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Abstract— The guesswork of a quantum ensemble quantifies
the minimum number of guesses needed in average to correctly
guess the state of the ensemble, when only one state can be
queried at a time. Here, we derive analytical solutions of the
guesswork problem subject to a finite set of conditions, including
the analytical solution for any qubit ensemble with uniform
probability distribution. As explicit examples, we compute the
guesswork for any qubit regular polygonal and polyhedral
ensemble.

Index Terms— Guesswork, quantum states, quantum measure-
ments, quantum state discrimination.

I. INTRODUCTION

WE CONSIDER a communication scenario involving
two parties, Alice and Bob. An ensemble ρ of quantum

states with labels in a set M is given and known to both
parties. At each round, Alice picks a label m ∈ M with
probability Tr[ρ(m)] and hands state Tr[ρ(m)]−1ρ(m) over
to Bob. Bob aims at correctly guessing label m being allowed
to query one element of M at a time, until his query is correct,
at which point the round is over. The cost function incurred
by Bob is the average number of guesses, or guesswork,
until he correctly guesses m. Bob’s most general strategy
consists of performing a quantum measurement π outputing an
element n from the set NM of numberings of M and querying
the elements of M in the order specified by n. Hence, the
guesswork is given by the occurence of label m in numbering
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n, averaged over all numberings. Using the formalism [1] of
quantum circuits, the setup is as follows:

m ∈ M ����ρ (m)
H ���	π (n) n ∈ NM. (1)

The guesswork has been extensively studied for classical
ensembles [2]–[12], but only very recently tackled for quantum
ensembles [13]–[15]. While previous works focused on the
derivation of entropic bounds, our aim is instead the derivation
of analytical solutions. Our main result, Theorem 1, provides
an analytical solution subject to a finite set of conditions.
In particular, Corollary 1 provides the analytical solution
for any qubit ensemble with uniform probability distribution,
thus disproving the conjecture [13] that analytical solutions
exist only for binary and symmetric ensembles. As explicit
examples, in Corollaries 2 and 3 we explicitly compute the
minimum guesswork of any qubit regular polygonal and
polyhedral ensebles, respectively. This proves a conjecture [14]
on the guesswork of the square qubit ensemble.

II. FORMALIZATION

In this section we define the guesswork problem. We use
standard results from quantum information theory [1].

First, we introduce the sets of ensembles and numbering-
valued measurements that appear in the setup of Eq. (1). For
any finite dimensional Hilbert space H, we denote with L+(H)
the cone of positive semi-definite operators on H. For any
finite set M, we denote with NM the set of numberings given
by

NM :=
�
n : {1, . . . , |M|} → M

���n bijective
�
.

We denote with E(M,H) the set of ensembles given by

E (M,H) :=

�
ρ : M → L+ (H)

��� �
m∈M

Tr [ρ (m)] = 1

�
.

and with P(NM,H) the set of numbering-valued measure-
ments given by

P (NM,H) :=

�
π : NM → L+ (H)

��� �
n∈NM

π (n) = 1

�
.

Next, we introduce the probability distributions that describe
the setup in Eq. (1). For any ensemble ρ and any numbering-
valued measurement π, we denote with pρ,π the joint proba-
bility distribution that the outcome of π is numbering n and
that the t-th guess is correct, that is n(t) = m. In formula:

pρ,π : NM × {1, . . . , |M|} −→ [0, 1]
(n, t) �−→ Tr [ρ (n (t))π (n)] ,
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for any ρ ∈ E(M,H) and any π ∈ P(NM,H). We denote
with qρ,π the probability distribution that the t-th guess is cor-
rect, obtained marginalizing the joint probability distribution
pρ,π . In formula:

qρ,π : {1, . . . , |M|} −→ [0, 1]

t �−→
�

n∈NM

pρ,π (n, t) ,

for any ρ ∈ E(M,H) and any π ∈ P(NM,H).
Finally, we are in a position to introduce the guesswork.

The guesswork G is a function mapping any pair (ρ,π)
of ensemble and numbering-valued measurement into the
expectation value of the number t of guesses, averaged with
the probability distribution qρ,π of correctness of the t-th
guess. In formula:

G : E(M,H) × P(NM,H) −→ [1,∞)

(ρ,π) �−→
|M|�
t=1

qρ,π (t) t.

The minimum guesswork Gmin is a function mapping any
ensemble ρ into the minimum over numbering-valued mea-
surements of the guesswork G. In formula:

Gmin : E(M,H) −→ [1,∞)
ρ �−→ min

π∈P(NM,H)
G (ρ,π) .

III. MAIN RESULTS

In this section we derive the analytical solution of the guess-
work problem subject to a finite set of conditions, including
any qubit ensemble with uniform probability distribution.

