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1 Introduction

In recent progress of holographic dualities, especially the AdS/CFT correspondence [1], the
end of world branes (EOW branes) play an important role. One reason for this is that the
presence of such objects in AdS backgrounds provides a bottom-up model for a gravity dual
of a boundary conformal field theory (BCFTs) [2–4], called the AdS/BCFT. Another reason
is that the brane-world holography predicts that the dynamics of EOW branes is dual to
that of quantum gravity [5–8]. These two different interpretations of the EOW branes: the
AdS/BCFT and the brane world, are expected to be equivalent. This is manifest in the
calculation of entanglement entropy, i.e. the holographic entanglement entropy formula for
AdS/BCFT in the presence of EOW branes [3, 4] takes the identical form as the island
formula [9–13] which computes the entanglement entropy in the presence of gravity. This
correspondence can be regarded as an equivalence between a BCFT and a CFT coupled
to gravity, as systematically studied recently in [14] (see also [15, 16] for related studies
from conformal field theoretic approaches). In this way, these ideas of EOW branes are
deeply connected at the bottom and their further understandings are expected to be a key
ingredient to fully understand quantum gravity.

So far studies of EOW branes have mainly been limited to holographic setups at zero
or at finite temperature. This raises a basic question whether the holographic duality
of AdS/BCFT works successfully in time-dependent backgrounds. Motivated by this, in
this paper we would like to study the dynamics of EOW branes in the presence of a large
and inhomogeneous excitation. In particular, we focus on an analytical model where the
excitation is created by a massive particle in three-dimensional AdS geometry. Via the
AdS/BCFT duality, this is dual to a local operator excitation in the holographic two-
dimensional BCFT, which may also be called a local operator quench in the presence of a
boundary. The local operator quench is defined by the time evolution of a locally excited
state, acting a primary operator O(x) on a CFT vacuum |0〉 with a suitable regularization1

|Ψ(t)〉 = e−itHO(x = xa, tE = −α)|0〉, (1.1)

where H is the CFT Hamiltonian, tE = it, and α is a regularization parameter [18–21]
(refer also to [22] for an earlier analysis of local operator quench in BCFTs). Our gravity
model is obtained by introducing an EOW brane in the holographic local quench model [23].
The shape of the EOW brane is deformed by the local excitation via the gravitational
backreaction, which gives a novel dynamics of the local quench in the BCFT. Via the
double holography, this model is also closely related to the local quench in a two-dimensional
gravity studied in [24] as a model of black hole evaporation.

Our local quench model is analytically tractable both from the gravity side and the
BCFT side. The former can be found by finding the correct asymptotically AdS spacetime

1In this paper, our two-dimensional BCFT has either a single boundary at x = 0 or two boundaries
(one at x = 0 and the other at a specific time-dependent location x = Z(t)). Although in the former
case, in which H|0〉 = 0 holds, the definition (1.1) is equivalent to the usual definition of the local quench
|Ψ(t)〉 = e−itHe−αHO(x = xa)|0〉, we need to modify this for the latter case, in which H|0〉 6= 0, as the
time evolution is not unitary but isometry as in [17]. As we will discuss in the paper, (1.1) is the correct
definition for the local quench dual to what is discussed in the paper.
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with an EOW brane and a massive particle. This gravity dual geometry allows us to
calculate the holographic energy-momentum tensor [25] and holographic entanglement
entropy [26–28]. On the other hand, the latter can be analyzed via direct conformal field
theoretic computations by employing a suitable conformal map. We will note that a careful
choice of the coordinate system in the gravity dual is important when we compare the
results of the former with those of the latter. Eventually we will find complete matching
between the gravity dual results and the BCFT ones in the large central charge limit.

This paper is organized as follows: in section 2, we present our gravity dual of the local
operator quench by introducing a localized excitation in the AdS/BCFT. We calculate
its holographic energy-momentum tensor in this model. We also examine a coordinate
transformation which helps us to identify its BCFT dual. In section 3, we compute the
holographic entanglement entropy in our holographic local quench model. In section 4,
we provide the BCFT description of our local operator quench and compute the energy-
momentum tensor. We compare the results in the gravity dual with those in the BCFT. In
section 5, we compute entanglement entropy in the BCFT and observe a consistent result
with the identified gravity dual. In section 6, we summarize our conclusions and discuss
future problems.

2 Holographic local operator quench in BCFTs

In this paper, we would like to study a local operator quench (1.1) in a two-dimensional
conformal field theory (CFT) in the presence of boundaries, namely, a two-dimensional
BCFT. We analyze the system this both from the gravity dual calculations and from
the direct computations in BCFT. In the absence of a boundary, a gravity dual of local
operator quench was presented in [23] by employing an asymptotically AdS spacetime with
backreaction of a massive particle infalling in the bulk [29].

Writing the two-dimensional coordinates as (t, x) of the CFT, we define our BCFT by
restricting the spacetime in the right half plane x > 0. In this paper, for simplicity, we
will focus on the local operator quench (1.1) with the choice xa = 0, i.e. the excitation is
localized on the boundary. Its gravity dual can be found by inserting an end of the world
brane (EOW brane) appropriately in the three-dimensional asymptotically AdS with a
falling massive particle with backreaction taken into account, following the AdS/BCFT
prescription [3].

2.1 Coordinate change between Poincare and global AdS

In general, the backreaction of a bulk infalling particle in the Poincare AdS can be obtained
by pulling back a spacetime with a massive static particle in global AdS [29]. Consider the
AdS3 in the Poincare metric with the radius R,

ds2 = R2
(
dz2 − dt2 + dx2

z2

)
. (2.1)

This is transformed into the global AdS3 with the metric

ds2 = −(r2 +R2)dτ2 + R2

r2 +R2dr
2 + r2dθ2, (2.2)

– 2 –
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Figure 1. A sketch of the coordinate transformation from the Poincare AdS into a global AdS in
the presence of a massive particle (the red arrow) and an EOW brane (the red surface).

via the following map:

√
R2 + r2 cos τ = Rα2 +R(z2 + x2 − t2)

2αz ,√
R2 + r2 sin τ = Rt

z
,

r sin θ = Rx

z
,

−r cos θ = −Rα
2 +R(z2 + x2 − t2)

2αz . (2.3)

We chose the range −π ≤ θ < π for the spatial coordinate of the global AdS. The parameter
α is an arbitrary real number, corresponding to a particular isometry of AdS. In this map,
the line x = 0 at the boundary z = 0 in Poincare AdS is mapped into θ = 0 and the time
slice t = 0 is mapped into τ = 0.

We place a massive particle with a mass m at r = 0 of the global AdS (2.2). In the
Poincare AdS (2.1), its trajectory is

z2 − t2 = α2, x = 0, (2.4)

as depicted in figure 1. By performing a Wick rotation τ = it, the above trajectory becomes
a semi-circle z2 + τ2 = α2. Since at the boundary z = 0, the excitation is at τ = ±α, we
find that this massive particle is dual to a local operator excitation given by (1.1) with
xa = 0, where the mass m is related to the conformal dimension ∆ of the primary operator
O(x) via ∆ ' mR.

Moreover, as can be found by taking the AdS boundary limit r →∞ and z → 0, the
above transformation (2.3) corresponds to the following conformal transformation in the
CFT dual

t± x = α tan
(
τ ± θ

2

)
. (2.5)

– 3 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
0

2.2 Gravity dual of an infalling particle in AdS

If we take into account the gravitational backreaction of this massive particle, then the
global AdS metric is replaced with

ds2 = −(r2 +R2 −M)dτ2 + R2

r2 +R2 −M
dr2 + r2dθ2, (2.6)

where θ has the periodicity 2π as −π ≤ θ < π. The mass parameter M is related to the
mass m via

M = 8GNR2m. (2.7)

The map (2.3) transforms this metric into that of an asymptotically Poincare AdS back-
ground [29]. As identified in [23], this is a time-dependent background with a local operator
insertion at t = x = 0 i.e. given by the local operator quench state (1.1) with xa = 0. The
parameter α in the map (2.3) precisely coincides with the regularization parameter in the
CFT state (1.1).

For 0 < M < R2, the geometry (2.6) can be transformed into the metric

ds2 = −(r̃2 +R2)dτ̃2 + R2

r̃2 +R2dr̃
2 + r̃2dθ̃2, (2.8)

via the map

τ̃ = χτ, θ̃ = χθ, r̃ = r

χ
, where χ =

√
R2 −M
R2 . (2.9)

Even though this looks like a global AdS3, there is a deficit angle at r = 0 since the
periodicity of the new spatial coordinate is θ̃ is

− χπ ≤ θ̃ < χπ, χ < 1. (2.10)

For M > R2, the geometry (2.6) describes a BTZ black hole, where the horizon is
situated as r =

√
M −R2.

2.3 EOW branes in AdS/BCFT

We are interested in effects of the presence of a boundary in the above mentioned local
quench. Such a boundary in a boundary conformal field theory (BCFT) corresponds
to an end of the world brane (EOW brane) in the holographic dual setup, namely the
AdS/BCFT [2–4]. In general, the location of the brane is the bulk is fixed by solving the
following Neumann boundary condition on the EOW brane [3]:

Kab −Khab = −8πGNT hab. (2.11)

In the above equations, Kab, denotes the extrinsic curvature of the brane profile, hab is
its induced metric, and K = habKab. The extrinsic curvature can be computed from the
outward pointing normal vector na on the brane as the covariant derivative ∇anb, projected
on the brane. Also the parameter T is the tension of the EOW brane. In this paper we will
focus on the case T 6= 0 so that the falling particle is off the EOW brane.
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In the absence of the massive particle where the metric takes of the form (2.1), the
following profile of the EOW brane

x− a = −λz, (2.12)

solves (2.11). The physical bulk region dual to the BCFT is given by x− a ≥ −λz. λ is a
constant related to the tension T in (2.11) as

T R = λ√
1 + λ2

. (2.13)

The parameter a describes the location of the boundary in the BCFT so that the BCFT
is defined for x > a. In this paper, we will set a = 0 for simplicity. The local operator is
inserted at the boundary of BCFT in this case. The EOW brane (2.12) corresponds to the
following profile in the global AdS3 (2.2):

r sin θ = −λR, (2.14)

which is depicted in figure 1.

2.4 Profiles of EOW branes

In the presence of the massive particle, the metric is deformed into the solution (2.6) which
is further mapped to the Poincare AdS by the map (2.3). We can specify the brane profiles
in the time-dependent geometry by applying the chain of diffeomorphisms. We begin with
the profile of the EOW brane in the transformed geometry (2.8),

r̃ sin θ̃ = −λR. (2.15)

Thus for 0 ≤M < R2, the EOW brane profile is found in the original coordinates as

r sin (χθ) = −λ
√
R2 −M. (2.16)

For λ > 0, the EOW brane extends from θ = 0 to θ = −π
χ ' 2π − π

χ as depicted in the
middle panel of figure 2. When M = 0, the brane intersects with the asymptotic boundary
at θ = 0 and θ = π. As we increase the mass of the bulk particle, the brane profile is
eventually bent, and the coordinate distance between the two end points gets closer.

