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a b s t r a c t 

Background: Acute kidney injury (AKI) occurs frequently in in-hospital patients, especially in the intensive 

care unit (ICU), due to various etiologies including septic shock. It is clinically important to identify high- 

risk patients at an early stage and perform the appropriate intervention. 

Methods: We proposed a system to predict AKI using one-dimensional convolutional neural networks 

(1D-CNN) with the real-time calculation of the probability of developing AKI, along with the visualiza- 

tion of the rationale behind prediction using score-weighted class activation mapping and guided back- 

propagation. The system was applied to predicting developing AKI based on the KDIGO guideline in time 

windows of 24 to 48 h using data of 0 to 24 h after admission to ICU. 

Results: The comparison result of multiple algorithms modeling time series data indicated that the 

proposed 1D-CNN model achieved higher performance compared to the other models, with the mean 

area under the receiver operating characteristic curve of 0.742 ± 0.010 for predicting stage 1, and 

0.844 ± 0.029 for stage 2 AKI using the input of the vital signs, the demographic information, and serum 

creatinine values. The visualization results suggested the reasonable interpretation that time points with 

higher respiratory rate, lower blood pressure, as well as lower SpO2, had higher attention in terms of 

predicting AKI, and thus important for prediction. 

Conclusions: We presumed the proposed system’s potential usefulness as it could be applied and trans- 

ferred to almost any ICU setting that stored the time series data corresponding to vital signs. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Acute kidney injury (AKI) refers to a pathological condition that 

hows a sudden decrease in the glomerular filtration rate, and it 

eplaced acute renal failure (ARF) as a new concept including the 

ore subtle decline in kidney function [1] . AKI occurs frequently in 

n-hospital patients, especially in the intensive care unit (ICU), due 

o various etiologies including septic shock. Patients who develop 

KI have increased mortality [2] ; therefore, it is clinically impor- 
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ant to identify the high-risk patients with AKI in a timely manner 

nd perform the appropriate intervention. 

Recently, machine learning techniques have been widely ap- 

lied to the prediction of various clinical events including AKI. In 

he ICU settings, the important data, such as vital signs are usu- 

lly stored densely compared with a normal in-hospital ward in 

 timely manner. These data are directly related to the patho- 

hysiologies of AKI, including intrarenal hemodynamic changes [3] . 

egarding the application to these time series data, the machine 

earning algorithms, particularly, neural networks with various ar- 

hitectures including recurrent neural networks (RNN), long short- 

erm memory (LSTM), and one-dimensional convolutional neural 

etworks (1D-CNN) have been frequently implemented. Caicedo- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2021.106129
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106129&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:okuno.yasushi.4c@kyoto-u.ac.jp
https://doi.org/10.1016/j.cmpb.2021.106129
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Sato, E. Uchino, R. Kojima et al. Computer Methods and Programs in Biomedicine 206 (2021) 106129 

T

p

a

T

t

t

i

C

t

p

e

p

c

p

o

d

e

a

i

9

p

d

a

r

2

2

s  

t

S

8

“

o

t

t

n

h

t

r

e

a

p

a

i

t

c

f

y  

f

u

c

s

u

a

t

t

t

a

“

c

2

s

s

2

d

h

a

m

u

T

f

p

t

t

f

p

(

C

S

t

t

t

s

e

p

f

2

r

fi

t

o

e

(

p

l

e

1

s

l

a

t

n

f

a

t

A

i

fi

w

b

g

2

p

m

orress et al. applied 1D-CNN to predict death in ICU using the 

ublic database of Medical Information Mart for Intensive Care-III 

nd provided visual interpretation by DeepLIFT [4] . Regarding AKI, 

omasev et al. utilized RNN to predict the probability of AKI within 

he next 48 h at any time point and achieved the high performance 

hat was evaluated by metrics of the area under receiver operat- 

ng characteristic curve (AUROC) of 0.927 [5] . Additionally, the 1D- 

NN models were applied to predict AKI, in the study focused on 

he usage of clinical notes [6] . However, applying 1D-CNN to the 

rediction of AKI based on the densely collected vital sign data, 

specially with the visual interpretation of reasons underlying the 

rediction results has been scarcely investigated. Additionally, the 

alculation of the real-time probability of developing AKI is an im- 

ortant task, particularly in the ICU setting, where clinical events 

ccur in hourly intervals. 

