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We study compatibility of the standard model of particle physics and general relativity by means of
gravitational positivity bounds, which provide a necessary condition for a low-energy gravitational theory
to be UV completable within the weakly coupled regime of gravity. In particular, we identify the cutoff
scale of the standard model coupled to gravity by studying consistency of light-by-light scattering. While
the precise value depends on details of the Pomeron effects in QCD, the cutoff scale reads 1016 GeV if the
single-Pomeron exchange picture works well up to this scale. We also demonstrate that the cutoff scale is
lowered to 1013 GeV if we consider the electroweak theory without the QCD sector.
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Introduction.—When does general relativity (GR) meet
the standard model (SM) of particle physics? It is widely
accepted to study gravitational interactions and particle
interactions independently due to the large hierarchy
between these forces; meanwhile, it is widely believed
that all the interactions are ultimately unified by quantum
gravity. If this is indeed the case, although the SM and GR
are apparently independent at low energies, there must be
hidden consistency relations between them by which we
may extract information about quantum gravity from the
well-established physics, the SM and GR.
The swampland program [1] aims to clarify such con-

sistency relations by studying necessary conditions for a
low-energy gravitational effective field theory (EFT) to
have a consistent ultraviolet (UV) completion. A lesson
there is that gravitational EFTs typically accommodate a
cutoff scale well below the Planck scale. For example, if we
consider a graviton-photon system, quantum gravity
requires a charged state, otherwise the theory has a global
1-form symmetry associated with a constant shift of the
photon field [2–4]. The mass of the charged state specifies
the cutoff scale of the original graviton-photon EFT, which
is quantified by the weak gravity conjecture as m ≤ffiffiffi
2

p jqjMPl [5]. It is well below the Planck scale MPl as
long as the electric coupling q is in the perturbative regime.

See also review articles [6–8] for other related develop-
ments in the swampland program.
It is well known that unitarity and analyticity of two-to-

two scattering amplitudes lead to necessary conditions for a
low-energy EFT to have a standard UV completion. In
particular, the bounds on the Wilson coefficients are called
the positivity bounds [9]. While it has been a nontrivial
issue how to derive rigorous bounds in the presence of
gravity due to the t-channel graviton pole, recent works
[10–12] have clarified under which conditions (approxi-
mate) positivity bounds should hold [13]. The gravitational
positivity bounds hold when gravity is UV completed in a
weakly coupled way, realizing Regge behavior of high-
energy scattering, which is indeed the case in perturbative
string theory.
Reference [25] studied the positivity bound on QED

coupled to gravity, and predicted a cutoff scale Λ ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emeMPl

p
∼ 108 GeV in terms of the electron charge e

and the electron mass me, under several assumptions
clarified shortly [27]. This value is much lower than the
expected scales of unification and quantum gravity, while
the analysis lacks other known physics, the electroweak
(EW) and QCD sectors, and 108 GeV is not necessarily the
scale of new physics. Also, Λ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emeMPl

p
implies that a

massless charged fermion is in the swampland since we
have Λ → 0 in the massless limit me → 0, which is
somewhat surprising. In this Letter, we identify an upper
bound of the scale of new physics by completing the full
SM analysis, after reviewing gravitational positivity bounds
and revisiting their implications for QED.
Gravitational positivity.—In this Letter, we focus on the

light-by-light scattering γγ → γγ in the SM coupled to GR,
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which has to be interpreted as a low-energy EFT of
quantum gravity. The scattering amplitude is denoted by
Mðs; tÞ, and ðs; t; uÞ are Mandelstam variables satisfying
sþ tþ u ¼ 0. To manifest the s ↔ u crossing symmetry,
we consider the helicity sum,