For λ < 0, the EOW brane extends from θ = 0 to θ = π
χ '

π
χ − 2π as shown in figure 3.

In contrast to the λ > 0 case, the dual gravity region does not include the falling particle
but is affected by its backreaction.

We would like to note that if M is large enough such that M > 3
4R

2, then the EOW
brane gets folded as in the right panel of figure 2 and the gravity dual does not seem to
make sense. As discussed in [30] (see also [31, 32]), this kind of folded solution implies
that the hard wall approximation is no longer valid in the presence of strong backreaction.
Nevertheless, as we will see later, a suitable treatment of the AdS/BCFT yields M is always
less than or equal to 3

4R
2, given a conformal dimension less than the black hole threshold.
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Deficit angle Deficit angle

M = 0 0 < M ≤
3𝑅𝑅2

4
3𝑅𝑅2

4
< M < 𝑅𝑅2

Figure 2. Cross sections at constant τ for the backreacted geometry with a mass and a positive
tension λ > 0. We depicted the EOW brane as the red curved. The light green regions are the
gravity duals in the AdS/BCFT. Though for M > 3

4R
2, the EOW brane gets folded and the gravity

dual does not make sense, we do not need this range of the mass when we consider the BCFT dual
as we explain around (2.35).

r

θ

EOW brane
θ=-π θ=0

m
Deficit 
angle

θ
=-(2-1/χ)π

M = 0 0 < M ≤
3𝑅!

4

Figure 3. Cross sections at constant τ for the backreacted geometry with a mass and a negative
tension λ < 0. We depicted the EOW branes as the red curves. The light green regions are the
gravity duals of the BCFT.

By applying the map (2.3), assuming 0 < M < 3
4R

2, we find that the BCFT dual to
the Poincare patch has two boundaries which are the two intersections of the AdS boundary
z = 0 and the EOW brane: x = 0 and

x = ±
(
α

γ
+
√
α2
(

1 + 1
γ2

)
+ t2

)
≡ ±Z(t), Z(t) > 0, (2.17)

where

γ = tan
(
π

χ

)
. (2.18)
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Figure 4. Time evolution of an EOW brane and a massive particle in the Poincare coordinates
with α = 0.1, χ = 0.9 and λ = 2. The vertical line is z axis (the bulk direction) and the horizontal
line is x axis (the boundary spatial direction). The green region represents the gravity dual region
of the BCFT and the red dot represents the position of the massive particle. The EOW branes
attaches at the boundary at x = 0 and x = Z(t). We chose the time to be t = 0, 3 and 5 in the left,
middle and right panel. As the time evolves the EOW brane probes deeper in the bulk.

The + sign corresponds to the λ > 0 case while the − sign corresponds to the λ < 0 case.
The BCFT lives on the spacetime defined by 0 ≤ x ≤ Z(t) for λ > 0 and {0 ≤ x, x ≤ Z(t)}
for λ < 0. In the following discussions, we focus on the λ > 0 case, though, the λ < 0 case
is treated in the same manner.

We plot the time evolution of a massive particle and the EOW brane, see figure 4. We can
see that the EOW brane bends toward the conformal boundary due to the massive particle.

In summary, the BCFT lives on the spacetime defined by 0 ≤ x ≤ Z(t) (for λ > 0).
This geometry at the AdS boundary is depicted in the left panel of figure 2. Note that the
location of the second boundary is time dependent and at late times it almost expands at
the speed of light. As we will see later, this geometry naturally arises from a conformal
transformation in a two-dimensional BCFT.

In principle, it is also possible shift the location of the EOW brane for a < 0 in (2.12).
It is given by the surface

r̃

R
sin θ + a

Rα

(√
R2 + r̃2 cos τ̃ + r̃ cos θ̃

)
+ λ = 0. (2.19)

This is dual to a local operator quench (1.1) at xa = −a, by shifting the location of boundary
from x = a to x = 0. Since this gives a complicated time-dependent spacetime, we will not
discuss this further.

On the other hand, for M > R2, the spacetime (2.6) describes a BTZ black hole. We
can still analytically continue the expression (2.9) and (2.15), we obtain

r sinh
(√

M −R2

R
θ

)
= −λ

√
M −R2. (2.20)

This EOW brane extends from the AdS boundary to the black hole horizon. We will not
get into this black hole setup in more detail as our comparison with the CFT result can be
done with the deficit angle geometry.

– 7 –



J
H
E
P
0
5
(
2
0
2
2
)
0
6
0

ｔ

x

BCFT

ｔ

x

BCFT

Figure 5. The left picture sketches the setup of BCFT in the presence of the two boundaries: x = 0
and (2.17). We may try to remove the right boundary by a coordinate transformation (right picture).

2.5 Coordinate transformation

As we have found in the previous section, for 0 < M < 3
4R

2, the AdS/BCFT setup is given
by the boundary surface (2.16) in the deficit angle geometry (2.6). Via the coordinate
transformation (2.3), it is mapped into the asymptotically Poincare AdS geometry whose
boundaries consist of two segments x = 0 and x = Z(t) (2.17) as depicted in the right
of figure 5. The appearance of the second boundary may not be surprising because the
massive particle in the center of the global AdS attracts the EOW brane toward the center
and this backreaction bends the brane such that its intersection with the AdS boundary
gets shifted towards the first boundary x = 0. Originally, however, we have intended a local
operator quench in a BCFT on a half place (the right panel of figure 5), instead of the
region surrounded by two boundaries (the left one of figure 5).

To resolve this issue, we would like to perform the following rescaling of the global AdS
coordinates:

θ′ = ηθ, τ ′ = ητ, r′ = r/η. (2.21)

Applying this to the metric (2.6) gives

ds2 = −(r′2 +R2 −M ′)dτ ′2 + R2

r′2 +R2 −M ′
dr′2 + r′2dθ′2, (2.22)

where
M ′ = M

η2 +R2
(
1− η−2

)
. (2.23)

Note that this is equivalent to

χ =

√
R2 −M
R2 → χ

η
=

√
R2 −M ′
R2 . (2.24)

Since the asymptotically AdS region surrounded by the surface Q (2.16) is given by
0 < θ <

(
2− 1

χ

)
π, if we choose

η ≥ η0 ≡
1

2− 1/χ, (2.25)

– 8 –
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then the range of the new angular coordinate θ′ takes 0 < θ′ < θ′max with θ′max ≥ π on the
asymptotically AdS boundary.2 When η = η0, we have θ′max = π.

Therefore, if we apply the coordinate transformation3 (2.3) with (r, θ, τ) and (z, x, t)
replaced with (r′, θ′, τ ′) and (z′, x′, t′) with η ≥ η0, then the resulting asymptotically Poincare
AdS, given by the coordinate (z′, x′, t′), includes only a single boundary x′ = 0 since the
Poincare patch only covers the regime −π ≤ θ′ < π. While the falling particle trajectory
remains the same z′ =

√
t′2 + α2, the shape of EOW brane gets modified. In this way, we

can realize the gravity setup dual to the local operator quench on a half plane by choosing
η ≥ η0. Especially when η = η0, the entire BCFT and its gravity dual region is covered
even after the Poincare patch. We will justify this correspondence after the rescaling by
comparing the bulk calculation with that in the holographic CFT in the subsequent sections.

2.6 Holographic energy-momentum tensor

One way to check the validity of the dual CFT interpretation is to compute the holographic
energy-momentum tensor [25]. The value of the holographic energy-momentum tensor in
our setup before we perform the coordinate transformation (2.21) is exactly the same as
that without the boundaries, which was computed in [23]:

T−−(M) = Mα2

8πGNR ((t− x)2 + α2)2 , T++(M) = Mα2

8πGNR ((t+ x)2 + α2)2 . (2.26)

The mass M is related to the mass m of the particle via (2.7). One might expect that the
conformal dimension of the dual operator O(x) for the local quench is given by mR via the
familiar correspondence rule. However, this is not completely correct due to the reason we
will explain soon later. Instead, we introduce ∆AdS to distinguish this from the correct
conformal dimension ∆O of the dual primary operator in the BCFT and write as follows:

mR ' ∆AdS. (2.27)

Indeed, the result of energy fluxes may look confusing at first because the holographic
expression (2.26) looks identical to that without any EOW brane inserted. For a local
operator quench in the presence of a boundary, we actually expect that the energy fluxes
will be doubled due to the mirror charge effect as explained in figure 6. As we will confirm
from the CFT calculation later, even though the boundary x = 0 produces the doubled flux,
the presence of the other boundary (2.17) reduces the energy fluxes, which is analogous to
the Casimir effect.

This also gives another motivation for performing the previous coordinate transforma-
tion (2.21) as this removes the extra boundary from the dual BCFT. The energy flux after
the transformation is simply given by (2.26) with M replaced with M ′ in (2.23). This leads
to a class of asymptotically Poincare AdS solutions with an EOW brane which is specified

2Notice that even when λ < 0, this rescaling by η ≥ η0 takes the second boundary θ = −
(
2− 1

χ

)
π

to θ′ ≤ −π. Thus, by the same coordinate transformation, the BCFT with a negative tension becomes a
half space.

3Here we mean r′ sin θ′ = Rt′

z′ for example.
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by the two parameters M and η. The energy flux is obtained by replacing M in (2.26)
with M ′ given by (2.23), which is a monotonically increasing function of η. Note that M is
related to ∆AdS via (2.27) and (2.7):4

M

R2 = 12∆AdS
c

, (2.28)

which leads to the following holographic energy-momentum tensor in the BCFT language:

T±±(M ′) = sAdS(∆AdS, η) · α2

π ((t± x)2 + α2)2 ,

sAdS(∆AdS, η) ≡ ∆AdS
η2 + c

12

(
1− 1

η2

)
. (2.29)

It is also useful to note that the energy density Ttt is given by

Ttt = T++ + T−− = 2sAdS(∆AdS, η) ·H(t, x),

H(t, x) = α2 ((t2 + x2 + α2)2 + 4t2x2)
π ((x2 − t2 − α2)2 + 4α2x2)2 . (2.30)

On the other hand, the other parameter η describes the degrees of freedom of gravita-
tional excitations dual to those of descendants in the BCFT and this affects the shape of
EOW brane. In other words, η corresponds to a conformal transformation. Since the cylin-
der coordinates and the plane coordinates are related by the conformal transformation (2.5),
changing η induces further conformal transformation:

t′ ± x′ = α tan
(
τ ′ ± θ′

2

)
= α tan

(
η(τ ± θ)

2

)
. (2.31)

The energy-momentum tensor is generated from this via the Schwarzian derivative term.
This is dual to the descendant excitations of the two-dimensional CFT. Note that if the
two solutions (M1, η1) and (M2, η2) satisfies

R2 −M1
η2

1
= R2 −M2

η2
2

, (2.32)

or equally χ1/η1 = χ2/η2, then the energy-momentum tensors become identical. This means
that the asymptotic metric near the AdS boundary is the same. However they are different
globally, because of the different deficit angle due to the massive particle.