In order to state our main result, we need the following defi-
nitions. For any finite dimensional Hilbert space H, we denote
with L(H) the space of Hermitian operators on H. For any
finite set M and any ensemble ρ ∈ E(M,H), we denote with
Eρ : NM → L(H) the map given by

Eρ (n) :=
|M|�
t=1

(2t− |M| − 1)ρ (n (t)) ,

for any n ∈ NM. For any numbering n ∈ NM, we denote
with n the reversed numbering. In formula:

n (t) := n (|M| + 1−t) ,
for any t ∈ {1, . . . , |M|}. We denote with Π−(·) and Π0(·) the
projectors on the negative and null parts of (·), respectively.
We denote with {πρ,n∗ ∈ P(NM)}n∗∈NM the family of
numbering-valued measurements given by

πρ,n∗ (n) :=

��
Π− + 1

2Π0

	
(Eρ (n)) , if n ∈ {n∗,n∗},

0, otherwise,

for any n∗,n ∈ NM. It follows from Lemma 1 that the
corresponding guesswork is given by

G (ρ,πρ,n∗) =
|M| + 1

2
− 1

2
�Eρ (n∗)�1 , (2)

for any n∗ ∈ NM.

Upon denoting with | · | the absolute value of operator
(·), the following theorem provides analytical solutions of
the minimum guesswork problem subject to a finite set of
conditions.

Theorem 1: For any finite set M, any finite dimensional
Hilbert space H, and any ensemble ρ ∈ E(M,H), if there
exists numbering n∗ ∈ N (M) such that

|Eρ (n∗)| ≥ Eρ (n) , (3)

for any n ∈ NM, then numbering-valued measurement
πρ,n∗ ∈ P(NM,H) minimizes the guesswork, that is

Gmin (ρ) = G (ρ,πρ,n∗) .

We remark that, while the minimum guesswork problem
is by definition an optimization over a continuous set, the
conditions given by Eq. (3) are finite in number and hence
can be checked by exhaustive search. If they hold, Eq. (2)
provides the analytical solution of the minimum guesswork
problem.

Proof: Due to Lemma 1 one has Gmin(ρ) = (|M| + 1 +
xρ)/2, where

xρ := min
π∈P(NM)

�
n∈NM

Tr


Eρ (n)

π (n) − π (n)
2

�
.

Since for any π ∈ P(NM) the sum is lower bounded by its
minimum term, one has

xρ ≥ yρ := min
π∈P(N (M))

n∈NM

Tr


Eρ (n)

π (n) − π (n)
2

�
.

Using Lemma 2, for any n ∈ NM the minimum over
π ∈ P(NM) can be computed leading to

yρ = − max
n∈NM

�Eρ (n)�1 .

Using Eq. (3), Lemma 3, and again Eρ(n) = −Eρ(n), the
maximum over n ∈ NM can be computed leading to

yρ = −�Eρ (n∗)�1 .

Since G(ρ,πρ,n∗) = (|M|+1+yρ)/2, the statement follows.

The following corollary provides the analytical solution of
the minimum guesswork problem for any qubit ensemble with
uniform probability distribution.

Corollary 1: For any finite set M, any two dimensional
Hilbert space H, and any ensemble ρ ∈ E(M,H) such that
the prior probability distribution Tr[ρ(·)] = |M|−1 is uniform,
there exists numbering n∗ ∈ NM such that measurement
πρ,n∗ minimizes the guesswork, that is

Gmin (ρ) = G (ρ,πρ,n∗) .

We remark that Corollary 1 recasts the minimum guesswork
problem, by definition an optimization problem over a contin-
uous set, as an optimization problem over a finite set, that can
be therefore performed by exhaustive search.

Proof: Since by hypothesis Tr[ρ(·)] = |M|−1, one has

Tr [Eρ (n)] = 0,
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for any n ∈ NM. Hence, since by hypothesis H is two-
dimensional, one has

|Eρ (n)| = �Eρ (n)�1

1

2
,

for any n ∈ NM. Hence, the range |Eρ (N (M))| is totally
ordered. Hence, there exists n∗ such that

|Eρ (n∗)| ≥ |Eρ (n)| ≥ Eρ (n) ,

for any n ∈ NM. Hence the statement follows from
Theorem 1.

IV. EXPLICIT EXAMPLES

In this section we provide the minimum guesswork of any
qubit regular polygonal or polyhedral ensemble by explicitly
solving the optimization over a finite set given by Corollary 1.