The present work addresses the challenges of predicting AKI by 

ensely collected dataset which is routinely available in almost ev- 

ry ICU by 1D-CNN. Among the machine-learning algorithms, one 

dvantage of using CNN is that there are established and standard- 

zed algorithms to visualize the reasons behind the prediction [7–

] . Therefore, we propose a system to predict AKI which enables 

hysicians to understand what time point is important for the pre- 

iction of AKI in the real-time and retrospective manner by visu- 

lizing which time point is important for prediction, for use in the 

eal-world setting. 

. Materials and methods 

.1. Patient selection 

We used a publicly disclosed dataset, eICU Collaborative Re- 

earch Database [10] , with over 20 0,0 0 0 patients’ data collected in

he period from 2014 to 2015, in multiple centers across the United 

tates. The data were made available in the PhysioNet repository. 

First, the demographic information was collected. The age above 

9 was recorded “over 90” for deidentification, and we replaced 

over 90” with the value of 90. Gender was categorized as male 

r female. We obtained the information regarding whether a pa- 

ient had chronic kidney disease (CKD) based on pastHistory and 

he diagnosis table. In the pastHistory table, those who had “re- 

al”, and no “dialysis” in “pasthistoryvalue” were regarded as ones 

aving CKD. Additionally, based on the diagnosis table, those with 

he words “chronic” and “kidney” in “diagnosisstring” column were 

egarded as having CKD. The acute physiology and chronic health 

valuation diagnoses upon admission were categorized in groups 

ccording to the code provided officially (apache-groups.sql). The 

atients with the code “ARF” were not included in the analysis, 

nd the remaining 20 disease categories were considered as the 

nput features in a binary format. These yielded a total of 24 fea- 

ures with the demographic information of age, gender, baseline 

reatinine, and the presence of CKD, apart from the time-series in- 

ormation. 

Subsequently, we excluded the patients aged younger than 18 

ears, those who passed away in 0 to T hours after admission. T re-

erred to the hour after the admission of which the input features 

sed in training were obtained. We excluded those who received 

ontinuous renal replacement therapy in 0 to T hours after admis- 

ion. This was defined by having “hemodialysis|for acute renal fail- 

re" in treatmentstring in the treatment table in 0 to T hours after 

dmission. Additionally, we excluded those who stayed in ICU less 

han T hours. We excluded those on chronic hemodialysis or peri- 

oneal dialysis. These conditions were defined based on pastHistory 

able if the word “dialysis” was in in “pasthistoryvalue”. Addition- 

lly, from the treatment table, those who have treatmentstring of 

hemodialysis” (not “hemodialysis|for acute renal failure") were ex- 

luded. 
2 
.2. Problem setting and the time series input features 

The main objective of the present study was to predict the on- 

et of AKI within the time period from 24 to 48 h after admis- 

ion to ICU, using the routinely collected data in ICU between 0 to 

4 h after admission. We included the time series data of systolic, 

iastolic blood pressure (denoted as SBP and DBP respectively), 

eart rate (HR), respiratory rate (RR), body temperature (TEMP), 

nd SpO2 as the routinely collected data, that are available in al- 

ost every patient in every ICU. 

We obtained the vital sign information per minute. For the val- 

es taken in the same minute, the mean value was calculated. 

he missing data for each time point were imputed by the feed- 

orward method, which yielded 1,440 features per vital sign per 

atient (“downup” in fill function of tidyr library). Subsequently, 

he values were grouped according to the 15-minute interval, and 

he mean value was derived for each interval. These yielded 576 

eatures (96 time series for six channels) for the vital signs of each 

atient. Additionally, the time series of serum creatinine values 

CRE) were included from the laboratory data. The vital signs and 

RE were scaled for the input of 1D-CNN, RNN, and LSTM using 

tandardScaler function in scikit-learn [11] . 

The training and test datasets were split according to the ra- 

io of 8:2 for cross-validation, and the training dataset was addi- 

ionally split to a 9:1 ratio to obtain the validation dataset while 

raining of 1D-CNN, RNN, and LSTM. Training, test, and validation 

plit of the dataset were the same for all the model training and 

valuation steps. 

Additionally, we performed the same workflow applied to the 

roblem of predicting developing AKI in 48 to 72 h using the data 

rom 0 to 48 h after admission to ICU. 