In particular, when η = η0 (2.25), the energy flux gets minimized among those dual
to a geometry with a single boundary x = 0 and thus we expect η = η0 corresponds to
the BCFT with a local operator excitation without any other excitations. In this case, the
energy-momentum tensor is given by (2.29) with sAdS(∆AdS, η0) takes

sAdS(∆AdS, η0) = c

3

√
1− 12∆AdS

c

1−

√
1− 12∆AdS

c

 . (2.33)

4It is useful to note that χ =
√

R2−M
R2 =

√
1− 12 ∆AdS

c
from (2.28).
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Figure 6. The energy fluxes from an excitation (red point) in the presence of a boundary. When
the excitation coincides with the boundary, the energy flux is doubled as in the right picture.

We argue that in this case η = η0, sAdS is directly related to the conformal dimension of
the primary O(x) in the dual BCFT by

sAdS(∆AdS, η0) = 2∆O. (2.34)

This is because this setup is the BCFT defined on the right half plane x > 0 and the energy
flux should be simply twice of that in the same CFT without any boundary. We will show
that this is true from the explicit CFT calculation in section 4.3.1. It is also useful to note
that this relation between ∆O and ∆AdS can be expressed as follows:

2

√
1− 12∆AdS

c
− 1 =

√
1− 24∆O

c
, (2.35)

and when ∆O,∆AdS � c, we find

∆AdS
c

= ∆O

c
+ 3

(∆O

c

)2
+ · · ·. (2.36)

It is also helpful to note that the standard range of primary operator below the black hole
threshold given by 0 < ∆O < c

24 corresponds5 to the range 1
2 <

√
1− 12∆AdS

c = χ < 1.
This is consistent with the previous observation6 that the EOW brane configuration makes
sense only when 0 < M < 3

4R
2 in order to avoid the self-intersection of the brane.7 One

important difference, which has been confused previously, is that this bound ∆O < c
24 is

exactly equivalent to the black hole threshold for 2∆O through the correct relation (2.35).
Indeed, the dimension gets actually doubled in the presence of the boundary due to the
mirror effect as we will explain from the BCFT viewpoint in section 4. Notice also that we
can in principle extend to the heavier excitation with ∆O ≥ c

24 by analytically continuing
the formula (2.35), where ∆AdS and therefore the mass M gets complex valued.

5Notice that ∆O is the total conformal dimension i.e. the sum of chiral and anti-chiral conformal
dimension.

6This bound is equivalent to ∆AdS < c/16 given in [32] by replacing ∆bcc in their paper with ∆AdS.
7The self-intersection problem also appears in higher dimensions [33]. Although our analysis focus on

d = 2, a similar analysis may circumvent the problem likewise.
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3 Time evolution of holographic entanglement entropy

In this section, we calculate the time evolution of the holographic entanglement entropy in
our gravity dual of the local operator quench in the BCFT. We can analytically obtain results
since the holographic setup is related to a global AdS3 with an EOW brane and a deficit
angle through the chain of coordinate transformations, as we saw in the previous section.

Our goal is to calculate the holographic entanglement entropy in the asymptotically
Poincare AdS3 background. On this boundary, we define a subsystem I to be an interval I
between two points A and B at each time t. We write the spatial coordinate of A and B
as xA and xB, respectively, assuming xA < xB. Then we follow the time evolution of the
entanglement entropy SAB in our BCFT as a function of the boundary time t.

The entanglement entropy SAB is defined as usual by first introducing the (time-
dependent) reduced density matrix ρAB(t) by tracing out the complement Ic of the interval
I = [xA, xB] from the density matrix for the operator local quench state (1.1):

ρAB(t) = TrIc [|Ψ(t)〉〈Ψ(t)|] . (3.1)

The entanglement entropy is defined by the von-Neumann entropy as a function of time t:

SAB(t) = −Tr[ρAB(t) log ρAB(t)]. (3.2)

3.1 Holographic entanglement entropy in AdS/BCFT

In AdS3/CFT2, the holographic entanglement entropy is computed by the length of geodesics
which anchor the boundary points A : (z = ε, x = xA, t) and B : (z = ε, x = xB, t), where ε
is the UV cutoff surface [26–28].

In the presence of an EOW brane, we need to take into account geodesics which end
on the EOW brane [3, 4], which leads to multiple candidates of geodesics. One is the
“connected geodesic” Γcon

AB, which literary connects these two boundary points A and B.
The other is the “disconnected geodesics” Γdis

AB which consist of two disjoint pieces, one
connects the boundary point A and a point on the EOW brane, and the other connects B
and ends on the EOW brane. The net result for the holographic entanglement entropy is
given by taking the minimum of these two contributions,

SAB = Min
{
Scon
AB , S

dis
AB

}
, (3.3)

where
Scon
AB = L(Γcon

AB)
4GN

, Sdis
AB = L(Γdis

AB)
4GN

. (3.4)

L(Γ) denotes the length of the geodesic Γ and GN is the Newton constant as sketched in
figure 7.

Below we separately compute these two contributions, then find the actual value of
the entropy. We initially do not perform the rescaling (2.21), i.e. we set η = 1, where the
gravity dual is given by the BCFT on 0 < x < Z(t), where Z(t) is given in (2.17). Later,
we will extend our analysis to η > 1 case.
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Figure 7. A sketch of calculation of holographic entanglement entropy in AdS/BCFT. We showed
that the connected geodesic Γcon

AB (brown curve) and the disconnected geodesics Γdis
AB (purple curves)

for a boundary subsystem given by an interval I between A amd B.

3.2 Connected entropy

First, we would like to calculate the connected entropy Scon
AB . As we review in A, an efficient

way to compute the length of a geodesic in AdS3 is using its embedding to a flat space R2,2,
where we derive the detailed formula. Below we show only the results. The geodesic length
connecting two boundary points A : (θA, τA, rA) and B : (θB, τB, rB) in the metric (2.6) is
obtained by rescaling (A.15) by (2.9). The corresponding holographic entanglement entropy
reads

Scon
AB = c

6 log
[2rArB
R2χ2 (cos(χ(τA − τB))− cos(χ(θA − θB))

]
, (3.5)

where

χ =

√
R2 −M2

R2 =

√
1− 12∆AdS

c
, (3.6)

as we have introduced and c is the central charge c = 3R
2G of the dual CFT [34].

Although we presented the formula for the holographic entanglement entropy in global
coordinates, ultimately we are interested in its expression in the Poincare coordinates where
the setup of the local quench is introduced. By restricting the coordinate transformation (2.3)
at the AdS boundary z = ε, we obtain the boundary map:

eiτ = α2 + x2 − t2 + 2iαt√
(x2 − t2)2 + 2α2(t2 + x2) + α4 ,

eiθ = α2 − x2 + t2 + 2iαx√
(x2 − t2)2 + 2α2(t2 + x2) + α4 ,

r = R

2αε

√
(x2 − t2)2 + 2α2(t2 + x2) + α4. (3.7)

Mapping the end points A = (xA, tA, ε) and B in the Poincare coordinates by the above
transformation to those in the global AdS coordinates, we can calculate the geodesic length
from the formula (3.5). Note that we need to choose A and B within the region of BCFT
i.e. 0 < xA < xB < Z(t). Refer to figure 8 for an explicit plot.
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Figure 8. Plot of the physical region 0 < x < Z(t) of our BCFT in (x, t) plane. We chose χ = 0.9
in the left plot and χ = 0.6 in the right plot. Again we chose R = 1 and α = 0.1.

We plot the time evolution of the connected entanglement entropy with a given interval
for χ = 0.9 and χ = 0.6 in figure 9. We can see that there is a peak when the shock
wave from the falling particle hits the center of the interval I i.e.

√
α2 + t2 ' xA+xB

2 [23].
Moreover the final value is given by the vacuum entanglement entropy [35]

SAB = c

3 log
[
xB − xA

ε

]
. (3.8)

It is also useful to examine the first law of entanglement entropy [36, 37], which
states that the growth of the entanglement entropy ∆SAB , defined by the difference of the
entanglement entropy of an excited state and that of the CFT vacuum, is directly related
to the energy density Ttt in the small subsystem limit |xA − xB| → 0 via

Ttt(xA, t) = lim
|xA−xB |→0

3
π|xA − xB|2

·∆SAB(xA, xB, t). (3.9)

In this short subsystem limit, we find after some algebra that our holographic entanglement
entropy (3.5) behaves as

∆Scon
AB = c

6 log
[cos(χ(τA − τB))− cos(χ(θA − θB))
χ2 (cos(τA − τB)− cos(θA − θB))

]
' c

18(1− χ2)H(t, xA)(xA − xB)2, (3.10)

where H(t, x) is defined in (2.30). Thus, we can confirm that the first law (3.9) perfectly
reproduces the energy-momentum tensor (2.29) and (2.30) at η = 1.

3.3 Disconnected entropy

Next, we will consider the disconnected contribution Sdis
AB. We will work in the tilde

coordinates again. This time, we consider the geodesics that stick to the EOW brane
perpendicularly. The formula for the disconnected entropy is obtained in the tilde Poincare
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Figure 9. Time evolution of the connected entanglement entropy Scon
AB . In the left plot, we chose

χ = 0.9 and (xA, xB) = (0.1, 0.5). In the right one, we chose χ = 0.6 and (xA, xB) = (0.005, 0.05).
In both, we took R = c = 1, ε = 0.0001 and α = 0.1.

coordinates, where the EOW brane is simply given by the plane x̃ = −λz̃. In this tilde
coordinates, we can employ the known result [3, 4]

Sdis
AB = c

6 log 2l
ε

+ Sbdy, (3.11)

for each of the disconnected geodesics, where Sbdy is the boundary entropy [38] and is given
by c

6 sinh−1 λ. However, we have to keep in mind that in this tilde Poincare coordinates we
need to care about the periodicity of θ due to the conical defect. A careful consideration
results in the following expression,

Sdis
AB = c

6 log
(2rA
Rχ

sin(χθmin
A )

)
+ c

6 log
(2rB
Rχ

sin(χθmin
B )

)
+ c

3 sinh−1 λ, (3.12)

where θmin is defined as the smaller angle measured from x = 0 or x = Z(t):

θmin = min
[
θ,

(
2− 1

χ

)
π − θ

]
. (3.13)

We note that we should take the minimum of θ because in the disconnected case we have
two extremal values of the geodesics due to the deficit angle at the center.