Corollary 2 (Regular Polygonal Ensembles): For any dis-
crete set M, any two-dimensional Hilbert space H, and any
bijective ensemble ρ ∈ M(M,H) whose range ρ(M) is
proportional to a regular polygon in the Bloch circle, one has

Gmin (ρ) =
|M| + 1

2
− 1

2

⎧⎪⎪⎨
⎪⎪⎩

2
�

3 cos( π
|M| )

2
+1

|M| sin( π
|M| )

2 , if |M| even,

cos( π
2|M| )

|M| sin( π
2|M| )

2 , if |M| odd.

Proof: Due to Corollary 1, there exists numbering n∗ ∈
N (M) such that Gmin(ρ) = G(ρ,πρ,n∗). Due to Lemma 4,
qρ,πρ,n∗ is not increasing. One way of representing n∗

is as follows. Without loss of generality take M =
{1, . . . , |M|} and ρ(m) = |M|−1 |ψm�	ψm|, where |ψm� =
cos(2πm/|M|) |0� + sin(2πm/|M|) |1�. Then one has

n∗ (m) =

�
2 m if m < |M|

2 + 1
4 ,

−2m+ 2 |M| + 1 otherwise.

Numbering n∗ is illustrated in Fig. 1 for |M| = 8. By
summing finite trigonometric series, for |M| even one has

Eρ (n∗) =
1

|M|

⎡
⎢⎣−2 cot

�
π

|M|
�2

− 1 − cot
�

π
|M|

�
− cot

�
π

|M|
�

2 cot
�

π
|M|

�2

+ 1

⎤
⎥⎦ ,

and for |M| odd one has

Eρ (n∗) =
1

2 |M|

⎡
⎢⎣− cot

�
π

2|M|
�2

− cot
�

π
2|M|

�
− cot

�
π

2|M|
�

cot
�

π
2|M|

�2

⎤
⎥⎦ .

By explicit computation one has

�Eρ (n∗)�1 =

⎧⎪⎪⎨
⎪⎪⎩

2

�
3 cos( π

|M| )
2
+1

|M| sin( π
|M| )

2 , if |M| even,

cos( π
2|M| )

|M| sin( π
2|M| )

2 , if |M| odd.

Hence the statement follows from Eq. (2).
Corollary 3 (Regular Polyhedral Ensembles): For any dis-

crete set M, any two-dimensional Hilbert space H, and any
bijective ensemble ρ ∈ E(M,H) whose range ρ(M) is

Fig. 1. The figure illustrates the numbering n∗ ∈ N (M) such that
Gmin(ρ) = G(ρ, πρ,n∗ ), when ρ ∈ E(M, R2) is a bijective ensemble
such that ρ(M) is proportional to a regular polygon (|M| = 8 in the figure)
in the Bloch circle.

Fig. 2. The figure illustrates the numbering n∗ ∈ N (M) such that
Gmin(ρ) = G(ρ, πρ,n∗ ), when ρ ∈ E(M, C2) is a bijective ensemble
such that ρ(M) is proportional to a regular polyhedron (|M| = 6 in the
figure) in the Bloch sphere.

proportional to a regular polyhedron in the Bloch sphere, one
has

Gmin (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
2 −

√
15
6 ∼ 1.9 if |M| = 4,

7
2 −

√
35
6 ∼ 2.5 if |M| = 6,

9
2 −

√
7

2 ∼ 3.2 if |M| = 8,

13
2 −

�
110(65+29

√
5)

60 ∼ 4.5 if |M| = 12,

21
2 −

�
6(3321+1483

√
5)

60 ∼ 7.2 if |M| = 20.

Proof: Due to Corollary 1, there exists numbering n∗ ∈
N (M) such that Gmin(ρ) = G(ρ,πρ,n∗). For |M| = 4 any
n∗ ∈ N (M) is such that Gmin(ρ) = G(ρ,πρ,n∗), hence the
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result for |M| = 4 follows. Let us consider the case |M| > 4.
Due to Lemma 4, qρ,πρ,n∗ is not increasing. Since the range
ρ(M) is centrally symmetric, that is

ρ (M) = |M|−1
1−ρ (M) ,

any n∗ with qρ,πρ,n∗ not increasing satisfies

ρ (n∗ (·)) + ρ (n∗ (·)) = |M|−1
1 .

Since fixing the value of n∗(t) also fixes the value of n∗(t),
numbering n∗ can be found in |M|!! steps. Also, since
regular polyhedra are vertex transitive, the choice of n∗(1)
is irrelevant, hence n∗ can be found in |M − 2|!! steps. The
exhaustive search is practical even for the dodecahedron for
which |M| = 20 and hence |M − 2|!! ∼ 108. Numbering
n∗ is illustrated in Fig. 2 for |M| = 6. Hence the results
for |M| > 4 follow. Further details can be found in Ref. [15],
where algorithms for the classical computation of the quantum
guesswork in analytical closed form based on the present
results are provided and analyzed.