.3. AKI definition 

Baseline creatinine was defined as the lowest value of those 

ecorded before seven days until admission to ICU. AKI was de- 

ned as follows: (a) CRE increase of �0.3 mg/dL or above of 

he lowest creatinine value of the past 48 h, (b) CRE equal to 

r above the baseline creatinine values multiplied by 1.5, (c) CRE 

qual to or above the baseline creatinine values multiplied by 2, 

d) CRE equal to or above the baseline creatinine values multi- 

lied by 3 and (e) CRE equal to or above 4.0 mg/dL fulfilling the 

owest value of past 48 h equal to or below 3.7 mg/d, or CRE 

qual to or above the baseline creatinine values multiplied by 

.5. The criteria for AKI used in the present study roughly corre- 

ponded to the KDIGO creatinine criteria [1] . Those with the base- 

ine creatinine value of 4.0 mg/dL or above were excluded from the 

nalysis. 

The outcomes were defined as stage 1 or above (definition a 

o e, denoted as stage 1 hereafter), and stage 2 or above (defi- 

ition c to e, denoted as stage 2 hereafter). AKI was calculated 

or every CRE record obtained. The onset of AKI was defined 

s when the criteria were met first, and if the patient had any 

ime point with CRE as defined, the patient was categorized to 

KI group. Subsequently, we included those who developed AKI 

n the defined period and did not develop AKI before the de- 

ned period as AKI group. The patients who did not develop AKI 

ithin the defined period were subsampled to the same number 

ased on the remaining population with the fixed seed (non-AKI 

roup). 

.4. Machine learning and used libraries 

We used the machine learning algorithm of 1D-CNN to perform 

rediction. For classification performance comparison and assess- 

ent, we considered RNN, LSTM, and XGBoost as the baseline ap- 
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Fig. 1. The model overview. 

The overview of the proposed workflow in the study. 
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roaches. We evaluated the performance of the considered mod- 

ls in terms of the area under the receiver operating characteristic 

urve (AUROC), with five-fold cross-validation. 

The 1D-CNN model comprised one convolutional layer with the 

ectified linear activation function, followed by the batch normal- 

zation layer [12] , a single global average pooling layer, and one 

ropout layer for each of creatinine and other vital signs. The fi- 

al dense layer with the sigmoid function was used to make a 

rediction. The global average pooling layer was incorporated to 

nable the variable input length. The padding parameter was set 

o “causal”, meaning that padding was performed in the manner 

hat output of time point t does not depend on the input of time 

oint t + 1, which was suitable for modeling the temporal data. The 

NN model had one RNN layer, and the LSTM model had one LSTM 

ayer, along with the dropout and the dense layer. When the de- 

ographic information was incorporated into the 1D-CNN, RNN, 

nd LSTM model, the corresponding input layer was concatenated 

o the output of a respective model, and the final output was de- 

ived using the sigmoid function. We used an Adam optimizer with 

he default setting for the optimization of parameters in all the 

odels [12] . Binary cross entropy was calculated as a loss and 

ptimized. The model was trained for 200 epochs, and weights 

f the best performance epoch regarding validation loss were 

aved. 

For the input of RNN, LSTM, and XGBoost, the time series 

f vital signs with and without CRE and the combination with 

he demographic information was used. For the 1D-CNN mod- 

ls, an additional dataset including only CRE time-series was 

valuated. Multiple filter numbers and kernel sizes were tested, 

nd the best parameters regarding the 1D-CNN model with the 

ime series with CRE and demographic information as input were 

hosen. 

We used R library tidyverse for preprocessing of data [13] . We 

sed machine learning and deep learning library scikit-learn and 

eras with tensorflow version 1.15 or 2.2.0 backend to construct 

eural networks [ 11 , 14 , 15 ]. We used Python library xgboost ver-

ion 1.3.3 to construct XGBoost model, and the default param- 

ter for xgboost training was used, and the objective parame- 

er was set to “binary:logistic” [16] . The plotting and visualiza- 

ion were performed using ggplot2, ComplexHeatmap, firatheme, 

lotly, and patchwork [17–20] . When comparing patients’ demo- 

raphic information, one-way ANOVA was used for comparing con- 

inuous variables, and Chi-squared test was used for categorical 
ariables. 