Mðs; tÞ ¼ Mð1þ2þ3þ4þÞ þMð1þ2−3þ4−Þ
þMð1−2−3−4−Þ þMð1−2þ3−4þÞ; ð1Þ

where 1,2 are ingoing photons and 3,4 are outgoing ones,
and � is the helicity.
We assume several properties ofMðs; tÞ on the complex

s plane for a fixed t at least up to OðM−2
Pl Þ: unitarity,

analyticity, and a mild behavior in the Regge limit of the
form limjsj→∞jMðs; t < 0Þ=s2j → 0 [28]. We can then
derive the twice-subtracted dispersion relation for a fixed
t < 0 by considering the integration contour shown in
Fig. 1. The amplitude at the reference point s ¼ −ðt=2Þ is
expressed by integrals along the branch cuts (C1 þ C2), the
infinitely large semicircles ðCþ∞ þ C−∞Þ, and the poles on
the complex s plane. Contributions from Cþ∞ þ C−∞
vanish thanks to the mild behavior in the Regge limit.
We then consider the low-energy expansion, M ¼P∞

n¼0f½cnðtÞ�=n!g½s þ ðt=2Þ�n þ f½2ðs4 þ u4Þ�=M2
Plstug,

where the second term manifests the graviton poles. In
terms of c2ðtÞ, we have

c2ðtÞ
2

−
4

M2
Plt

¼ 2

π

Z
∞

sb

ds0
ImMðs0 þ iϵ; tÞ
ðs0 þ ðt=2ÞÞ3 ; ð2Þ

with using the s ↔ u crossing symmetry. Here sb ¼ 4m2
e in

our case, me being the mass of the electron, the lightest
charged particle. By definition, EFT can compute M up to
the cutoff scale. Supposing EFT is valid at s < Λ2, the
quantity,

Bð2ÞðΛ; tÞ ≔ c2ðtÞ −
4

π

Z
Λ2

sb

ds0
ImMðs0 þ iϵ; tÞ
½s0 þ ðt=2Þ�3 ; ð3Þ

is calculable within EFT. We emphasize that Bð2ÞðΛ; tÞ is
regular in the forward limit while M is not. In terms of
Bð2ÞðΛ; tÞ, Eq. (2) reads [29,30]

Bð2ÞðΛ; tÞ − 8

M2
Plt

¼ 4

π

Z
∞

Λ2

ds0
ImMðs0 þ iϵ; tÞ
½s0 þ ðt=2Þ�3 : ð4Þ

In the gravity decoupling limit MPl → ∞, we can safely
take the forward limit t → 0 in (4) to get Bð2ÞðΛ; 0Þ > 0
thanks to the optical theorem [9]. However, the forward
limit of (4) is subtle in the presence of gravity because of
the singular second term on the lhs. To obtain the finite
expression of (4) in the forward limit, one needs to see the
cancellation of singular terms of both sides in Eq. (4) and
evaluate the Oðt0Þ term carefully. Such computations have
been explicitly done in [11] under the assumption of the
Regge behavior

ImMðs; tÞ ¼ fðtÞ
�

s
M2

s

�
2þα0tþα00t2þ���

þ � � � ; ð5Þ

at the UV regime, s ≫ M2
sð> Λ2Þ. Here, fðtÞ denotes a

dimensionless function that is regular at t ¼ 0. The terms
α0 > 0 and α00 are constants. Ellipses in the exponent stand
for the higher-order terms in t and we suppressed con-
tributions from states which are irrelevant for Reggeizing
the graviton exchange and the subleading terms of the
Regge behavior. The scalesMs and α0 will be related to the
mass scale of the physics which Reggeizes the amplitude.
In string theory examples, the scattering amplitude exhibits
the Regge behavior with α0 ∼M−2

s via the string higher-
spin states whereMs is the mass scale of the lightest higher-
spin states, namely, the string scale. It is shown that [11]

Bð2ÞðΛÞ ≔ Bð2ÞðΛ; 0Þ > −OðM−2
Pl M

−2
s Þ; ð6Þ

assuming a single scaling jð∂tf=fÞt¼0j; jα00=α0j;
α0 ≲OðM−2

s Þ. The precise value and the sign of the rhs
will depend on the details of UV completion. Although the
small amount of negativity is still allowed, the rhs is
suppressed by not only M−2

Pl but also M−2
s which is small

enough to provide the constraints on the SM amplitudes
with gravity [31].
In summary, the general properties of the amplitudes lead

to the bound (6) as a consistency condition, where Bð2ÞðΛÞ
is computed by the EFT, the SM coupled to GR in the
present case. The amplitude for the light-by-light scattering
at s < Λ2 can be decomposed as