The resulting holographic entanglement entropy is plotted in figure 10 (χ = 0.9) and
figure 11 (χ = 0.6). Under the time evolution, Sdis

AB gets initially increasing since the EOW
brane extends toward the inner region and the disconnected geodesics get longer. We
can also note a peak around the time t '

√
x2
B − α2 since the falling particle crosses the

disconnected geodesics which extend from B. However, the actual holographic entanglement
entropy is dominated by Scon

AB after some critical time. In early time regime, Sdis
AB is smaller

and this is analogous to the setup of global quantum quenches [39]. We can also understand
the plots of holographic entanglement entropy with respect to the subsystem size. It grows
initially and reaches a maximum in a middle point, during which Scon

AB dominates. After
that it starts decreasing, and is eventually dominated by Sdis

AB. If we choose xA = 0, then
we will end up with Sdis

AB = 0 and this may be a sort of the Page curve behavior, because
the total system is defined as an interval 0 < x < Z(t).
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Figure 10. Plots of connected entropy Scon
AB (blue curves) and disconnected entropy Sdis

AB (orange
curves) for χ = 0.9. The left panel shows the time evolution of them for the interval (xA, xB) =
(0.1, 0.5). The right one describes their behaviors as functions of x when we chose the subsystem to
be (xA, xB) = (0.1, x) at t = 0. In both, we took R = c = 1, ε = 0.0001, λ = 1 and α = 0.1.
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Figure 11. Plots of connected entropy Scon
AB (blue curves) and disconnected entropy Sdis

AB (orange
curves) for χ = 0.6. The left panel shows the time evolution of them for the interval (xA, xB) =
(0.005, 0.05). The right one describes their behaviors as functions of x when we chose the subsystem
to be (xA, xB) = (0.005, x) at t = 0. In both, we take R = c = 1, ε = 0.0001, λ = 1 and α = 0.1.

3.4 Consideration of the parameter η

As we have seen, We can introduce the parameter η in addition to the mass parameter M ,
via the coordinate transformation (2.21). We can calculate the holographic entanglement
entropy with η 6= 1 by shifting χ into χ|M→M ′ = χ/η in (3.5) and (3.12). This allows us
to realize a gravity dual of local operator quench on a half plane x > 0, by pushing the
second boundary to x =∞. For example, it is straightforward to confirm that the first law
relation (3.9) perfectly reproduces the energy-momentum tensor (2.29) for any η.

When η = η0, we plotted the behavior of the holographic entanglement entropy in
figure 12. This setup is expected to be dual to the BCFT only with the excitation by a local
operator at x = 0 and t = 0. The profile of Scon

AB is qualitatively similar to that at η = 1.
On the other hand, Sdis

AB at η = η0 has two peaks at t =
√
x2
A − α2 and t =

√
x2
B − α2,

which is because the falling massive particle crosses each of the disconnected geodesic. By
taking the minimum, Sdis

AB is favored. This matches with the BCFT dual because one part
of the entangled pair created by the local excitation is reflected at the boundary x = 0 and
merges with the other of the pair. Since both parts come together to the subsystem, the
entanglement entropy for the subsystem does not increase except that there is a width α of
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Figure 12. Plots of Scon
AB (blue) and Sdis

AB (orange) for η = η0(= 1.125) and χ = 0.9. The left panel
shows the time evolution of them for the interval (xA, xB) = (0.1, 3). The right one describes their
behaviors as functions of x when we chose the subsystem to be (xA, xB) = (0.1, x) at t = 0. In both,
we took R = c = 1, ε = 0.0001, λ = 1 and α = 0.1.

flux of excitations. This means that the entanglement entropy can increase only at the end
points A and B for a short time of order α. This fits nicely with the behavior of Sdis

AB.
As we noted in (2.32), there is one parameter family of (M,η) which gives the same

energy-momentum tensor. As such an example, we can consider the case χ = 0.99 and
η = 1.1η0, which should have the same energy flux in the case χ = 0.9 and η = η0. Indeed,
we plotted in figure 13, the connected entropy Scon

AB is precisely identical to that in figure 12.
This confirms that the three-dimensional metric in a neighborhood of the AdS boundary
coincides. However, this is not actually physically equivalent because the global structure,
especially the monodromy around the massive particle is different. This is simply because
the mass of the particle is determined by M . Therefore, if we consider a geodesic which goes
around the particle, its geodesic length depends on the value of M . On the other hand if we
consider a geodesic which does not go around the particle, its length does not depend on M .
This monodromy clearly affects only the disconnected geodesics. This explains the reason
why Sdis

AB in figure 13 is more enhanced than that in figure 12. In the latter, the disconnected
geodesic length is reduced due to the larger deficit angle. By taking a minimum between
them, the resulting holographic entanglement entropy gets largely increased in the early
time regime. In the BCFT side, this enhancement is due to the descendant excitations.

4 The BCFT calculation — energy-momentum tensor

In the last section we studied the local quench process in the presence of boundaries through
the dual gravitational setup. In this section, we study the same quench process by purely
boundary CFT means. In particular, we perform the BCFT calculations of the energy-
momentum tensor. In the calculations of the previous section, we made use of the fact
that the bulk geometry with an infalling particle is related to the pure AdS3 via a simple
diffeomorphism. In this section and the next we study the quantities of our interest directly
in the BCFT side by relating the Euclidean setup with the time-dependent boundary
to the upper half plane via a conformal mapping. This makes explicit the one-to-one
correspondence between each step of calculations on the gravity side and the CFT side.
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Figure 13. Plots of Scon
AB (blue) and Sdis

AB (orange) for η = 1.1η0(' 1.12375) and χ = 0.99. The
graph of Scon

AB is identical to that in figure 12, while Sdis
AB is not. The left panel shows the time

evolution of them for the interval (xA, xB) = (0.1, 3). The right one describes their behaviors as
functions of x when we chose the subsystem to be (xA, xB) = (0.1, x) at t = 0. In both, we took
R = c = 1, ε = 0.0001, λ = 1 and α = 0.1.
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Figure 14. A sequence of conformal maps from the original semi-disk region to the upper half
plane: the leftmost figure shows the original Lorentzian region of the BCFT. The second leftmost
figure shows the corresponding region on the w-plane after Wick rotation. The third figure from
the left shows the wedge-like region on the w′-plane obtained by a global conformal transformation.
The rightmost figure shows the upper half plane (UHP) on the u-plane obtained by a further local
conformal transformation. A similar sequence of conformal transformations is discussed in [32].

Since the BCFT setup involves an additional boundary x = Z(t) (2.17), we consider
the BCFT between these two boundaries. This setup is related to the upper half plane
(UHP), as we summarize in figure 5). To see this, we conformally map the original region
to a wedge-like region (the third figure in figure 5), which is further mapped to the UHP.

4.1 Conformal map to the upper half plane

The region on which we define the BCFT is surrounded by two boundaries. The left
boundary is static

x = 0, (4.1)

whereas the right boundary x = Z(t) is time dependent, given by(
x− α

γ

)2
= α2

(
1 + 1

γ2

)
+ t2. (4.2)

This corresponds to the leftmost figure in figure 14.
A BCFT on this region can be efficiently studied by mapping the region to the UHP.

To do this, we perform the Wick rotation it = tE to make the hyperbolic boundary into a
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semi-circle. (4.2) is now given by(
x− α

γ

)2
+ t2E = α2

(
1 + 1

γ2

)
(4.3)

and is depicted in the second leftmost figure in figure 14. We denote this region by SD
(semi-disk). The semicircle intersects with x = 0 at tE = ±α.

We then perform two conformal transformations to map the SD to the UHP. First,
we consider a global conformal transformation such that in the complex coordinates w =
x+ itE , w̄ = x− itE , one of the intersections of two boundaries w = iα is mapped to the
infinity, the other w = −iα is mapped to the origin. We also require the circle boundary
comes to the real axis. Such a map is given by

w′ = w + iα

w − iα
e−iϕ, (4.4)

where
tanϕ = γ. (4.5)

The resulting region is shown in the second rightmost figure of figure 14. Although there
is an ambiguity of choosing ϕ, we choose 0 ≤ ϕ < π so that the γ → 0 ⇔ M → 0 limit
covers the whole region as expected. As we discussed in section 2.6 (and (B.9)), we have
1/2 < χ =

√
(R2 −M2)/R2 ≤ 1.8 This determines the value of ϕ uniquely as

ϕ = π

√ R2

R2 −M
− 1

 = π

( 1
χ
− 1

)
. (4.6)

We then map the wedge region to UHP. This is achieved by

u = w′κ (4.7)

by suitably choosing κ. In order to obtain a unique κ, we need to specify the branch. Let
us take 0 ≤ arg u ≤ π. Then, since 0 ≤ ϕ < π, κ is determined as

κ(π − ϕ) = π ⇔ κ = 1
1− ϕ

π

. (4.8)

Note that we simply find κ = η0, where η0 was introduced as a critical rescaling parameter
in (2.25). The conformal map (4.7) creates a deficit angle at w = 0 and w =∞, which indeed
corresponds to the intersection of the deficit angle in the AdS3 with the AdS boundary in
our gravity dual.

Finally, we comment on the case with λ < 0. Even in this case, the same conformal
transformation can be used. Since the original BCFT region with λ < 0 is given by the
complement region with the parity in the x direction reversed in figure 14, the resulting
region becomes the lower half plane instead of the UHP. Therefore, the calculation of the
energy-momentum tensor and entanglement entropy in the subsequent sections is exactly
the same for λ < 0.

8Note that due to this condition, we always have a finite region after this conformal transformation.
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4.2 Energy-momentum tensor without a local operator

In this section, we compute the one-point function of the energy-momentum tensor at
(w, w̄) = (x− t, x+ t) in the SD and intend to compare it with the holographic result (2.26).
We only take the boundary effect into account in this section and no local operator is being
inserted. The conformal transformations (figure 14) yield

〈T (w)〉SD =
(
dw′

dw

)2
〈T (w′)〉wedge (4.9)

and

0 = 〈T (u)〉UHP =
(
dw′

du

)2 (
〈T (w′)〉wedge −

c

12{u;w′}
)
, (4.10)

where

{u;w′} = ∂3
w′u

∂w′u
− 3

2

(
∂2
w′u

∂w′u

)2

(4.11)

is the Schwarzian derivative. From this we can read off the holomorphic part of the
energy-momentum tensor as

〈T (w)〉SD = c

6α
2(κ2 − 1) 1

((x− t)2 + α2)2 . (4.12)

Next, we would like to compare it with the holographic result (2.26) for T−−. The holo-
morphic part of the energy-momentum tensor computed above is related to the holographic
convention by 〈T (w)〉 = −2πT−−.9 Therefore, we find the energy flux reads

TBCFT
±± = − c

12(κ2 − 1) · α2

π((x± t)2 + α2)2 . (4.13)

Note that the coefficient is negative and this is because the existence of two boundaries
leads to the Casimir energy. The functional form of (4.13) agrees with the holographic
result (2.26). We will see in the next subsection, the coefficient also perfectly agrees with
the holographic result.