3 
.5. Real-time prediction and retrospective visualization of the basis 

To perform the real-time prediction of AKI, we predicted the 

robability of developing AKI at each 15 min interval. To achieve 

his, the input shape of the model was set to the corresponding 

ime point, and the model was compiled, set weight of the best 

erformance model and probability was predicted. Note that the 

eight of the best predictive model can be used for variable input, 

s the weight is dependent on filter number and kernel size, not 

n the input shape. Additionally, using the weight of the model 

n the fold with the best performance, we applied Score-weighted 

lass Activation Mapping (Score-CAM) to visualize the rationale 

ehind the prediction in 1D-CNN, which was capable of interpret- 

ng which time point was important for prediction, for each pa- 

ient retrospectively. The calculation of Score-CAM was described 

n the original paper [7] . Guided Score-CAM could be used to as- 

ess which channel was important for prediction and was calcu- 

ated by multiplication of saliency map obtained by guided back 

ropagation with Score-CAM values [9] . The absolute values of 

uided Score-CAM were used as the score of the corresponding 

atient. We performed the analysis to show the validity of our 

pproaches by the simulation of the intervention based on the 

eal-time probability and guided Score-CAM. The detailed methods 

ere described in Supplementary Text 1. 

.6. Availability of data and material 

The source code of Python and R to reproduce the analysis can 

e found at https://doi.org/10.6084/m9.figshare.14555142 . 

. Results 

.1. Predictive performance 

The overall workflow is presented in Fig. 1 . For the analysis 

redicting stage 2 AKI, 725 AKI patients and the same number 

f under-sampled patients were included in the analysis from the 

ICU database. The patient’s demographic information is summa- 

ized in Table 1 . There were significant differences between the 

on-AKI and AKI groups in age, ICU discharge offset and the base- 

ine creatinine and the value was higher in AKI patients. Addi- 

ionally, AKI patients had a higher frequency of having CKD. For 

he analysis including stage 1, 5342 patients were included. The 

https://doi.org/10.6084/m9.figshare.14555142
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Fig. 2. The performance summary of prediction. 

The summary of the performance for each model. The bar plot represents the mean values of five-fold cross-validation and the standard deviations. The color represents the 

model. XGB: XGBoost, RNN: recurrent neural network, LSTM: long short-term memory, 1DCNN: one-dimensional convolutional neural network. 

Table 1 

The demographics of patients included in the analysis. 

Clinical Values non-AKI ( N = 725) AKI ( N = 725) p -value 

Age (mean (SD)) 62.77 (16.55) 65.51 (14.44) 0.001 

Gender = male (%) 383 (52.8) 417 (57.5) 0.081 

Unit discharge offset (mean (SD)) 5994.38 (6066.93) 8341.59 (7924.58) < 0.001 

Baseline creatinine value (mean (SD)) 1.18 (0.61) 1.36 (0.88) < 0.001 

CKD present (%) 73 (10.1) 123 (17.0) < 0.001 

Unit discharge offset: the timing of leaving ICU, presented as the minutes after admission. 

Table 2 

The number of the valid value for each fea- 

ture. 

VS mean SD Max min 

HR 32.77 24.94 191 1 

RR 31.08 24.19 189 1 

SYS 25.14 20.45 179 1 

DIA 25.14 20.45 179 1 

SpO2 31.6 24.59 190 1 

TEMP 9.7 12.68 126 1 

CRE 1.66 1.17 12 1 

VS: vital signs, SD: standard deviation, HR: 

heart rate, RR: respiratory rate, SYS: systolic 

blood pressure, DIA: diastolic blood pressure, 

TEMP: body temperature, CRE: serum creati- 

nine value. 
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Table 3 

The performance summary of each model. 