Mðs; tÞ ¼ MQED þMweak þMQCD þMGR; ð7Þ

FIG. 1. Analytic structure of Mðs; tÞ on the complex s plane
except for s- and u-channel poles, and the integration contour to
derive the dispersion relation for fixed t < 0 up to Oðe2=M2

PlÞ.
The wavy line denotes branch cuts.
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where relevant diagrams for each sector are given by
Figs. 2–4 and their crossed versions. The corresponding

Bð2Þ
i ðΛÞ with i ¼ QED, weak, QCD, and GR are computed

accordingly. In general, EFT must contain higher derivative
operators representing corrections from UV physics, which
will be taken care of in the following discussion. As we will
see, they turn out to be irrelevant for our purpose except for
the QED case.
Because the SM is renormalizable, the SM amplitude

satisfies the twice-subtracted dispersion relation, giving

Bð2Þ
i ðΛÞ ¼ 4

π

Z
∞

Λ2

ds0
ImAiðs0 þ iϵÞ

s03
; ð8Þ

for i ¼ QED, weak, and QCD. Here, AiðsÞ ≔ Miðs; t ¼
0Þ is the forward limit amplitude. The relations (8)

conclude Bð2Þ
i ðΛ → ∞Þ ¼ 0. The same relation does not

need to apply to the GR sector, however, because GR is

not UV complete; as we will see, Bð2Þ
GRðΛ → ∞Þ →

constant < 0. As Λ increases, i.e., as the SM coupled to
GR is extrapolated to high-energy scales, the GR contri-
bution eventually dominates over the SM contributions,
leading to violation of (6). The maximum cutoff scale of the
SM coupled to GR is determined when the inequality (6) is
saturated.
Positivity in QED.—We begin with the light-by-light

scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the one-
loop diagram shown in the first diagram of Fig. 2. The
forward limit amplitude is given by

AQED ≈ −8α2
�
6þ ln2

m2
e

−s
þ 2 ln

m2
e

−s

�
þ ðs ↔ −sÞ ð9Þ

in the high-energy limit jsj ≫ m2
e, where α ¼ e2=4π is the

fine-structure constant. Bð2ÞðΛÞ from the QED process at
one-loop level is

Bð2Þ
QED ≈

64α2

Λ4

�
ln

Λ
me

−
1

4

�
ð10Þ

for Λ ≫ me. Regarding MGR, we have the tree and one-
loop diagrams up to OðM−2

Pl Þ as shown in Fig. 2. The tree
level (pole) contribution is canceled with the high-energy
integral of the rhs of (4). As a result, the one-loop diagram
is the leading gravitational contribution to the bound (6). In
the high-energy limit, we obtain

Bð2Þ
GR ≈ −

22α

45πm2
eM2

Pl

: ð11Þ

Whereas Bð2Þ
QED vanishes as Λ → ∞, Bð2Þ

GR approaches a
negative constant in the limit Λ → ∞. This is why we
obtain a nontrivial cutoff scale from (approximate) pos-
itivity bounds.
It is also convenient to remark that the result (11) can be

used even in the later analysis beyond QED. In general, the
one-loop contribution to Bð2Þ

GR from charged particles should
be proportional to e2=M2

Pl and the dimensional analysis

concludes Bð2Þ
GR ∝ e2=ðm2M2

PlÞ, where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribution

to Bð2Þ
GR. We thus take into account the electron loop only to

compute Bð2Þ
GR throughout this Letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
OðM−2

Pl M
−2
s Þ uncertainty in (6) because the GR contribu-

tion (11) is much larger than the uncertainty. Second, as we
mentioned earlier, there are potential higher derivative
corrections that are originated from UV physics above
the scale Λ. From the EFT perspective, its contribution to

Bð2Þ can be estimated as Bð2Þ
UV ¼ ðαUV=Λ4Þ, where the

dimensionless parameter αUV characterizes the size of
interactions at the scale Λ and satisfies jαUVj≲ 1.
All in all, the gravitational positivity implies the bound

Bð2Þ
QED þ Bð2Þ

UV þ Bð2Þ
GR > 0, yielding

64α2

Λ4

�
ln

Λ
me

−
1

4

�
þ αUV

Λ4
>

22α

45πm2
eM2

Pl

: ð12Þ

If the first term is dominant, we have the same bound as
[25], Λ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

emeMPl
p

. On the other hand, if the second term
is dominant and αUV ∼ 1, we find Λ≲ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

meMPl=e
p

, which

FIG. 3. Feynman diagrams relevant for Mweak. FIG. 4. Feynman diagrams relevant for MQCD.