4.3 Energy-momentum tensor with a local excitation

In the previous subsection, we computed the one-point function of the energy-momentum
tensor without any insertions of local operators. In this subsection, we evaluate the one-point
function of the energy-momentum tensor of an excited state by a primary operator O(x),
in the BCFT setup. We denote its conformal weight (h, h̄). For simplicity, we focus on a
scalar operator, i.e. h = h̄ = ∆O/2. Such a state has the following form,

|Ψ(t)〉 = N e−itHe−αHO(t = 0, x = ε̃)eαH |0〉
= N e−itHO(tE = −α, x = ε̃)|0〉, (4.14)

9The energy-momentum tensor is here defined as Tµν = 2√
|g|

δW
δgµν

, where W is the free energy defined

via the partition function Z = e−W . The convention here follows [40] and same as [23].
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where N is a normalization coefficient to ensure 〈Ψ(t)|Ψ(t)〉 = 1, and α plays a role of
a UV regulator. Note that as mentioned in the footnote 1, the UV regulator α for the
quench is written as the imaginary time position of the operator while the (Lorentzian)
time evolution cannot as H|0〉 6= 0 due to the existence of the time-dependent boundary.10

The spatial location of the local operator is arbitrary, however for a comparison with the
holographic setup, we place it at x = ε̃� 1, as we are interested in the limit where the local
operator is inserted at the boundary x = 0. Thus the location of the operator insertion on
the Euclidean SD is given by w2 = ε̃+ itE 2 = ε̃− iα. Similarly, the bra state is given by

〈Ψ(t)| = N〈0|eαHO(t = 0, x = ε̃)e−αHeitH

= N〈0|O(tE = α, x = ε̃)eitH . (4.15)

We denote the insertion point corresponding to this as w1 = ε̃+iα. Let us consider measuring
the holomorphic energy momentum tensor at w = x− t, that is, discussing its time evolution
in the Heisenberg picture. By employing the series of conformal transformations, we have

〈Ψ(t = 0)|T (w = x− t)|Ψ(t = 0)〉

= 〈O(w1, w̄1)T (w)O(w2, w̄2)〉SD
〈O(w1, w̄1)O(w2, w̄2)〉SD

=
(
dw′

dw

)2 [( du

dw′

)2 〈O(u1, ū1)T (u)O(u2, ū2)〉UHP
〈O(u1, ū1)O(u2, ū2)〉UHP

+ c

12{u;w′}
]
, (4.16)

where ui = u(wi) and ūi = ū(w̄i). To compute the first term in the brackets, we employ
the conformal Ward identity in the UHP [41]〈

T (u)
∏
j

O(uj , ūj)
〉

UHP

=
∑
j

(
h

(u− uj)2 + 1
u− uj

∂uj + h̄

(u− ūj)2 + 1
u− ūj

∂ūj

)〈∏
j

O(uj , ūj)
〉

UHP

. (4.17)

This expression is further simplified by using the doubling trick [42, 43]. This trick
relates a correlator on the UHP to a chiral correlator on the entire plane C. For example,
we have

〈O(u1, ū1)O(u2, ū2)〉UHP = 〈O(u1)O(ū1)O(u2)O(ū2)〉cC. (4.18)

The superscript c means the correlator is chiral.
Using this relation as well as the detailed expression of the conformal map, we get

〈Ψ(t = 0)|T (w = x− t)|Ψ(t = 0)〉

= − 4α2κ2

(w2 + α2)2
1

〈O(u1)O(ū1)O(u2)O(ū2)〉cC

×
[
u2

2∑
i=1

{
h

( 1
(u− ui)2 + 1

(u− ūi)2

)
+ 1
u− ui

∂ui + 1
u− ūi

∂ūi

}
− c

24

(
1− 1

κ2

)]
× 〈O(u1)O(ū1)O(u2)O(ū2)〉cC. (4.19)

10This is apparent if we consider the Euclidean path integral representation of the state.
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Figure 15. Left: the two-point function in the BCFT equals to the chiral four-point function.
Middle: since the holographic dual in concern has a vanishing one-point function, the contractions
of operators in dashed circles cannot contribute to the correlator on their own. Right: the primary
operator Ψ and its mirror operator Ψ∗ should be regarded as a single operator Ψ̃, whose conformal
dimension is ∆̃ = 2∆O.

4.3.1 Energy-momentum tensor in holographic CFT

Let us evaluate the energy-momentum tensor in the holographic CFT dual to our AdS/BCFT
model. In our analysis of the dual gravitational setup, we assumed that the EOW brane does
not have any source to the bulk scalar field dual to the local operator O(u) (for the analysis
in the presence of non trivial scalar field configuration, refer to [14]). This means that its one-
point function in the UHP vanishes: 〈O(u, ū)〉UHP = 0. Therefore 〈O(u1)O(ū1)O(u2)O(ū2)〉cC
is factorized into the product of two point functions 〈O(u1)O(u2)〉·〈O(ū1)O(ū2)〉 for any
parameter region of u1 and u2. This leads to the conclusion

〈O(u1)O(ū1)O(u2)O(ū2)〉cC ∝
1

|u1 − u2|∆O |ū1 − ū2|∆O
. (4.20)

Notice that this is equivalent to the chiral two-point function with the doubled conformal
dimension ∆̃ ≡ 2∆O (figure 15). This can be understood as follows. The primary operators
O at the origin and the infinity constituting the ket and bra states are doubled via the
doubling trick, up to the normalization. Let us denote these doubled states as |Ψ〉 → |ΨΨ∗〉
and 〈Ψ| → 〈ΨΨ∗|. Then, the equivalence between the four-point correlator and the two-
point correlator with a doubled conformal dimension implies that we should regard the
local operator and its mirror, |ΨΨ∗〉 and 〈ΨΨ∗|, as composite operators |Ψ̃〉 and 〈Ψ̃|, where
tilded operators have a double conformal dimension ∆̃ = 2∆O than the original ones. As
we will see, this identification is necessary for the first law of entanglement entropy and the
correct correspondence with the holographic calculation.

Since we take the limit ε̃→ 0 which leads to w1 → −iα and w2 → iα in the w-plane,
we find u1 → 0 and u2 → ∞. Thus, this leads to the following result at any time t by
plugging (4.20) into (4.19):

〈T (w)〉 = cα2(κ2 − 1)
6(w2 + α2)2 −

4∆Oα
2κ2

(w2 + α2)2 . (4.21)

This leads to the energy-momentum tensor in Lorentzian signature via T−− = − 1
2πT (w):

T−− = sBCFT(∆O) · α2

π((x− t)2 + α2)2 ,

sBCFT(∆O) ≡ − c

12(κ2 − 1) + 2κ2∆O = κ2∆̃ + c

12(1− κ2). (4.22)
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Notice that the part − c
12(κ2 − 1) in sBCFT can be regarded as the Casimir energy part

which is negative and the other part 2κ2∆O corresponds to the local operator excitation. It
is also useful to note that when the local excitation is light ∆O � c, we find

sBCFT(∆O) ' ∆O. (4.23)

Now we would like to compare the BCFT result (4.22) with the gravity dual re-
sult (2.29) at η = 1. It is straightforward to see that these two are identical sBCFT(∆O) =
sAdS(∆AdS, 1) = ∆AdS via the relation (2.35). Furthermore, by solving (4.22) for ∆̃ = 2∆O

and using the fact κ = η0, we obtain11

2∆O = ∆̃ = sAdS(sBCFT(∆O), η0) = sAdS(∆AdS, η0). (4.24)

This is nothing but (2.34). In this way, we can perfectly reproduce the previous holographic
energy-momentum tensor from the present BCFT approach.

4.3.2 Energy-momentum tensor in the free scalar CFT

It is also helpful to compare our energy flux in the holographic CFT with that in a free
scalar CFT. Consider the c = 1 CFT of an uncompactified scalar in two dimensions. The
real scalar field φ(u, ū) has the operator product expansion (OPE) in the presence of the
boundary (the real axis in the u coordinates) with the Neumann boundary condition:

〈φ(u, ū)φ(u′, ū′)〉N = − log |u− u′|2 − log |u− ū′|2. (4.25)

For the Dirichlet boundary condition, we have

〈φ(u, ū)φ(u′, ū′)〉D = − log |u− u′|2 + log |u− ū′|2. (4.26)

For the local primary operator we choose,

O(u1, ū1) = eikφ(u1,ū1), O†(u2, ū2) = e−ikφ(u2,ū2), (4.27)

both of which have the conformal dimension ∆O = 2h = k2.
The two-point functions for these boundary conditions read

〈O(u1, ū1)O†(u2, ū2)〉N = |u1 − ū1|∆O |u2 − ū2|∆O

|u1 − u2|2∆O |u1 − ū2|2∆O
,

〈O(u1, ū1)O†(u2, ū2)〉D = |u1 − ū2|2∆O

|u1 − u2|2∆O |u1 − ū1|∆O |u2 − ū2|∆O
. (4.28)

The expectation value of the energy-momentum tensor T (u) = −1
2∂uφ∂uφ is evaluated

for each boundary condition as follows

〈T (u)〉N = ∆O

2

( 1
u− u1

+ 1
u− ū1

− 1
u− u2

− 1
u− ū2

)2
,

〈T (u)〉D = ∆O

2

( 1
u− u1

− 1
u− ū1

− 1
u− u2

+ 1
u− ū2

)2
. (4.29)

11It is worth to note that sBCFT and sAdS|η=η0 as a function of ∆̃ and ∆AdS respectively are inverse to
each other.
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They perfectly agree with those obtained from the two point functions (4.28) by applying
the conformal Ward identity (4.17).

By taking our limit u1 → 0 and u2 →∞, we obtain

〈T (u)〉N '
2∆O

u2 , 〈T (u)〉D ' 0. (4.30)

They take different values when compared with the previous holographic BCFT result
(obtained by plugging (4.20) in (4.19) and take the u1 → 0 and u2 →∞ limits):

〈T (u)〉Hol '
∆O

u2 . (4.31)

Finally, by using the conformal map of energy-momentum tensor (4.19), or explicitly

〈T (w)〉 = − 4α2κ2

(w2 + α2)2

[
u2〈T (u)〉 − c

24(1− κ−2)
]
, (4.32)

we obtain the physical energy-momentum tensor 〈T (w)〉. In this way we found that the
energy flux is sensitive to both the types of CFTs and the boundary conditions.

4.4 Energy-momentum tensor after rescaling by η

The energy-momentum tensor in the holographic CFT matches with the holographic
computation given in (2.29) even after the rescaling by an arbitrary η (2.21).

