives. It showed excellent sensitivity and selec-
tivity: (i) thismaterial achieved the highest response
(82%) to saturated RDX vapour (4.9 ppt) and the
lowest detectable concentration (∼0.8 ppq) among
all the reported chemiresistivematerials and realized
the detection of an amount of RDX as low as 5 mg
and a distance of ≤8 m in a non-contact, real-time
manner; (ii) it could discriminate nitro-explosives,
such as TNP, TNT and RDX, among 25 structurally
similar or commonly existing interferences. Since
the crystal structure of the MOF sheath can be flex-
ibly designed to realize the required properties, the
CSP (MO,MOF) architecture not only offers much
room for further optimization for nitro-explosive de-
tection, but might also provide a general method
for developing high-performance sensing materials
for detecting other crucial chemicals, such as various
volatile organic compounds, such as NOx and SOx.

METHODS
Preparation of TiO2 pillars
The Al2O3 substrates were cut into 8 × 10 mm2

square pieces and thoroughly cleaned
by ultrasonication in a mixture solution
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(water:isopropanol:acetone = 1:1:1), followed
by drying with N2 gas. Rutile TiO2 NWAs were
grown on an Al2O3 substrate with a hydrothermal
method. To facilitate the growth ofNWAs, a layer of
TiO2 seedwas first deposited on theAl2O3 substrate
by thermally decomposing titanium n-butoxide
(Ti(OC4H9)4, TNB) at 450◦C.Meanwhile, 0.4 mL
of titaniumn-butoxidewasmixedwith 12mLof 6M
HCl in a 20-mL Teflon-lined autoclave. The seeded
substrate was then up-down immersed into the
solution.The hydrothermal reaction was conducted
in an electric oven at 150◦C for 4 h and then slowly
cooled down to room temperature. Subsequently,
the TiO2 NWAs covered in Al2O3 were rinsed
thoroughly with deionized (DI) water and dried in
air. The as-synthesized TiO2 NWAs were further
annealed in air at 450◦C for 30 min to improve their
crystallinity and conductivity.

Preparation of CSP (TiO2, NH2-MIL-125)
A two-step seed-assisted solvothermal method was
developed to grow a NH2-MIL-125 sheath on the
surface of TiO2 pillars. First, TiO2 pillars were face-
down immersed into a mixed solution containing
2-aminoterephthalate (BDC-NH2), dimethyl for-
mamide (DMF) and methanol in a Teflon-lined au-
toclave. The sealed autoclave was kept at 150◦C for
12 h. TiO2 pillars were immersed into a mixed solu-
tion of TNB, DMF and methanol in a Teflon-lined
autoclave.The sealed autoclavewas heated to 150◦C
and kept for 4 h, before cooling down to RT. Fi-
nally, the MOF seeded TiO2 pillars were obtained.
The seeded sample was up-down immersed into a
mixed solution containing BDC-NH2, TNB, DMF
andmethanol in aTeflon-lined autoclave andheated
at 150◦C for 72 h. After that, CSP (TiO2,NH2-MIL-
125) was obtained.

Evaluation of sensing performances
All experiments were performed at RT. A Xe lamp
was used as the light source. The devices were pre-
pared by connecting both ends of the pillar films
to two Au wires with conductive silver paint. The
as-prepared devices were put inside a sealed cham-
ber with a quartz window. Electrical characteriza-
tion was recorded with a Keithley 2602B sourceme-
ter. The vapours of analytes were generated with
their powder or liquid in a chamber. The saturated
vapours were generated by blowing air through ex-
plosive powder.

Computational method
BDC-NH2, a cluster model of (Ti8O12(HCOO)12)
and nitro-explosives@BDC-NH2 were used to sim-
ulate the ligand of NH2-MIL-125, the node of

NH2-MIL-125 and nitro-explosives adsorption on
the ligand of NH2-MIL-125, respectively. DFT
and time-dependent density functional theory (TD-
DFT) calculations were performed on these mod-
els to obtain the ligand-localized excitations, node-
localized excitations and the electronic structure
properties of nitro-explosives binding with the lig-
and. A (TiO2)6 cluster model was used to simulate
the TiO2 semiconductor. The ground-state geome-
trieswere fully optimized by usingB3LYP functional
with a def2-SVP basis set. All calculations were car-
ried out using the Gaussian 09 package.
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