FIG. 2. Feynman diagrams relevant for MQED and MGR.
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is the one obtained in [26] from a slightly different setup
(see [27]). In either case, the typical size is Λ < ΛQED ∼
108 GeV which is regarded as the maximum cutoff scale of
QED coupled to GR. A new physics is required below
ΛQED to satisfy the bound (6). Needless to say, we already
know the “new” physics, weak force and strong force, in
nature and these physics contribute to the light-by-light
scattering well below 108 GeV.
Positivity in electroweak theory.—We then include the

weak sector into our consideration. While charged lepton
loops provide the same contribution as (10) (after a
replacement of me by the lepton masses), W bosons yield
a qualitatively different contribution because of the spin-1
nature. In the high-energy limit ðjsj ≫ m2

WÞ, the one-loop
amplitude is [32]

Aweak ≈
32α2

m2
W

s ln
m2

W

−s
þ ðs ↔ −sÞ: ð13Þ

In contrast to (9), the imaginary part of the amplitude grows
linearly in s in the high-energy limit. Accordingly, the weak
sector contribution to Bð2Þ reads

Bð2Þ
weak ≈

128α2

m2
WΛ2

; ð14Þ

which decreases as Λ−2. Then, the W boson contribution

Bð2Þ
weak eventually dominates over the fermion loop contri-

butions (10) at UV (see Fig. 5, where we plot Bð2Þ
i without

using the high-energy approximation). The UV physics

effect Bð2Þ
UV ∝ Λ−4 also becomes subdominant in the same

regime. As a result, we obtain the cutoff which is much
larger than the one obtained in the QED case,

ΛEW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2880πα

11

r
meMPl

mW
≃ 3.8 × 1013 GeV: ð15Þ

It is worth mentioning that after taking the high-energy
limit Λ ≫ m, the fermion contribution (10) is almost
independent of the fermion mass and the mass of spin-1
particle (W boson) appears in the denominator of (14).
Therefore, we may continue to increase Λ even if new
charged spin-1=2 or spin-1 states, namely, new physics,
appear because they are subdominant in Bð2ÞðΛÞ. The result
must be insensitive to inclusion of new charged particles at
the UV regime as far as the theory is weakly coupled [36].
On the other hand, QCD is not a weakly coupled theory
and, more importantly, QCD accommodates mesons that
are lighter than W bosons. The result here must be
insensitive to unknown UV physics involving up to
spin-1 particles but sensitive to QCD.
Positivity in the standard model.—We finally take into

account all the known physics and evaluate the cutoff scale
of the SM by means of the gravitational positivity bounds.
Since (nongravitational) QCD amplitudes have to satisfy
(8), we can compute Bð2Þ

QCD from the imaginary part of the
forward limit amplitude ImAQCD at high energies. A
nontriviality here is that in the forward limit, the momen-
tum transfer is soft and so the nonperturbative physics of
QCD contributes to ImAQCD even at UV via t-channel
diagrams. To compute the light-by-light scattering in the
forward limit, we use the vector meson dominance model
(VDM) and consider intermediate hadronic excitations,
which we call the VDM-Regge model following [37].
The relevant Feynman diagrams in the VDM-Regge

model are shown in Fig. 4. The photon is supposed to
transform into vector mesons Vi ¼ ρ;ω;ϕ before the
collision and the mesons undergo the hadronic processes,
namely the exchange of Pomeron and Reggeon (P and R in
Fig. 4). The corresponding amplitude reads [37]

MQCD ≈ 4

�X
i
C2
γ→Vi

�
2

MVV→VV

�X
j
C2
Vj→γ

�
2

; ð16Þ

where C2
γ→Vi

are the transition constants and the hadronic
interactions are supposed to be the universal form.
MVV→VV is composed of two contributions, the
Pomeron exchange and the Reggeon exchange, where
the former one provides the faster than linear growth in
s while the latter one is subdominant at UV. Also, the
prefactor 4 originates from the helicity sum. The imaginary
part of the amplitude reads [38]