The rescaling by η maps χ and κ = η0 to χ/η and κη ≡ κ/η respectively since M in χ
becomes M ′ (2.23) and the location of the induced boundary θ = π/κ becomes θ′ = ηπ/κ.12

This is consistent with (5.20).
After replacing κ in (4.22) by κη = κ/η, we exactly reproduce (2.29) through (2.34).
Alternatively, this can be explicitly confirmed by the conformal mapping (2.31)

wη = α tan
(
η arctan

(
w

α

))
, w̄η = α tan

(
η arctan

(
w̄

α

))
(4.33)

where wη = x′− t′, the w coordinates after the rescaling by η (same for the antiholomorphic
one). Then,

〈T (wη)〉 =
(
dw

dwη

)2

〈T (w)〉+ c

12{w wη}

=
[
κ2

η2 ∆̃ + c

12

(
1− κ2

η2

)]
−2α2

(w2
η + α2)2 . (4.34)

This is nothing but κ→ κ
η in (4.22) as mentioned above.

In particular, when η = η0 = κ,

sBCFT(∆O) = 2∆O (4.35)

and (2.34) is readily confirmed.
12Note that even though κη=1 ≡ κ is written as a function of χ ((4.6) and (4.8)), κη does not equal to

κ|χ→χ/η. This is because κ is defined as a location of the boundary, which is directly rescaled by η, not a
mere function of χ.
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5 The BCFT calculation — entanglement entropy

In this section, we calculate entanglement entropy in the holographic BCFT of concern. In
the first part, we compute the vacuum entanglement entropy with the induced boundary
x = Z(t) (2.17) as well as the original boundary x = 0. Then, in the second part, we discuss
entanglement entropy with both the boundaries and a local operator insertion. Finally,
we comment on the behavior of the entanglement entropy after the generic rescaling by
η (2.21). We will see that all of these calculations perfectly reproduce the holographic
results obtained in section 3.

5.1 Entanglement entropy without a local operator

In this section, we compute the vacuum entanglement entropy on the SD, i.e. only take
the (induced) boundary effect into account, and compare it with the holographic result
discussed in section 3. By using the conformal map (figure 14), entanglement entropy of an
interval I = [xA, xB] (0 < xA < xB < Z(t)) at time t is given by

SAB no op. = lim
n→1

1
1− n logTrρnAB no op., (5.1)

where

TrρnAB noop. = 〈0|σn(wA, w̄A)σn(wB, w̄B)|0〉SD

=
(
du

dw

∣∣∣∣
u=uA

dū

dw̄

∣∣∣∣
ū=ūA

du

dw

∣∣∣∣
u=uB

dū

dw̄

∣∣∣∣
ū=ūB

)∆n/2

〈0|σn(uA, ūA)σn(uB, ūB)|0〉UHP

(5.2)

in terms of the reduced density matrix defined in (3.1). ∆n = c
12

(
n− 1

n

)
is the conformal

weight of the twist operators σn. Each twist operator is inserted at the endpoints of the
interval I: wA,B = xA,B + itE = xA,B − t, w̄A,B = xA,B + t. The u’s are coordinates after
the conformal transformation, i.e. uA,B = u(wA,B) and ūA,B = ū(w̄A,B).

To compute a correlation function on the UHP, we use the doubling trick [42, 43]:

〈σn(uA, ūA)σn(uB, ūB)〉UHP = 〈σn(uA)σn(ūA)σn(uB)σn(ūB)〉cC. (5.3)

Assuming the CFT is holographic, this four-point function can be evaluated via the vacuum
conformal block in the large central charge limit [21, 44]. The two possible OPE channels
correspond to the connected and disconnected geodesics in the holographic calculation.

The entanglement entropy reads SAB no op. = min{Scon
AB no op., S

dis
AB no op.}, where

Scon
AB no op. = c

6 log |uA − uB|
2

ε2|u′A||u′B|
,

Sdis
AB no op. = c

6 log |uA − ūA||uB − ūB|
ε2|u′A||u′B|

+ 2Sbdy, (5.4)

where uA,B = u(wA,B) and u′A,B = du
dw

∣∣∣
w=wA,B

. Sbdy is the boundary entropy and ε is the
UV cutoff.
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Figure 16. Plots of the entanglement entropy (5.4) in the BCFT. We chose α = 0.1, χ = 0.9, and
ε = 0.0001, where we have Z(0) = α

tan ϕ
2
' 0.567. In the left and middle plot, we chose I = [0.1, 0.25]

and I = [0.1, 0.5], respectively and we showed the entanglement entropy as a function of the time
t. The blue and orange graph describe Scon

AB and Sdis
AB (we set Sbdy = 0), respectively. In the right

panel we plotted Scon
AB at t = 0 for the subsystem I = [x, x+ 0.01] as a function of x. In these plots,

we set c = 1 and Sbdy = 0.

We plotted the behavior of the entanglement entropy in figure 16. The connected
entanglement entropy Scon

AB for an interval [xA, xB ] shows a dip around the time t ∼ xA+xB
2 .

This can be interpreted as the shock wave of negatve energy flux emitted by the falling
massive object in AdS, whose trajectory looks like x ∼ t. On the other hand, the disconnected
entanglement entropy Sdis

AB increases until the massive falling particle crosses the second
minimal surface when t ∼ xB.

The rightmost plot is proportional to the behavior of the negative energy flux at t = 0
as predicted by the first law of entanglement entropy (3.9). Indeed we can confirm that in
the small subsystem size limit |xA − xB| → 0, we have

∆Scon
AB '

c

18(1− κ2)H(t, xA)(xA − xB)2, (5.5)

which is completely in accord with the result for the energy momentum tensor (4.13).13

5.2 Entanglement entropy with a local excitation

In this section, we discuss entanglement entropy of a single interval I = [xA, xB], taking
the effect of the local operator insertions as well as the induced boundary into the account.

5.2.1 Factorization of entanglement entropy
Entanglement entropy is calculated from

TrρnAB = 〈Ψ|σ(wA, w̄A)σ(wB, w̄B) |Ψ〉SD

=
[
(2κα)4 uAūAuBūB

(w2
A + α2)(w̄2

A + α2)(w2
B + α2)(w̄2

B + α2)

]∆n/2

× 〈Ψ|σ(uA, ūA)σ(uB, ūB) |Ψ〉UHP

=
[
(2κα)4 uAūAuBūB

(w2
A + α2)(w̄2

A + α2)(w2
B + α2)(w̄2

B + α2)

]∆n/2

× 〈ΨΨ∗|σ(uA)σ(uB)σ(ūA)σ(ūB) |ΨΨ∗〉cC . (5.6)

13To derive this, it is useful to see H(t, x) = α2

π

(
1

(w2+α2)2 + 1
(w̄2+α2)2

)
. Note that since ∆Scon

AB =
− c

72 |xA − xB |
2 ({uA wA}+ {ūA w̄A}), the first law holds for any conformal map u(w). Thus, even after the

rescaling by η, it continues to hold.
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(5.6) is written in terms of the chiral eight-point function and we cannot obtain a simple
analytic form even in the large central charge limit in general. However, when the subregion
size is sufficiently small or large, there exists two phases corresponding to the connected
and disconnected geodesics in the holographic entanglement entropy. The holographic
entanglement entropy predicts the connected entropy dominates at early time and the
disconnected entropy dominates at late time (figure 10, 11). The former corresponds to
xA (xB)� xB − xA or equivalently, uA ∼ uB (and ūA ∼ ūB), while the latter corresponds
to xA (xB)� xB − xA or equivalently, uA,B ∼ ūA,B. In terms of the OPE channels, they
correspond to

〈Ψ|

〈Ψ∗|

σ(uA) σ(ūA)σ(uB) σ(ūB)

|Ψ〉

|Ψ∗〉

(connected phase) (5.7)

and

〈Ψ|

〈Ψ∗|

σ(uA) σ(uB)σ(ūA) σ(ūB)

|Ψ〉

|Ψ∗〉

(disconnected phase). (5.8)

As we discussed in figure 15, we can regard |ΨΨ∗〉 and 〈ΨΨ∗| as excited states created
by a single primary operator |Ψ̃〉 and 〈Ψ̃|, whose conformal dimension is ∆̃ = 2∆O as we
are considering the BCFT dual of the spacetime without the bulk matter profile and there
is no source for the matter field on the EOW brane. The limits xA (xB)� xB − xA and
xA (xB)� xB − xA imply σ(uA)σ(uB) ∼ 1 and σ(uA)σ(ūA) ∼ 1 respectively. Then, the
orthogonality of the two point function in any CFTs leads [45]

〈ΨΨ∗|σ(uA)σ(uB)σ(ūA)σ(ūB) |ΨΨ∗〉cC = 〈Ψ̃|σ(uA)σ(uB)σ(ūA)σ(ūB) |Ψ̃〉cC
=
∑
α

〈Ψ̃|σ(uA)σ(uB) |α〉cC〈α|σ(ūA)σ(ūB) |Ψ̃〉cC

≈ 〈Ψ̃|σ(uA)σ(uB) |Ψ̃〉cC 〈Ψ̃|σ(ūA)σ(ūB) |Ψ̃〉cC (5.9)

for the connected entropy and

〈ΨΨ∗|σ(uA)σ(uB)σ(ūA)σ(ūB) |ΨΨ∗〉cC = 〈Ψ̃|σ(uA)σ(ūA)σ(uB)σ(ūB) |Ψ̃〉cC
=
∑
α

〈Ψ̃|σ(uA)σ(ūA) |α〉cC〈α|σ(uB)σ(ūB) |Ψ̃〉cC

≈ 〈Ψ̃|σ(uA)σ(ūA) |Ψ̃〉cC 〈Ψ̃|σ(uB)σ(ūB) |Ψ̃〉cC
(5.10)

for the disconnected entropy, where
∑
α |α〉〈α| = 1. After all, when we take n → 1 the

chiral eight-point function factorizes into the product of the heavy-heavy-light-light (HHLL)
correlator in the connected and disconnected limits.
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Note that (5.9) is a chiral correlator multiplied by its conjugate. This equals to the
nonchiral, ordinary HHLL correlator, which indicates that only the operator insertion affects
EE in the connected phase and the boundary effect plays no role other than doubling
the conformal dimension due to the mirror operator. This picture is consistent with the
holographic result.