Model Stage1_ave Stage1_std Stage2_ave Stage2_std Input 

1DCNN 0.636 0.012 0.684 0.036 VS 

LSTM 0.606 0.013 0.672 0.044 VS 

RNN 0.587 0.015 0.639 0.035 VS 

XGB 0.583 0.014 0.612 0.027 VS 

1DCNN 0.704 0.011 0.796 0.032 VS, CRE 

LSTM 0.683 0.015 0.784 0.033 VS, CRE 

RNN 0.671 0.014 0.77 0.024 VS, CRE 

XGB 0.624 0.017 0.712 0.026 VS, CRE 

1DCNN 0.742 0.009 0.844 0.029 VS, CRE, DEMOG 

LSTM 0.723 0.01 0.784 0.035 VS, CRE, DEMOG 

RNN 0.725 0.011 0.791 0.025 VS, CRE, DEMOG 

XGB 0.671 0.011 0.816 0.019 VS, CRE, DEMOG 

1DCNN 0.707 0.007 0.703 0.04 VS, DEMOG 

LSTM 0.691 0.007 0.672 0.036 VS, DEMOG 

RNN 0.688 0.009 0.674 0.041 VS, DEMOG 

XGB 0.635 0.007 0.653 0.014 VS, DEMOG 

Stage1_ave, Stage2_ave, Stage1_std, and Stage2_std: the average AUROC values and 

the standard deviation for prediction of stage 1 and 2 AKI, VS: vital signs, CRE: 

serum creatinine values, DEMOG: demographic information, RNN: recurrent neural 

network, LSTM: long short-term memory, 1DCNN: one-dimensional convolutional 

neural network, XGB: XGBoost. 

v  

a

v
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atient’s demographic information is summarized in Supplemen- 

ary Table 1. The mean number of the valid values for each fea- 

ure before imputation for all the patients included in the analy- 

is of stages 1 and 2 is summarized in Table 2 . CRE had a lower

umber of valid values compared to the other features. The per- 

ormance of each classifier for the prediction of stages 1 and 2 

s summarized in Table 3 and Fig. 2 . Overall, the highest perfor- 

ance was obtained when the vital signs, demographic informa- 

ion, and CRE were combined (AUROC 0.742 ± 0.010 for stage 1 

nd 0.844 ± 0.029 for stage 2, mean ± standard deviation), com- 

ared to the other models. When only the CRE were used as input 

or prediction of stage 2 AKI in 24 to 48 h, the performance was

ower than combined with CRE combined with vital signs as input 

AUROC 0.759 ± 0.034 and 0.796 ± 0.032 respectively). 
4 
We additionally applied the same workflow for predicting de- 

eloping AKI in 48 to 72 h using the features of 0 to 48 h after

dmission to ICU. For the setting, as same as the prediction of de- 

eloping AKI in 24 to 48 h, the higher performance was obtained 

n 1D-CNN compared to the other approaches in both predictions 

f stage 1 and 2, when vital signs, demographic information, and 

RE were combined (AUROC 0.698 ± 0.012 and 0.860 ± 0.026 for 

redictions of stage 1 and 2). The results for the prediction of de- 
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Fig. 3. The ROC curves of the 1D-CNN model. 

The ROC curves of the 1D-CNN with the input of vital signs, demographic information, and creatinine values for all the folds in the cross-validation. 
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eloping AKI in 48 to 72 h were summarized in Supplementary 

able 2. 

We used the model of predicting the stage 2 AKI in 24 to 48 h

or the downstream visualization analysis, with the weights in the 

est fold in cross-validation, which had the AUROC value of 0.890 

 Fig. 3 ). 

.2. Real-time prediction and visualization 

We calculated the real-time probability, Score-CAM and guided 

core-CAM. Those with the highest three probability of developing 

KI in the test dataset were visualized in Fig. 4 (the patient one 

o three hereafter). Note that all three patients visualized in the 

old developed AKI in subsequent 24 to 48 h period and were true 

ositives. 

Specifically, for patient one, the average guided Score-CAM was 

igh in SBP and DBP, and the time interval of lower SBP and DBP 

ot higher attention, suggesting the patient developed AKI because 

f these vital signs. Additionally, higher RR and lower SpO2 got 

igh attention. For patient two, The average guided Score-CAM was 

igh in SpO2 and TEMP, and the time points with lower SpO2, as 

ell as higher TEMP got high attention. Additionally, higher RR got 

igh attention. For patient three, the higher RR and TEMP also got 

igh attention, and the time interval with lower SpO2 and higher 

EMP got high attention. For all the patients, the probability of de- 

eloping AKI was continuously high from admission to ICU. 

We showed one example of the patients who had a grad- 

al increase in the probability of developing AKI in Supplemen- 
5 
ary Figure 1. This patient had high attention in SpO2, TEMP and 

R. For this patient, we performed the additional analysis of the 

imulation of the intervention to show the validity of our pro- 

osed framework (Supplementary Figure 2). On all the experiments 

hanging vital signs based on the real-time probability and guided 

core-CAM, the final probability of developing AKI was low com- 

ared to the raw input. 