ImAQCD ≈ 25α2
s

GeV2

�
s
s0

�
0.08

ð17Þ

for s ≫ GeV2, where we introduced s0 ∼ GeV2.
Then, it is straightforward to calculate Bð2Þ

QCD using (8)

and the s ↔ u symmetry. All Bð2Þ
i ðΛÞ (i ¼ QED QED,

weak, and QCD) are shown in Fig. 5, where the dashed line

is −Bð2Þ
GR. Since the QCD contribution dominates over

FIG. 5. The Λ dependence of Bð2Þ
i where i ¼ QED (red), weak

(blue), and QCD (green), and the black dashed line represents

−Bð2Þ
GR. The intersection between the solid line and the dashed line

determines the cutoff Λi.
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Bð2Þ
EW ¼ Bð2Þ

QED þ Bð2Þ
weak and also Bð2Þ

UV ∝ Λ−4, the maximum

cutoff scale of the SM is determined by Bð2Þ
QCD þ Bð2Þ

GR ¼ 0,
yielding

ΛSM ≃ 3 × 1016 GeV: ð18Þ

This is one of our main results.
A remark is needed before making a conclusion.

Although the VDM-Regge model here assumes that the
single Pomeron exchange captures the scattering process
well, it is not clear up to which scale the model is trustable
since there is no experimental input at such high-energy
scales. To argue model-(in)dependence of our conclusion,
we illustrate the following two cases that have the same
value as (17) at the GeV scale:

ImAQCD ≈
�
25α2 s

GeV2 ðlinear growthÞ;
25α2 s

GeV2 ln2s=s0 ðFroissart typeÞ; ð19Þ

where the linear growth in the former ansatz corresponds to
a constant cross section while the second ansatz is
motivated by the Froissart bound [42]. The corresponding
cutoff scale reads

ΛSM ≃
�
2 × 1015 GeV ðlinear growthÞ;
1 × 1017 GeV ðFroissart typeÞ: ð20Þ

We conclude that the potential theoretical uncertainty in our
calculations does not change ΛSM drastically.
Conclusion.—In this Letter, we identified the cutoff scale

of the standard model coupled to gravity as 1016 GeV,
applying gravitational positivity bounds to the light-by-
light scattering ðγγ → γγÞ. This means that quantum gravity
requires a new physics below 1016 GeV, otherwise the
standard model falls into the swampland. As we mentioned,
weakly coupled charged particles up to spin-1 do not help
to push up the cutoff scale, suggesting that beyond SM
physics (described within nongravitational QFT) at E ≫
GeV would be irrelevant to our analysis. A natural expect-
ation would be thus that quantum gravity shows up around
or below the obtained cutoff scale to reconcile the gravi-
tational positivity. It is suggestive that this scale is close to
the grand unification scale and the typical string scale.
Nevertheless, it is worth again emphasizing that our result
ΛSM ∼ 1016 GeV is obtained from the consistency of the
scattering amplitude based on the well-established physics,
the standard model, and general relativity [43]. Also, it is
interesting that the Pomeron physics is crucial to under-
standing the cutoff scale of the standard model in light of
the light-by-light scattering which is also an interesting
process experimentally [44].
We also studied the electroweak theory without

the QCD sector which may provide insights into the
swampland program. The electroweak bound reads

ðmW=MPlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2880πα=11Þp ðme=ΛEWÞ, meaning that

the W boson mass is correlated with the electron mass
for a given ΛEW. In particular, the massless limit of the
electron requires the simultaneous massless limit of the W
boson for a finite ΛEW. This is reminiscent of D-brane
realization of the Higgs mechanism in string theory [45],
where both the electron mass and the W boson mass
are controlled by separation of D-branes. Also, the electro-
weak bound yields a condition on the electron Yukawa
coupling ye and the Weinberg angle θW, ye sin θW ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið11=1440Þp ðΛEW=MPlÞ, suggesting the existence of
new swampland conditions on the coupling strengths. It
would be interesting to explore these directions further
from both top-down and bottom-up considerations to find
quantitative predictions of quantum gravity.
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