5.2.2 Computation of the chiral identity conformal block

In the previous subsection, we have seen the entanglement entropies in the connected/discon-
nected limits are given in terms of the chiral HHLL correlator 〈Ψ̃|σnσn |Ψ̃〉

c
C. In this

subsection, we employ the identity block approximation as we discuss entanglement entropy,
where n → 1 [21, 45, 46]. We denote the chiral identity conformal block as Gn(z) ≡
〈Ψ̃|σ(z)σ(1) |Ψ̃〉cC ∝ 〈Ψ̃(∞)σ(z)σ(1)Ψ̃(0)〉cC.14

We will hereon focus on ∆ S
(n)
AB

∣∣∣
SD

, the difference of (Rényi) entanglement entropy from
that of the vacuum on the SD region SAB no op.. The vacuum entanglement entropy in the
SD (i.e. the entanglement entropy without a local operator but with the induced boundary)
is already computed in the previous section (5.4).15 The conformal factors cancel out in
∆ S

(n)
AB

∣∣∣
SD

and is given by the logarithm of the ratio of the chiral identity conformal blocks:

∆ S
(n)
AB

∣∣∣
SD

= 1
1− n log

Tr ρnAB|SD

Tr ρnAB,vac

∣∣∣
SD

= 1
1− n log



∣∣∣∣∣ Gn(zcon)
G

(0)
n (zcon)

∣∣∣∣∣
2

(connected phase)

Gn(zA)
G

(0)
n (zA)

Gn(zB)
G

(0)
n (zB)

(disconnected phase)

, (5.11)

where G(0)
n (z) = 〈0|σ(z)σ(1) |0〉cC and the cross ratio zcon, zA,B is respectively given by

uB/uA and ūA,B/uA,B.
Since the holomorphic and antiholomorphic parts are factorized in the Virasoro

block [47], the chiral identity block is just a square root of the usual identity block.
The ratio is given by [21]

Gn(z)
G

(0)
n (z)

=

 1
|αO|2

|z|1−αO
∣∣∣∣∣1− z1−αO

1− z

∣∣∣∣∣
2
−∆n/2

=
∣∣∣∣∣ zαO/2 − z−αO/2αO(z1/2 − z−1/2)

∣∣∣∣∣
−∆n

, (5.12)

where αO =
√

1− 12 ∆̃
c =

√
1− 24∆O

c . Here we emphasize again that the conformal
dimension in αO is twice as large as the one discussed in [21, 44] since the local operator in
the HHLL correlator in concern is Ψ̃, whose conformal dimension is ∆̃ = 2∆O.

14z in this subsection is the cross ratio and obviously different from z in the Poincare coordinates.
15Note that this is different from the vacuum entanglement entropy in the CFT without boundaries;

∆SAB 6= ∆SAB |SD. This distinction becomes crucial when we discuss the first law of entanglement.
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By rewriting z = eiω and z̄ = e−iω̄,16 (5.12) reduces to

Gn(z)
G

(0)
n (z)

=
(

sin αOω
2

αO sin ω
2

sin αOω̄
2

αO sin ω̄
2

)−∆n/2

. (5.13)

5.2.3 Connected entropy

When z = uB/uA ≡ zcon (connected phase), after the analytical continuation to the
Lorentzian time, we have

zcon =
(
xA − t+ iα

xA − t− iα
xB − t− iα
xB − t+ iα

)κ
. (5.14)

Similarly, by replacing t→ −t,

z̄con =
(
xA + t+ iα

xA + t− iα
xB + t− iα
xB + t+ iα

)κ
. (5.15)

Using the coordinate transformation (3.7), the cross ratios can be written in terms of the
global coordinates:

zcon =
(
ei(θA−θB)

ei(τA−τB)

)κ
, z̄con =

(
ei(θA−θB)ei(τA−τB)

)κ
. (5.16)

We can immediately read out ω and ω̄ from this. Assuming the trivial branch, we can show

Gn(zcon)
G

(0)
n (zcon)

=
[

cos(αOκ(τA − τB))− cos(αOκ(θA − θB))
α2
O (cos(κ(τA − τB))− cos(κ(θA − θB)))

]−∆n/2

, (5.17)

by some simple trigonometric algebra.
This analysis leads to the final expression of the growth of connected entanglement

entropy:

∆Scon,CFT
AB = c

6 log

 |u1||u2|
|w1 − w2|2|u′1||u′2|α2

O

·
∣∣∣∣∣
(
u1
u2

)αO
2
−
(
u1
u2

)−αO2 ∣∣∣∣∣
2 . (5.18)

On the other hand, our previous gravity dual result (3.5) can be rewritten as follows:

∆Scon,AdS
AB = c

6 log


∣∣∣∣(u1
u2

) χ
2κ −

(
u1
u2

)− χ
2κ
∣∣∣∣2

χ2
∣∣∣∣(u1
u2

) 1
2κ −

(
u1
u2

)− 1
2κ
∣∣∣∣2
 . (5.19)

The BCFT result (5.18) exactly agrees with the holographic one by identifying the
parameters as follows: (5.19)

αO = χ

κ
. (5.20)

Since κ = η0, this is precisely what we have observed for χ under the rescaling by η0 (2.24).
Thus, it implies 12 ∆̃

c = M ′

R2 when η = η0. This is exactly equivalent to the relation we
16ω̄ is not the complex conjugate of ω but is defined from z̄.
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argued (2.34). In this way, We have explicitly confirmed the perfect matching between
the BCFT and the gravity dual by looking at entanglement entropy as well as the energy-
momentum tensor.

To see the first law of entanglement, we need to subtract the vacuum contribution in
the CFT given by

Svac
AB = c

6 log |xB − xA|
2

ε2
(5.21)

from the connected entropy discussed above.17 What we computed in this subsection is
∆ SAB|SD, which is the full contribution SAB minus the contribution with the induced
boundary but with no operator SAB no op.. We can explicitly confirm that ∆SAB =
∆O SAB|SD + SAB no op. − Svac

AB in the short distance limit satisfies the first law with the
energy-momentum tensor (4.22) within the current CFT. Via the first law (3.9), (5.18)
leads to the energy density

Ttt = c

π

[
−1

6(κ2 − 1) + 4κ2 ∆O

c

]
·H(t, x), (5.22)

which perfectly agrees with the energy-momentum tensor (4.22), which was directly com-
puted from the CFT.

5.2.4 Disconnected entropy
When z = ū/u ≡ zdis (disconnected phase), after the analytical continuation to the
Lorentzian time, we have

zdis = z̄−1
dis =

(
x− t− iα
x− t+ iα

x+ t− iα
x+ t+ iα

e−2iϕ
)κ

(5.23)

Using the coordinate transformation (3.7), the cross ratio can be written in terms of
the global coordinates. In contrast to the connected entropy, we leave the branch choice
from w′ to u and the cross ratio unspecified. Then,18

zdis = e2κi(θ+ϕ−lπ)e−2πm ⇒ ωdis = 2κ
(
θ + ϕ− πl − π

κ
m

)
(l,m ∈ Z). (5.24)

It follows that
Gn(zdis)
G

(0)
n (zdis)

=

 sin αOωdis
2

αO sin ωdis
2

sin αOω̄dis
2

αO sin ω̄dis
2


−∆n/2

=

 sin
(
αOκ

(
θ−πl+ϕ−π

κ
m

))
αO sin

(
κ

(
θ−πl+ϕ−π

κ
m

))

−∆n

(5.25)

=

sin αO(−ωdis)
2

αO sin−ωdis
2

sin αO(−ω̄dis)
2

αO sin−ω̄dis
2


−∆n/2

=

 sin
(
αOκ

(
πl−θ−ϕ+π

κ
m

))
αO sin

(
κ

(
πl−θ−ϕ+π

κ
m

))

−∆n

. (5.26)

17The vacuum contribution is equivalently given by the full contribution with ∆O = 0 and κ = 1.
18Although z and z̄ can independently have a different branch, we consider ω = ω̄ here, which turns out

to be the one corresponding to the holographic entanglement entropy.
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As we have discussed for the connected entropy, the identification (5.20) αO = χ/κ

reproduces the holographic result for the disconnected entropy as well by choosing (l,m) =
(−1, 1) for (5.25) and (l,m) = (1, 0) for (5.26); each choice of the branch corresponds to
θmin = θ and (2− 1/χ)π − θ, respectively. l corresponds to choosing an appropriate branch
so that 0 ≥ arg u ≥ π is satisfied; this is nothing but choosing an appropriate θmin. To
justify the branch choices of m within the CFT, we need a careful consideration of the
monodromy, which we discuss in the appendix C.

5.3 Entanglement entropy after rescaling by η

As it has been mentioned in the previous sections, entanglement entropy after an arbitrary
rescaling by η (2.21) is simply given by the replacement χ→ χ/η. Since the entanglement
entropy is written in terms of αOκ, it becomes αOκ/η and this is consistent with χ becoming
χ/η in holographic entanglement entropy.

6 Conclusions and discussions

In this paper we studied the local operator quench in two-dimensional holographic BCFTs
from both the gravity dual analysis based on the AdS/BCFT and the field theoretic one. We
eventually confirm that these two independent approaches agree with each other perfectly
after our careful analysis summarized below.

In the gravity dual description, the local operator quench is described by putting a
massive particle in a three-dimensional AdS. The boundary of the BCFT corresponds to
an end of the world brane (EOW brane) in this AdS geometry. The backreaction of the
massive particle deforms the profile of the EOW brane in a nontrivial way. For example,
if the mass of the particle is too heavy, the EOW brane gets folded and thus the gravity
dual does not seem to make sense as in the right of figure 2. However, we noticed that the
relation between the mass of the particle in the AdS and the conformal dimension of the
dual operator in the BCFT, gets modified into (2.35) because the second boundary emerges
in the dual BCFT. This modified relation nicely avoids the folding problem. Moreover, we
showed that an appropriate rescaling of the angular coordinate (by the parameter η) before
mapping into the asymptotically Poincare AdS coordinate allows us to remove the extra
boundary and leads to the BCFT on a half plane. Using this construction of the gravity
dual, we computed the energy-momentum tensor and holographic entanglement entropy.

In the BCFT description of the local operator quench, we first constructed the conformal
map which transforms the upper half plane into a semi-disk, which becomes a strip like region
with two time dependent boundaries via a Wick rotation. This allows us to analytically
calculate the energy-momentum tensor and entanglement entropy, where we also applied
the standard holographic CFT treatment to evaluate the correlation functions. These
calculations perfectly reproduce the results obtained from the gravity dual.