Additionally, The visualization of the patients with the highest 

hree probability in the fold with the second-highest performance 

AUROC 0.866) is in Supplementary Figure 3 for the referencing 

urpose. 

. Discussion 

In the present study, we applied the 1D-CNN model to the 

roblem of prediction of AKI in ICU and proposed the system to 

elp physicians understand which time point could be important 

or prediction in the real-time and retrospective manner. The ob- 

ained results indicated that although the performance of the pro- 

osed system was low compared to other studies, the real-time 

rediction and retrospective visualization of prediction were rea- 

onable. 

Visualization result of guided Score-CAM suggested that time 

oints with lower SpO2 and blood pressure, and higher TEMP and 

R had high attention and thus important for the prediction of AKI. 

ne of the suspected reasons is that these vital signs are among 

he criteria for sepsis or septic shock [21] , which is one of the im-

ortant and common reasons for AKI in ICU and thus are consid- 
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Fig. 4. Visualization of the rationale behind the prediction of developing AKI. 

Information of patients with the highest three probability of developing AKI were listed. The x -axis showed a time point of 15 min interval. The line plot of PROB indicates 

the probability of developing AKI at the specific time point and CAM indicates Score-CAM values. HR, RR, SBP, DBP, TEMP, and SpO2 indicate the recorded value at the 

specific time point, and the color of the point indicates guided Score-CAM value. The values under each label in the y -axis represent the average value of guided Score-CAM 

for each vital sign. 
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red to have high attention. Besides, cardiac arrest, in which vital 

igns show drastic changes, has been reported to cause AKI [22] . In 

his context, this suggested that the 1D-CNN algorithm is capable 

f correctly identify which time point has important information 

egarding the prediction of AKI. Additionally, the important vital 

igns for the prediction differ from patient to patient. 

We compared the performance of 1D-CNN with those of XG- 

oost, RNN, and LSTM. When compared to RNN and LSTM, 1D- 

NN achieved slightly better performance in the current setting. 

n one study, it was reported that CNN, or temporal CNN, which 
6 
ave the characteristic of architecture are causal, and that the ar- 

hitecture can take a variable length of the input, have superior 

roperties compared with the RNN architecture, such as LSTM in 

he sequencing modeling task [23] . Additionally, CNN generally re- 

uires low memory and time to train compared to RNN or LSTM, 

hich could be advantageous where the computational resource is 

carce. 

The major limitation of the present study was the low perfor- 

ance compared with the other study using the full set of features 

vailable in ICU [5] . The main reason underlying this was suspected 
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o be the selection of a time window, the usage of strict AKI crite- 

ia in terms of occurrence in a limited time window, and the us- 

ge of limited features, especially not using information regarding 

edications used in ICU, which is used in the other study [24] , as

edications can cause AKI in high frequency [25] . Although 1D- 

NN has the advantage of the capacity to visualize the rationale 

ehind the prediction and the capability of real-time prediction, 

ther models could achieve high performance in the present com- 

arison. Besides, in the situations like the number of valid input 

alues before imputation was low, the algorithms could identify 

he highest or lowest values as important, which did not use time- 

eries information sufficiently. As our model used CRE as the input, 

nd the AKI category was defined using CRE, CRE seemed to play 

he major role in prediction. However, we showed that combining 

he easily accessible vital signs and demographic information with 

RE can improve the predictive performance of developing future 

KI to a certain extent. Additionally, although making changes in 

ital signs is clinically not feasible and impossible, we showed that 

he real-time calculation of probability and the calculation of the 

asis behind prediction by the proposed system could aid in re- 

ucing the probability of developing AKI in the present setting. 

he performance assessed by AUROC was lower in the prediction 

f stage 1 compared to stage 2 AKI. It was presumed that stage 

 included more subtle changes and a limited dataset that is rou- 

inely available did not have sufficient information to predict stage 

 AKI. 

The approach proposed in the present study could be advan- 

ageous, as it could be applied and transferred to almost any ICU 

etting that stored the time series data of vital signs, without the 

eed for the identification and linking of medication codes and 

ranslation of clinical notes. 

. Conclusions 

In conclusion, we developed a prediction and visualization sys- 

em of AKI using 1D-CNN and Score-CAM. The proposed system 

as aimed to help physicians involved in ICU to understand how 

he patient developed AKI retrospectively, and additionally realize 

he probability of developing AKI in a real-time manner. 
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