APPENDIX

In this appendix we derive technical results needed for the
derivation of our main results.

Lemma 1: For any finite set M, any finite dimensional
Hilbert space H, any ensemble ρ ∈ E(M,H), and any
numbering-valued measurement π ∈ P(NM,H), the guess-
work G(ρ,π) is given by

G (ρ,π) =
|M| + 1

2
+

1
2

�
n∈NM

Tr


Eρ (n)

π (n) − π (n)
2

�
.

Proof: By definition of map Eρ one has G(ρ,π) =
(|M| + 1 + xρ,π)/2, where

xρ,π :=
�

n∈NM

Tr [Eρ (n)π (n)] .

Using the identity Eρ(n) = −Eρ(n) one has

xρ,π =
�

n∈NM

Tr


Eρ (n)

π (n) − π (n)
2

�
.

Hence the statement follows.
For any finite dimensional Hilbert space H and any operator

A ∈ L(H), let PA : L(H) → L(H) be a dephasing map given
by PA(·) =

�
a 	a| · |a� |a�	a|, where {|a�} is a complete set

of eigenvectors of A.
Lemma 2: For any finite dimensional Hilbert space H and

any X,A ∈ L(H), if |X | ≤ 1 one has that |Tr[AX ]| ≤ �A�1.
Proof: Since PA is linear, positive, and unital, by the

hypothesis it follows that |PA(X)| ≤ 1. Since Tr[AX ] =
Tr[APA(X)], the statement follows.

Lemma 3: For any finite dimensional Hilbert space H and
any X,A ∈ L(H), if −X ≤ A ≤ X one has that �A�1 ≤
�X�1.

Proof: Since PA is linear and positive and PA(A) = A,
by the hypothesis it follows that −PA(X) ≤ A ≤ PA(X).
Since [PA(X), A] = 0 and by the hypothesis it follows that
X ≥ 0, one has |A| ≤ PA(X). Since PA is trace preserving,
by tracing both sides the statement follows.

The following lemma provides a necessary condition for
any measurement to attain the minimum guesswork.

Lemma 4: For any discrete set M, any finite dimensional
Hilbert space H, and any ensemble ρ ∈ E(M,H), a mea-
surement π ∈ P(NM,H) minimizes the guesswork, that is
Gmin(ρ) = G(ρ,π), only if pρ,π(n, ·) is not increasing for
any n ∈ N (M).

Proof: We show that for any measurement π ∈
P(NM,H) there exists a measurement π� ∈ P(NM,H)
such that pρ,π�(n, ·) is not increasing for any n ∈ NM and
G(ρ,π�) ≤ G(ρ,π), with equality if and only if pρ,π(n, ·) =
pρ,π�(n, ·) for any n ∈ NM. Let {gn : {1, . . . , |M|} →
{1, . . . , |M|} | gn bijective}n∈NM be a family of permu-
tations such that pρ,π(n, gn(·)) is not increasing for any
n ∈ NM. Let f : NM → NM be given by

f (n) := n ◦ gn,
for any n ∈ NM. Let π� ∈ P(NM,H) be the coarse graining
of π given by

π� (n�) :=
�

n∈f−1[n�]

π (n) ,

for any n� ∈ NM, where f−1[n�] denotes the counter-image
of n� with respect to f . By explicit computation one has

qρ,π� (t) =
�

n�∈NM

�
n∈f−1[n�]

Tr [ρ (n� (t))π (n)]

=
�

n∈NM

Tr [ρ (f (n) (t))π (n)]

=
�

n∈NM

pρ,π (n, gn (t)) ,

for any t ∈ {1, . . . , |M|}. Hence by construction�
t∈{1,...,T}

qρ,π� (t) ≥
�

t∈{1,...,T}
qρ,π(t)

for any T ∈ {1, . . . , |M|}, with equality if and only if
pρ,π(n, ·) = pρ,π�(n, ·) for any n ∈ N (M). Hence the
statement follows by definition of guesswork.

V. CONCLUSION

The guesswork of a quantum ensemble quantifies the mini-
mum number of guesses needed in average to correctly guess
the state of the ensemble, when only one state can be queried
at a time. Here, we derived analytical solutions subject to a
finite set of conditions, including analytical solutions for any
qubit ensemble with uniform probability distribution, thus dis-
proving the conjecture [13] that analytical solutions only exist
for binary and symmetric ensembles. As explicit examples,
we computed the guesswork for any qubit regular polygonal
and polyhedral ensemble, thus proving a conjecture [14] on
the guesswork of the square qubit ensemble.
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