Finally we would like to complete this paper with a few future directions. In this local
quench, we assumed that the local operator is inserted along the boundary of the BCFT.
Thus it will be an interesting future problem to extend our construction of the gravity dual
to the case where the local operator is inserted in the bulk of a BCFT. Furthermore, our
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holographic calculation assumes a vanishing one-point function in the BCFT. It is interesting
to take the matter contribution as well [14]. The BCFT counterpart might be calculated
by taking a certain limit such as the Regge limit [16, 48], which is presumably related to
α→ 0 limit. Another intriguing problem is to explore the brane-world interpretation of our
holographic local quench in a BCFT, which allows us to interpret it as a two-dimensional
gravity coupled to a CFT and which relates our entanglement entropy computation to the
island formula.
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A Embedding the global AdS to the flat space

The (d + 2)-dimensional anti-de Sitter (AdS) space is obtained as embedding to the flat
space time R2,d+1 with

~X · ~X = −(X0)2 − (Xd+2)2 + (X1)2 + · · ·+ (Xd+1)2 = −R2 (A.1)

The problem of finding geodesics ~X(s) in AdS is thus a variational problem with the
constraint (A.1). Let λ(s) be a Lagrange multiplier associated with the constraint, then
the action is given by

S =
∫
dsL, L = 1

2
~̇X · ~̇X − λ(s)F ( ~X), F ( ~X) = ~X · ~X +R2. (A.2)

Equations of the motion for ~X, λ are thus given by

~̈X + 2λ ~X = 0, ~X · ~X +R2 = 0 (A.3)

Taking derivatives two times of the constraint gives

~̈X · ~X = − ~̇X · ~̇X = −1. (A.4)

The second equality holds because we focus on spacelike geodesics. This fixes the Lagrange
multiplier to be,

λ(s) = − 1
2R2 , (A.5)
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and

~̈X − 1
R2

~X = 0 ⇒ ~X(s) = ~p cosh s

R
+ ~q sinh s

R
. (A.6)

The constraint implies ~p and ~q satisfy

~p · ~p = −~q · ~q = −R2, ~p · ~q = 0. (A.7)

We can freely set s = 0 at the one end of the geodesic (call it A). Thus

~p = ~XA (A.8)

We call another end as B, and by taking the inner product of ~XB = ~p cosh sB
R + ~q sinh sB

R

and ~XA

cosh sB
R

= −
~XA · ~XB

R2 (A.9)

and we obtain
~q = 1

sinh sB
R

~XB − cosh sB
R
~XA (A.10)

The length of the geodesics between A and B d(A,B) is just the difference of parameter

d(A,B) =
∫ B

A

√
d ~X · d ~X = sB (A.11)

Let us use the above formalism to compute the length of the geodesic connecting two
points in global AdS3, where the metric takes the form (2.2). The relation between global
coordinates (τ, θ, r) and embedding coordinates ~X is

X0 =
√
R2 + r2 cos τ, X1 = r sin θ, X2 = −r cos θ, X3 =

√
R2 + r2 sin τ. (A.12)

This relation allows us to write the relevant inner product ~XA · ~XB in terms of the
global coordinates

~XA · ~XB = −XA0XB0 −XA3XB3 +XA1XB1 +XA2XB2 (A.13)

= −
√(

R2 + r2
A

) (
R2 + r2

B

)
cos(τA − τB) + rArB cos(θA − θB). (A.14)

Thus we conclude the geodesics length between two generic points is given by

d(A,B) =R cosh−1


√√√√(1 + r2

A

R2

)(
1 + r2

B

R2

)
cos(τA − τB)− rArB

R2 cos(θA − θB)

 (A.15)

In the case rA, rB � R, and recall cosh−1 x = log (x+
√
x2 − 1), we obtain

d(A,B) = R log
(2rArB

R2 (cos(τA − τB)− cos(θA − θB))
)

(A.16)
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Figure 17. The blue curve is correspond to+ sign and the orange curve is correspond to −
of (B.1).We should take (1) and (3) branch for example.

B Details of the gravity-inducing boundary curve

From (2.3), we can associate x with θ for each fixed time t at the conformal boundary. By
solving the forth equation of (2.3), which is just a quadratic equation for x, we can get

x = α cot θ

−1±
√

1 + tan2 θ

(
1 + t2

α2

) . (B.1)

The branch should be selected so that the map (B.1) is smooth for θ ∈ [−π, π). Thus for
−π

2 < θ < π
2 we take + sign and, for −π < θ < −π

2and
π
2 < θ < π we take − sign. In the

other region, we take the sign so that the map has 2π periodicity. Please see the figure 17.
Especially we have the gravity-inducing boundary Z(t) at θ = −π

χ , where

Z(t) =


α cot

(
π

χ

)1 +
√

1 + tan2
(
π

χ

)(
1 + t2

α2

) , 2
3 < χ < 1

α cot
(
π

χ

)1−
√

1 + tan2
(
π

χ

)(
1 + t2

α2

) . 1
2 ≤ χ <

2
3

(B.2)

For χ ≤ 1
2 , Z(t) ≤ 0 and it looks there is no physical region for the holographic CFT.

The critical point χ = 1
2 can be seen when we consider whether the map between the

tilde global coordinate(r̃, θ̃, τ̃) and the tilde Poincare(z̃, x̃, t̃) is well-defined. By a careful
inspection of coordinate transformation (2.3), choosing a particular domain for θ (or θ̃)
corresponds to considering a brane profile with a fixed winding number. Let us first discuss
the −π ≤ θ < π case in detail and comment briefly about other branches at last.

In the original global AdS spacetime with the massive particle, we chose the domain of
θ to be [−π, π). This results in the domain of θ̃ (2.10). Since we discuss the profile of the
EOW brane by bringing the solution from the Poincare metric via (2.3) from the metric
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�̃� sin &𝜃

�̃� cos &𝜃

�̃� sin &𝜃

�̃� cos &𝜃

a) b)

Figure 18. The allowed region for −πχ ≤ θ̃ < πχ when a) 1
2 ≤ χ(< 1) and b) χ ≥ 1

2 . The
strike-though denotes an identification of two lines.

with θ̃ (2.8), we are implicitly assuming the existence of the map between them. However,
due to the deficit angle in θ̃ and hence not covering the whole Poincare spacetime, such a
single-valued map does not exist for some values of M > 0 given a fixed domain of θ.

The deficit geometry in the rescaled coordinates (r̃, θ̃) is shown in figure 18. From (2.3),
we expect the rescaled metric (2.8) is mapped to the Poincare metric

ds2 = R2
(
dz̃2 − dt̃2 + dx̃2

z̃2

)
. (B.3)

Let us focus on the relation

tan θ̃ = α2 − z̃2 − x̃2 + t̃2

2αx̃ . (B.4)

By dividing into two cases according to the value of χ < 1.
First, let’s consider 1

2 ≤ χ as shown in a) in figure 18, we need some case analyses.
For −π

2 < θ̃ < π
2 , cos θ̃ ≥ 0 ⇔ z̃2 + x̃2 − t̃2 ≤ α2, there is no constraint on tan θ̃ and

the conformal boundary region −π
2 < θ̃ < π

2 is mapped to the conformal boundary region
x2 < t2 + α2. On the other hand, for cos θ̃ < 0, tan θ̃ is constrained due to (2.10) as follows.{

tan θ̃ < tan (πχ) < 0 for x̃ > 0 (θ̃ > π/2),
tan θ̃ ≥ tan (−πχ) > 0 for x̃ < 0 (θ̃ < −π/2).

(B.5)

In our setup, we are interested in the region x > 0, which corresponds to 0 < θ̃ < χπ and
only consider that region for a while. Rewriting (B.5) in terms of Poincare coordinates
using (B.4),

x̃ ≥ −α tan (πχ) +
√
α2 tan2 (πχ) + α2 + t̃2 (B.6)

and
x̃2 − t̃2 ≥ α2 (B.7)

for x̃ ≥ 0 on the conformal boundary z̃ = 0. Actually there is a region which satisfies
the both inequality and the regionπ2 ≥

π
χ is mapped to the region in the tilde Poincare
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coordinates satisfies above inequalities. Next, we consider χ ≤ 1/2 as shown in b) in
figure 18, we need

tan (−πχ) ≤ tan θ̃ < tan (πχ) . (B.8)

However, we have no solution satisfying this in Poincare coordinates.
From these analysis, we require

1
2 < χ =

√
R2 −M
R2 (≤ 1) ⇐⇒ 0 ≤M <

3
4R

2(< R2) (B.9)

for the existence of the map from the rescaled coordinates (τ̃ , r̃, θ̃) to the Poincare coordinates
(t̃, z̃, x̃). Since we focus on the brane profile obtained in this manner, we restrict to (B.9)
for M < R2.

Within this domain, the boundary of the BCFT is indeed given by θ̃ = 0 and 2π − πχ
for M > 0.19

The nontrivial endpoint of the EOW brane comes from θ̃ = −π. However, this is outside
of the domain for M > 0 as we chose (−π <)− πχ ≤ θ̃ < πχ(< π). Within this domain, it
seems that there is only one solution θ̃ = 0. However, there should be two solutions from
the viewpoint of the global patch. This paradox is resolved when you consider a proper
origin of the angle such that the entire brane is within the fundamental domain.

Periodicity of θ̃ given by 2πχ is greater than π/2 regarding the previous analysis. This
implies that by shifting the domain of θ̃, we can always have two nodes in sin θ̃. It means the
initial choice of −π ≤ θ < π may not appropriate; however, for 1/2 < χ all configurations
are connected continuously and we will not cause a problem by evading using periodicity as
we have discussed.

C Branch choice in the identity conformal block

In addition to the branch of w′ discussed above, we need to choose the correct branch
to analytically continue to the Lorentzian correlator [21]. To see the monodromy around
z, z̄ = 1, we expand z and z̄ around 1 provided α is sufficiently small compared to other
quantities. Since e−iϕ factor only shifts the imaginary part, it is irrelevant to the discussion
here. The cross ratios are expanded as follows:

zdis ∝
(
x− t− iα
x− t+ iα

x+ t− iα
x+ t+ iα

)κ
= 1− 4iκx

(x− t)(x+ t)α+O(α2) (C.1)

z̄dis ∝
(
x− t− iα
x− t+ iα

x+ t− iα
x+ t+ iα

)−κ
= 1 + 4iκx

(x− t)(x+ t)α+O(α2) (C.2)

zcon ∝
(
x1 − t+ iα

x1 − t− iα
x2 − t− iα
x2 − t+ iα

)κ
= 1 + 2iκ(x2 − x1)

(x1 − t)(x2 − t)
α+O(α2) (C.3)

z̄con ∝
(
x1 + t+ iα

x1 + t− iα
x2 + t− iα
x2 + t+ iα

)κ
= 1 + 2iκ(x2 − x1)

(x1 + t)(x2 + t)α+O(α2). (C.4)

19For M = 0, the boundary is given by θ̃ = 0,−π.
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When the sign of the imaginary part changes, z or z̄ moves to another sheet. From (C.1),
zdis → e−2πizdis for t � x. From (C.2), z̄dis → e2πiz̄dis for t � x. These branches for the
disconnected entropy correspond to m = 0 to m = 1 in (5.25) and (5.26). The transition
between two branches is determined so that the whole expression is continuous.

From (C.3), zcon → e2πizcon for x1 � t� x2. Finally, from (C.4), there is no change
in the branch as the sign of the imaginary part is always positive. For the connected
entropy, by considering the Euclidean branch corresponding to the dominant OPEs due to
the approximation of the conformal block. Then, it should cancels the additional phase
during x1 � t� x2 and leads to the trivial branch (5.17).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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